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Abstract: Facial expression recognition (FER) is a crucial technology and a challenging task for human—computer
interaction. Previous methods have been using different feature descriptors for FER and there is a lack of comparison
study. In this paper, we aim to identify the best features descriptor for FER by empirically evaluating five feature
descriptors, namely Gabor, Haar, Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), and Binary
Robust Independent Elementary Features (BRIEF) descriptors. We examine each feature descriptor by considering
six classification methods, such as k-Nearest Neighbors (k-NN), Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM), and Adaptive Boosting (AdaBoost) with four unique facial expression datasets. In addition to test
accuracies, we present confusion matrices of FER. We also analyze the effect of combined features and image resolu-
tions on FER performance. Our study indicates that HOG descriptor works the best for FER when image resolution of
a detected face is higher than 48x48 pixels.

Keywords: Facial expression recognition, Gabor filter, Haar filter, Local Binary Patterns, Histogram of Oriented
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1. Introduction

Facial expression recognition (FER) has a great potential for
improving our life quality. For instance, FER system is useful for
medical applications, such as aiding patients with facial paralysis
disease during rehabilitation treatment. FER system could also
be used to analyze audience’s facial expression for satisfaction
survey. A robotic teacher could offer better learning experience
by having a better understanding of students’ feeling.

Designing a FER system is challenging due to the huge vari-
ability of face appearance, head pose, light condition, and partial
occlusions due to hairs, sunglasses and masks. Over the years, re-
searchers have proposed various techniques for robots/computers
to recognize human facial expression. Previous works typically
focus on proposing new feature descriptors and new classification
methods for FER. In contrast, in this paper, we aim to identify
the best feature descriptors by performing an extensive compari-
son study. We empirically evaluate five popular feature descrip-
tors (Section 4), namely Gabor [1], Haar [2], Local Binary Pat-
tern (LBP) [3], Histogram of Oriented Gradients (HOG) [4], and
Binary Robust Independent Elementary Features (BRIEF) [5] de-
scriptors. We then examine each feature descriptor by consid-
ering six classification methods (Section 5), such as k-Nearest
Neighbors (k-NN), Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), and Adaptive Boosting (AdaBoost) with
four unique facial expression datasets. For clarity, we summa-
rized the facial expression datasets, feature descriptors, and clas-
sification methods considered in our experiments in Table 1. In
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Table 1 Facial expression datasets, feature descriptors, and classification
methods considered in our experiments.

Datasets Descriptors  Classifiers
1. CK+ 1. Gabor 1. k-NN
2. MUG 2. Haar 2. RFS + LDA
3. KDEF  3.LBP 3. PCA + LDA
4. JAFFE 4. HOG 4. SVM

5. BRIEF 5. AdaBoost

6. AdaBoost + SVM

addition to test accuracies (Section 6), we present confusion ma-
trices of FER (Section 8). After that, we analyze the effect of
combined features (Section 9) and image resolutions (Section 10)
on FER performance. We also generalized our experiments to
other datasets (Section 11), analyzed the computational efficiency
of each feature descriptors (Section 12), and visualized the fea-
ture descriptors selected by AdaBoost classifier (Section 13).

2. Related Works

In this work, we focus on appearance approaches, in which we
extract features from facial expression images by using filters or
transformations, and apply classifiers to the extracted features.
Our work is similar to a recent study [6] but we have more de-
tailed analysis, including parameter sensitivity and image resolu-
tion analyses, generalization tests, and visualization of features.

On the other hand, geometric approaches use the locations of
salient facial feature points such as eye corners, nose tip, and
mouth corners for FER [7], [8], [9], [10]. Geometric approaches
normally require a high-resolution image for accurate localiza-
tion of the salient facial feature points. Shan et al. has empiri-
cally shown that geometric approaches are more suitable for FER
of high-resolution facial expression images [11].

Hybrid approaches also exist and independent works show that
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the combined geometric and appearance features can achieve
higher test accuracies [12], [13], [14]. During our literature re-
view process, we find that FER has a trend to combine the geo-
metric and appearance features to achieve a more robust perfor-
mance. Sadeghi et al.[15] first mapped the faces to a standard
shape (i.e., geometric normalization) and then extracted appear-
ance features for FER. Happy and Routray [16] extracted appear-
ance features from salient facial patches (i.e., geometric features)
to perform FER. Similarly, Zheng [17] proposed to perform FER
by using sparse SIFT feature extracted from face feature points.
Eleftheriadis et al. [18] also combined geometric and appearance
features to learn a Gaussian process model for FER.

Feature Descriptors: Gabor descriptor [1] is one of the most
common feature descriptors that has been used for FER [12], [13],
[19], [20], [21], [22], [23], [24]. Haar descriptor [2] is also pop-
ular for FER [25], [26]. Recently, LBP descriptor [3] has been
adopted for FER [11], [15], [16], [18], [27] and HOG descrip-
tor [4] has been examined for FER [28], [29], [30]. In this study,
we also evaluate the performance a relatively new feature descrip-
tor called BRIEF descriptor [5] in FER. To the best of our knowl-
edge, we are the first to consider BRIEF descriptor in FER. Dense
SIFT descriptor [31] has also been used for FER recently [32].
Classification Methods: SVM classifier [33], [34] is the most
common classifier that has been applied to FER [11], [20], [21],
[22], [23], [25], [27], [28], [29], [30]. Several works have re-
ported that SVM with linear kernel produce similar test outcomes
when compared to radial basis function kernel (RBF) [20], [21],
[22], [23]. These consistent outcomes indicates that feature de-
scriptors such as Gabor and Haar filters are capable of trans-
forming the original image data into a space with a higher lin-
ear separability between image classes*!. On the other hand,
AdaBoost [35] has also been used for FER [21], [22], [23], [26]
and feature selection [11], [13], [23], [25]. Neural network ap-
proaches, including multilayer perceptron and radial basis func-
tion network, have also been explored in FER [12], [14], [24]. k-
Nearest Neightbors (k-NN) classifier has also been used recently
for FER [18]. Given sufficient training data, modern classifiers
can normally achieve satisfactory test results. However, the best
feature descriptor and classification method across different facial
expression datasets remains unknown due to the lack of compar-
ison study.

3. Facial Expression Datasets

Our experiments focus on four facial expression datasets,
namely Extended Cohn-Kanade (CK+) Facial Expression
Dataset [36], [37], Multimedia Understanding Group (MUG)
Dataset [38], Karolinska Directed Emotional Faces (KDEF)
Dataset [39], and Japanese Female Facial Expression (JAFFE)
Dataset [40]. All faces in the four datasets were extracted with
face detector of Computer Vision System Toolbox in MAT-
LAB[41]. We use the detected faces directly for FER without
explicitly aligning facial feature points. Littlewort et al. have
reported that explicit facial feature alignment does not improve
the performance significantly [23].

*I' This process is conceptually similar to the kernel trick in SVM classifier.
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Fig. 1 CK+ Facial Expression Dataset.

3.1 CK+ Dataset

CK+ Database *> [36], [37] is one of the most widely used fa-
cial expression databases. It has facial expression images of 210
adults aged between 18-50 years old. Participants were consisted
of 69% female. All participants were requested to perform a se-
ries of facial displays with the help from an instructor. With care-
ful selection criterion, 327 sequences were identified as one of
the seven discrete facial expression, namely ‘Angry’, ‘Contempt’,
‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, and ‘Surprise’. Each sequence
begins with a neutral facial expression and ends with a specific
facial expression. For our comparison study, we excluded ‘Con-
tempt’ class and focused on the Basic-6 facial expression [42].
We selected the first frame of all sequences as ‘Neutral’ images
and used the last frame from all sequences as Basic-6 facial ex-
pression images. Overall, we have obtained 636 facial expression
images (Angry: 45, Disgust: 59, Fear: 25, Happy: 69, Sad: 28,
Surprise: 83, and Neutral: 327). Figure 1 shows a few example
images of CK+ Dataset. The square boxes were obtained from
face detector in MATLAB [41]. Red, orange, yellow, green, blue,
indigo, and violet colored boxes represent angry, happy, fear, neu-
tral, sad, surprise, and disgust facial expression respectively.

It is worth noting that CK+ Database has been used for FER
under different setting. Shan et al. have used the first frame of
all sequence as ‘Neutral’ images and used the last three frames of
all sequences as Basic-6 facial expression images for FER [11],
resulting in 1,254 images (Angry: 135, Disgust: 177, Fear: 75,
Happy: 207, Sad: 84, Surprise: 249, and Neutral: 327). We have
also tried this setting but found that it produces unfair compari-
son results. The last three extracted frames are almost identical
to each other and subsequently cause significant overlapping in
the training and test data during cross validation. Therefore, we
opted to use only the last frame from all sequences as Basic-6
facial expression images.

3.2 MUG Dataset

MUG Database [38] records facial expression images from 86
participants with Caucasian origin and aged between 20-35 years
old. 59% of the participants were male. Some participants had
beard or hair occlusions and 7 participants were wearing glasses.
We have selected 919 facial expression images for our compar-
ison study (Angry: 157, Disgust: 145, Fear: 118, Happy: 164,
Neutral: 52, Sad: 124, and Surprise: 159). Example images are
not shown here due to license agreement term.

3.3 KDEF Dataset
KDEF Database [39] records facial expression images from
140 amateur actors (70 males and 70 females) at 5 different view-

*2. We use the term ‘database’ to refer to the original resources offered by

third party while the term ‘dataset’ to refer to the images selected from
the ‘database’ for our experiments.
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Fig.3 JAFFE Dataset.

ing angles. All actors aged between 20-30 years old. They have
no beards, no mustaches, no earrings, no eyeglasses, and mostly
no visible make-up during photo sessions. For our comparison
study, we only consider frontal images, resulting in 980 facial ex-
pression images (Angry: 140, Disgust: 140, Fear: 140, Happy:
140, Neutral: 140, Sad: 140, and Surprise: 140). Figure 2 shows
some example images from KDEF Dataset, where red, orange,
yellow, green, blue, indigo, and violet boxes represent angry,
happy, fear, neutral, sad, surprise, and disgust facial expression
respectively.

3.4 JAFFE Dataset

JAFFE Database [40] contains 213 facial expression images of
Basic-6 facial expressions and one neutral facial expression. All
facial expression images were posed by 10 Japanese female mod-
els. We use all 213 facial expression images for our comparison
study (Angry: 30, Disgust: 29, Fear: 32, Happy: 31, Neutral: 30,
Sad: 31, and Surprise: 30). Figure 3 shows some example im-
ages from JAFFE Dataset, where red, orange, yellow, green, blue,
indigo, and violet boxes represent angry, happy, fear, neutral, sad,
surprise, and disgust facial expression respectively.

4. Feature Descriptors

Our main goal is to identify the best feature descriptor for FER.
We empirically evaluate five feature descriptors, namely Gabor,
Haar, LBP, HOG, and BRIEF descriptors in FER. In the follow-
ing, we briefly review the computational process and advantages
of each feature descriptor.

4.1 Gabor Descriptor

Gabor filter theory was first formulated by Dennis Gabor in
1946’s [1]. John Daugman later discovered that Gabor functions
can be used to model simple cells in the visual cortex of mam-
malian brains [43]. This discovery reveals that Gabor filters is
similar to perception in human visual system and justifies the
usefulness of Gabor filters in various computer vision applica-
tions such as iris recognition [44], fingerprint matching [45], and
FER [21], [22]. We illustrate a few examples of 2D Gabor fil-
ters in Fig.4, where the first row shows filters with increasing
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Fig. 4 Gabor filter examples. First row shows filters with increasing fre-
quency, second row shows filters with varying orientation, and third
row shows filters with varying oscillation phase.

frequency, second row shows filters with varying orientation, and
third row shows filters with varying oscillation phase. As shown
in Eq. (1) and Eq. (2), Gabor filter has compact functions that
relate filter size, oscillation frequency, orientation, and oscilla-
tion phase. From Eq. (1), we can observe that the Gabor func-
tion consists of two sub-functions—Gaussian and harmonic func-
tions, where the Gaussian sub-function (a.k.a. envelope function)
is responsible in defining spatial properties (x, y, o, y), while the
harmonic function (a.k.a. carrier function) is responsible in gov-
erning oscillation frequency (4), orientation (), and oscillation
phase (¢) properties of the Gabor filters.

/2+ 2,72 ’
9(x,y,0,7,60,4,0) = exp BTV ) cos|2nt + 0|,
202 Pl
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In our experiment, we followed Bartlett et al. [21] and set the
spatial resolution (x, y) in the range of 48x48 pixels, use 8 ori-
entations (6 = 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°),
and 5 oscillation frequencies (1 = 4,4 \/E, 8,8 \/5, 16 pixels per
cycle). Ellipticity of the Gaussian function (y) is set to 1 and os-
cillation phase (¢) is set to 0. Standard deviation of the Gaussian
function (o) is set according to half-response spatial-frequency
bandwidths rule in Eq. (3), where the bandwidth () of the Gabor
function is set to 0.5.

o 1 |2 2°+1

17 \/; ¥ @
4.2 Haar Descriptor

Haar filter was first proposed by Papageorgiou et al. as a gen-
eral framework for object recognition in 1998’s[2]. Viola and
Jones later popularized the Haar filter by showing its effective-
ness along with integral image and cascaded classifiers in face
detection problem [46]. Haar filter is a simple rectangular filter
that represents the difference of sum of pixel intensities inside
black and white regions. It has the key advantage of simplicity.
Combined with integral image technique, Haar filter can achieve
significant fast performance and make real-time face detection
possible [46]. We followed Viola & Jones [46] and used the same
five types of Haar filter in our experiments. Figure 5 illustrates
the five types of Haar filter, where each row shows type 1, 2, 3, 4,

106



IPSJ Transactions on Computer Vision and Applications Vol.7 104-120 (Aug. 2015)

Fig. 5 Haar filter examples. The rows show five types of Haar filter with
varying width and height used in our experiments.
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2. Difference

( 0x27 + 0x25 + 0x2° + 0x2% + 1x2% + 1x22 + 1x2% + 1x2° = 15 ]

4. Multiply by powers of two and Summation

Fig. 6 Coding procedures of LBPp-gg-», where P stands for number of
neighbors and R stands for radial distance between the center pixel
and neighboring points.

and 5 filters respectively with different sizes at different locations.
We set the black and white regions to have the same size. We also
increased the size of black and white regions with a step size of
2 pixels. As a result, we extracted 162,336 Haar values from a
48x48 image.

4.3 LBP Descriptor
Local Binary Pattern (LBP) descriptor proposed by Ojala et
al.[3] is a powerful feature descriptor for image classification.

Compared to Gabor or other image filters, LBP has the advan-

tages of computational simplicity and robustness against illumi-

nation variations. LBP encodes information of local patterns such

as edges, lines, and spots in each pixel. Equations (4) and (5)

summarize the encoding processes in a compact form while Fig. 6

illustrates the encoding procedures for a LBPp_g g operator in

details. More precisely, LBP coding for every pixel is computed
as follows:

(1) Sample neighbor points, where P defines the number of
neighboring points and R defines the radial distance between
the center pixel to neighboring points.

(2) Compute the difference of pixel values between center pixel
and neighbor points.

(3) Threshold the computed differences at zero.

(4) Multiply the thresholded values with power of two conse-
quently and sum all the values.

© 2015 Information Processing Society of Japan

LBP Operation

l 2. Feature Vector

LBP Operation

1. Face Image

Fig.7 Face description with LBP descriptor. Face image [48] is first divided
into cells and followed by LBP operation on each cell. Histogram of
each cell is concatenated into a feature vector.

It is worth noting that the LBPg » operator produces 2” possible
binary patterns and it has been shown that some binary patterns
contain more information than others [3]. Ojala et al. named these
binary patterns as uniform patterns, where they contain at most
two bitwise transitions from O to 1 or vice versa (considering bi-
nary pattern in circular). For instance, 00000001, 11001111, and
11110011 are uniform patterns while 10100000, 00011101, and
11001100 are non-uniform patterns. Ojala et al. found that about
90% of all binary patterns are uniform and they proposed to ac-
cumulate all non-uniform patterns into single bin. Therefore, the
original 28 = 256 bins is reduced to 59 bins. We followed this
practice in our experiments, similar to previous facial expression
study [11] and face recognition study [47].

After LBP coding of every pixels, LBP values of pre-defined
cells (Fig.7) are stored in histogram form and eventually con-
catenated into a 1D feature vector. More precisely, we start with
a window size of 12x12 pixels, compute the histogram of LBP
values inside the window, and continue the process by shifting
the current window to the right hand side by 3 pixels. If the right
corner is reached, window will be shifted to the bottom side by 3
pixels and be restarted from the left hand side. Normalization of
histograms is optional. In our case, we did not carry out normal-
ization since all the considered windows are in the same size.

P-1
LBPpg = )" s(g,—g0) - 2" @)
p=0
1, ifx>0
s(x) = (5)

0, otherwise.

4.4 HOG Descriptor
Histogram of Oriented Gradients (HOG) feature was first de-
scribed by Dalal et al. for human detection [4]. While being sim-

ilar to Scale-invariant Feature Transform (SIFT) descriptor [49],

HOG represents dense coding of image and have some unique

details such as using different number of histogram bins and dif-

ferent image block size [4]. HOG descriptor can be computed in
the following five basic steps:

(1) Gradient computation—image is convoluted with two So-
bel filters, i.e., [-1,0,1] and [-1,0,1]7, to form horizontal
and vertical gradient maps. Following the common practice,
smoothing and gamma normalization are omitted [4].

(2) Magnitude and orientation computation—magnitude and
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HOG Operation

l 2. Feature Vector

HOG Operation

1. Face Image

Fig. 8 Face description with HOG descriptor. Face image [50] is first di-
vided into cells and followed by quantization of gradient orientation
on each cell. Histogram of each block of four adjacent cells is then
locally normalized and concatenated into a full feature vector.

Fig. 9 Visualization of HOG descriptors with divided cells. (a) Face im-
age [50]; (b) HOG visualization of 6x6 cells; (¢) HOG visualization
of 12x12 cells.

orientation maps are computed based on the obtained hor-
izontal and vertical gradient maps. Taking dx and dy as gra-
dient value of pixel in the horizontal map and vertical maps,
magnitude and orientation are calculated as: Magnitude =
\(dx)? + (dy)? and Orientation = tan™' (%).

(3) Cell division—image is then divided into smaller cells. For
example, we are using face images with size of 48x48 pixels
in our experiments. These images are divided into 6x6 cells
where each cell has size of 8x8 pixels (Fig. 8).

(4) Cell quantization—the orientation values of each cell is
quantized in histogram form with 9 orientation bins, where
the magnitude represents voted weights, and we interpolate
votes bi-linearly between neighboring bin center.

(5) Block normalization—four adjacent cells form a block with
16x16 pixels (every block has 50% overlapping with the ad-
jacent block). Orientation histograms of each block are lo-
cally normalized and concatenated into a feature vector.

Figure 9 (a) shows an example face image in size of 48x48
pixels; Fig.9 (b) shows the corresponding HOG descriptors un-
der 6x6 cells configuration (with cell size of 8x8 pixels); and

Fig. 9 (c) shows the corresponding HOG descriptors under 12x12

cells configuration (with cell size of 4x4 pixels). Overall, the

standard HOG descriptor used in our experiments has a dimen-

sion of (5x5x4x9 + 11x11x4x9) = 5,256.

4.5 BRIEF Descriptor

Binary Robust Independent Elementary Features (BRIEF) de-
scriptor [22], [51] was first proposed for image matching with
random forest [22] and random ferns classifiers [51]. BRIEF de-
scriptor has the lowest computational cost among Gabor, Haar,
LBP, and HOG descriptors because it only performs simple bi-
nary comparison test and uses Hamming distance (instead of Eu-
clidean or Mahalanobis distance) for image classification [52].

© 2015 Information Processing Society of Japan

Vol.7 104-120 (Aug. 2015)

1. Binary Sampling

2. Pixel Intensities
Binary Test

ENCICIESERE

3. Fern Decimal Value

Fig. 10 Face image [53] and its BRIEF descriptor. Five random pixel pairs
are selected, followed by binary tests on pixel intensities, and con-
version from binary code into decimal value.

BRIEF descriptor has two setting parameters — the number of
binary pixel pairs and binary threshold. We used five binary pixel
pairs and zero binary threshold in all our experiments. Figure 10
illustrates computation process of a BRIEF descriptor. Firstly,
five binary pixel pairs are randomly chosen from a given image.
Secondly, binary pixel pairs are subjected to binary test,

1, if(l,-1,) >0
fo=l Ham ) ©)

0, otherwise.

where [, and I, are the intensity values of red circle pixel and blue
circle pixel in Fig. 10, respectively. Thirdly, the binary values of
five binary pixel pairs are summarized in binary code and subse-
quently converted into decimal value, which can be summarized
in the following form,

5
F=)fu27" ™)
n=1

In all our experiments, we use 10,000 BRIEF values for FER.
S. Classification Methods

After feature extraction, we applied six different classifiers
with the feature descriptors. We first considered k-NN classifier,
followed by LDA classifier. Thirdly, we used Principal Compo-
nent Analysis (PCA) to reduce the size of feature descriptors and
used LDA for FER. Fourthly, we used SVM and AdaBoost clas-
sifier for FER. Last but not least, we used AdaBoost for feature
selection and SVM for FER.

We used two-class classifiers in all experiments. Specifically,
we built seven one-vs.-all classifiers that are responsible in rec-
ognizing seven facial expressions, namely ‘Angry’, ‘Disgust’,
‘Happiness’, ‘Fear’, ‘Neutral’, ‘Sad’, and ‘Surprise’. We used
common voting practice and combined seven test results in the
end[11], [23]. For example, an image identified as positive by
‘Angry’ classifier will get +1 point for ‘Angry’ label and —1 point
for other labels. Similarly, the same image identified as negative
by ‘Neutral’ classifier will get —1 point for ‘Neutral’ label and
+1 point for other labels. In order to avoid possible classification
ties, each label is initiated with a random positive number that
is smaller than 1. Label with the highest points after combining
seven voting results will be elected as the final test label.

5.1 k-Nearest Neighbors (k-NN)

Given a test data in a feature descriptor space, 1-NN classifier
tries to find a training data that is the closest to the test data, and
consider the label of that training data as the test label. Similarly,
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given a test data in a feature descriptor space, k-NN classifier tries
to find k training data that are the closest to the test data, and con-
sider the label with the largest occurrence as the test label. In our
experiments, we considered Euclidean distance and used exhaus-
tive search. Denoting a particular training data as x; and test data
as x, the squared Euclidean distance between the training and test
data can be computed as dy = (x; — x)7 (x — x).

5.2 Linear Discriminant Analysis (LDA)

LDA assumes facial expression images to follow multivariate
normal distribution model and all classes C have the same covari-
ance matrix. During training process, LDA estimates the means
HUe and covariance matrix 2. of every class ¢ and tries to look
for an optimal linear boundary between classes [54]. Given a test
data x € RPX!, the test label can be predicted by maximizing

& = argmax P(c|x) . (8)
c=1,...,C
The posterior probability in Eq.(8) can be computed by using
Bayesian rule

P(x|c)P(c)

P(clx) = PO

; )
where the P(c) is class prior, the P(x) is a normalization constant,
and the likelihood can be computed by

1
P(xlc) = exp( - 5= 5 (= o) (10)

1
VRmPIZ|

In practice, the number of our training data is smaller than the
dimensions of feature descriptors. This condition would trigger
singularity issue when we invert the covariance matrix during the
training process. Moreover, the inversion of covariance matrix
has large computational load due to the large feature descriptors
(about 90,000 for Gabor descriptor and more than 160,000 for
Haar descriptor). To maintain simplicity of LDA as well as com-
parison with PCA at later stage, we randomly selected 200 fea-
tures from each descriptors for FER.

While LDA is always used interchangeably with Fisher LDA
(FLDA), we follow the naming convention in Refs. [54], [55],
[56] to avoid confusion. We consider LDA as a classifica-
tion method while FLDA as a dimensionality reduction method.
Formally, LDA fits data with multivariate normal function with
the assumption that each class shares a same covariance ma-
trix. On the other hand, FLDA tries to maximize classes’ sep-
arability by finding an optimal linear projection. Under this
point of view, ‘LDA’ mentioned in the previous facial expression
studies [11], [23] are in fact FLDA method. For more details,
please refer to Chapter 4.2.2 (LDA) and Chapter 8.6.3 (FLDA) in
Ref. [54] or online resources [55], [56].

5.3 Principal Component Analysis (PCA)

In the previous section, we used random feature selection
(RFS) to reduce the number of features in order to avoid singu-
larity issue in LDA classifier and save computational cost. In
this section, we performed dimensionality reduction more sys-
tematically by using Principal Component Analysis (PCA) [57].

© 2015 Information Processing Society of Japan

Margin

(°] Support
Vectors

Fig. 11 SVM classifier illustration. SVM find an optimal hyper-plane that
maximizes the margin area in between two classes of data.

In theory, PCA finds an orthogonal projection plane in a lower di-
mensional space that minimize the data’s projection error. From
another point of view, PCA also maximizes the variances between
data while projecting data to a lower dimensional space. Principal
components can be computed by using eigen decomposition or
singular value decomposition methods. In practice, the first few
principal components normally capture most of the information
in the original data. We used the first 200 principal components
(retaining more than 98% of information) for LDA classification.
In our experiments, we used power method of PCA [58] to reduce
the computational load and speedup performance.

5.4 Support Vector Machine (SVM)

SVM was originally proposed by Vapnik and Lerner in
1963’s [33] and the concept of soft margin in SVM was formu-
lated by Cortes and Vapnik in 1995’s[34]. Unlike LDA, SVM
assume no prior knowledge about the distribution of the samples.
As shown in Fig. 11, SVM looks for an optimal hyper-plane that
maximizes the margin area between the two classes’ closest train-
ing sample points (support vectors).

In practice, we have to decide a kernel function, such as linear,
polynomial, or RBF for SVM [59], [60] and there is no analyti-
cal way to decide which kernel function works the best for any
particular datasets. In this study, we focus on SVM with linear
kernel (linear SVM) for two main reasons. Firstly, Littlewort et
al. and Shan et al. have reported that SVM with radial basis func-
tion (RBF SVM) does not perform significantly better than linear
SVM [11], [23]. These outcomes indicate that facial expression
datasets are highly linear-separable upon feature transformation.
Secondly, linear SVM has only one tuning parameters (soft mar-
gin) and has a lower computational cost than RBF SVM.

With linear SVM, we tuned the soft margin parameter by
performing a grid search over range of 1072, 107!, 10°, 10', 107
and identified the parameter that leads to the best performance.
Datasets were normalized prior to the classification. We used
svmtrain and svmclassify functions in MATLAB Statistics
Toolbox [61]. We also used sequential minimal optimization
(SMO) method [62] since it performs significantly faster and pro-
duces similar results with the quadratic programming method.

5.5 Adaptive Boosting (AdaBoost)

AdaBoost was formulated by Freund and Schapire in
1995°’s [35], [63]. While SVM tries to find the training samples
that are the most difficult to classify (support vector) and form
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Fig. 12 AdaBoost classifier illustration. AdaBoost classifier selects the best
feature for each weak classifier / at one time, and then update the
sample weights a based on the local classification error €.

optimal hyper plane based on these training samples, AdaBoost
looks for the best training features that are useful for its weak
classifiers. AdaBoost iteratively select the best training feature
on each training cycle. After each feature selection, sample
weights are re-adjusted according to the local classification error.
The same process repeats until a certain number of features
are selected. Weak classifiers, normally linear decision stumps
with only threshold and polarity parameters, are then combined
together to form a strong classifier. Mathematically, the linear
decision stump classifier can be written as

+1, ifp-f)<p-0,
hy(x, p,0) = . (1)
— 1, otherwise .

where f(x) is a feature descriptor, 6 represents a threshold value,
and p represents the direction of the inequality. We illustrate Ad-
aBoost algorithm graphically in Fig. 12 and summarize the essen-
tial steps in Algorithm 1.

Algorithm 1 AdaBoost Algorithm

Step 1: Denoted as (x;,y;), training samples consist of a vectorized facial

expression image x; and training label y; = {+1,-1} .

Step 2: Given P positive and N negative training data, set the weights of
positive and negative samples to w; = % and w; = % respectively.

Fortr=1,..., T =80:

Step 3: Normalize the weights of all training samples, w; < Z[”—u .
i=1 "1

Step 4: By using Eq. (11) with p = 1 or p = —1 and different 6,
compute the error rate € of each decision stump /,(x) .

Step 5: Select the decision stump /,(x) that has lowest error rate.

Step 6: Compute weight of selected decision stump, @, = % In (ﬁ) .

€

Step 7: Update training sample weights, w; « w; - exp(—a,y;h,(x;)) .

Step 8: The final strong classifier is H(x) = sign[ Y% a,h,(x)] .

=1

5.6 AdaBoost with SVM (AdaBoostSVM)

AdaBoost is a special classifier as it performs feature selection
and classification simultaneously by combining numerous weak
classifiers in an additive manner. Useful features are identified by
weak classifiers during the training process. A number of weak
classifiers and features are then combined to form a strong clas-
sifier to carry out the image classification. Since SVM and Ad-
aBoost design a robust classifier from different perspectives, i.e.,
SVM selects training samples to be support vectors while Ad-
aBoost identifies the best training features for weak classifiers,
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Table 2 Test accuracies of k-Nearest Neighbors (CK+ Dataset).

Descriptors 1-NN 5-NN 10-NN 20-NN

Gabor 57.7+54 505+73 595+57 609+5.6
Haar 52.7+49 41.1+65 473+£51 473+5.1
LBP 60.2+51 581+77 605+68 593+63
HOG 56.5+44 523+59 664+43 684=x3.6
BRIEF 556+54 51.1+66 577456 57.6+6.0

we expect that the integration of SVM and AdaBoost will lead
to an even stronger classifier. One possible way is to use SVM
as the weak classifier in AdaBoost. However, this would possi-
bly increase both the training and test times in practice. More-
over, there is no guarantee that SVM will outperform decision
stump since each weak learner only considers one feature. In
contrast, we use AdaBoost to select the best training features and
use SVM for classification. Specifically, all the features selected
by all weak classifiers, i.e., decision stump, during the AdaBoost
training process are adopted as the features for training the SVM
classifier. Our concept is similar to Refs. [11], [13], [23], [25]
but we fixed the number of selected features at 80 in our stud-
ies, which is close to the number of support vectors in our SVM
classifiers. Note that we could only determine a very rough es-
timate of the number of support vectors since we are performing
multiple one-vs.-all experiments in 20 validation cycles.

6. Classification Results

We report experiment results of each feature descriptors with
six classifiers: k-NN, RFS+LDA, PCA+LDA, SVM, AdaBoost,
and AdaBoostSVM classifiers in this section. We carried out re-
peated random sub-sampling validation in all our experiments.
Specifically, we randomly selected 90% of all images for train-
ing and used the remaining 10% images for testing. We repeated
this process for 20 times and report the mean and standard devi-
ation of test accuracies in the followings. In the meantime, we
focus our discussion on experiment results of CK+ Dataset. In
Section 11, we will generalize our test results to the remaining
datasets (MUG, KDEF, JAFFE Datasets) and a combined dataset
(CK+ & MUG & KDEF & JAFFE).

6.1 Kk-Nearest Neighbors (k-NN)

Table 2 summarizes the test accuracies of five feature descrip-
tors with k-NN classifiers applied to the CK+ Dataset. We tested
performance of 1-NN, 5-NN, 10-NN, and 20-NN classifiers with
an exhaustive search. While the overall performance is the worst
among all classifiers, we found an interesting pattern in k-NN
classification results. We find that when the number of near-
est neighbors is small, LBP descriptor tends to produce the best
results. On the other hand, when the number of nearest neigh-
bors is large, we find that HOG descriptor tends to produce the
best results. Moreover, the larger the number of nearest neigh-
bors, the higher the test accuracies. However, a larger number of
nearest neighbors would lead to a higher computational cost. In
short summary, we considered 20 as the largest number of near-
est neighbors in this experiment and identified HOG descriptor as
the best feature descriptor for FER in k-NN classifier.
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Table 3 Test accuracies of Random Feature Selection+LDA and
PCA+LDA (CK+ Dataset).

Descriptors RFS+LDA PCA+LDA
Gabor 79.4+5.2 82.7+3.4
Haar 80.8 £4.9 83.4+42
LBP 66.4 +6.0 86.4+2.6
HOG 825 +4.1 90.9 + 3.2
BRIEF 672+59 83.7+3.4

Table 4 Test accuracies of Linear SVM and AdaBoost (CK+ Dataset).

Descriptors Linear SVM AdaBoost  AdaBoostSVM
Gabor 83.6+3.4 81.1+5.8 79.5+4.0
Haar 80.2+3.5 78.0 4.1 747 +4.6
LBP 86.0 4.0 81.2+39 82.9+4.6
HOG 91.2 +£3.2 85.7 £ 3.0 85.9 +4.0
BRIEF 832+34 79.7+4.4 789 £4.9

6.2 Linear Discriminant Analysis (LDA)

Table 3 summarizes the test accuracies of five feature descrip-
tors with RFS+LDA and PCA+LDA classifiers applied to the
CK+ Dataset. First of all, we observe that the performances of
both RFS+LDA and PCA+LDA classifiers are better than all k-
NN classifiers. Secondly, as expected, PCA performs better than
RFS as PCA reduces the size of feature descriptors while captur-
ing the most important information systematically. Last but not
least, we find that HOG descriptor produces the best test accura-
cies in both RES+LDA and PCA+LDA classifiers.

6.3 Support Vector Machine (SVM) and AdaBoost

Table 4 summarizes the test accuracies of five feature descrip-
tors with SVM, AdaBoost, and AdaBoostSVM classifiers applied
to the CK+ Dataset. We observe that once again, HOG descriptor
produces the best test accuracies in all the three classifiers. Here,
we examine the classifiers more carefully. First, we find that lin-
ear SVM classifier produces the best test accuracy among all the
six classifiers in our experiments. Second, out of our expectation,
we find that AdaBoost classifier performs slightly worse than lin-
ear SVM classifier. Third, contrary to previous studies [13], [23],
we find that in most cases, AdaBoostSVM classifier produces
worse result than both linear SVM and AdaBoost classifiers. We
believe that this discrepancy is caused by the uses of different
experiment datasets, different tuning practices in SVM classifier,
and different weak learners in AdaBoost classifier.

In addition to the test accuracies, we also analyzed the influ-
ence of the soft margin (hence the number of support vectors) on
the SVM performance, as well as the influence of the number of
weak learners on the AdaBoost performance. We focused on the
HOG and BRIEF descriptors in order to save computational time.
In the experiments, we varied the soft margin parameter over the
range of 1072,107",10°, 10", 10%, 10%, 10*, 0 and found that all
the settings produce similar test accuracy results (within +0.5%).
This indicates that the facial expression images are highly linearly
separable upon the feature extraction or transformation.

In the AdaBoost experiments, we varied the number of weak
learners over the range of 40, 80, 120, 160, 200. Figure 13 shows
the training and test accuracies of AdaBoost classifier at differ-
ent number of weak learners (decision stump) with HOG (left)
and BRIEF descriptors (right). We can observe that both descrip-
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Fig. 13 Training and test errors of AdaBoost classifier at different number
of weak learners with HOG (left) and BRIEF descriptors (right).

tors start to achieve 100% training accuracies when the number
of weak learners equal to 80. We also find that the test perfor-
mances of HOG and BRIEF descriptors start to saturate when the
number of weak learners are equal to 120 and 160 respectively.
While we fixed the number of weak learners to 80 in the (default)
comparison experiments, the differences between default and the
best test accuracies are not large (less than 1% in HOG case and
less than 2% in BRIEF case). Nevertheless, these results suggest
that we could increase the number of weak learners from 80 to
120 (in the HOG case) and to 160 (in the BRIEF case) in practice
in order to achieve more accurate performance.

6.4 Opverfitting Consideration

Since the CK+ Dataset that we are using is relatively small
when compared to the dimensions of feature vectors, overfitting
issue should be analyzed in order to consolidate the classification
results. In addition to the previously mentioned repeated sub-
sampling validation procedures, we further performed an over-
fitting test by plotting the training error and validation error as
a function of the size of the training dataset. Since performing
the experiments with all feature descriptors is time-consuming,
we focused the overfitting test on HOG and BRIEF descriptors
with SVM classifier. We chose HOG descriptor because it has the
best test performance among other feature descriptors. We chose
BRIEF descriptor because it has an out-of-expectation result in
Section 10, where its classification performance outperform LBP
and HOG descriptors when the image resolution is lower than
24x24 pixels. Note that the dimensions of both HOG and BRIEF
descriptors are larger than the size of the training dataset. On the
other hand, we chose SVM classifier because it does not perform
feature selection and considers the full feature vector during the
image classification.

Figure 14 shows the training and test accuracies of SVM clas-
sifier at different percentage of training data with HOG (left) and
BRIEF descriptors (right). Note that all the experiment settings
remain the same. We randomly sub-sample 10% of the full data
for test, and vary the percentage of the remaining data to train the
SVM. We repeated all experiments for 20 times and report the
mean error results. From the plots, we can observe that both de-
scriptors always have 0% training errors and have decreasing test
errors, indicating that no overfitting occurs in our experiments.
Moreover, the results suggest a lack of training data. With more
training data, we expect an increase of training errors and further
decrease of test errors.
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Fig. 14 Training and test errors of SVM classifier at different percentage of
training data with HOG (left) and BRIEF descriptors (right).

6.5 Discussion

In this section, we focus on the basic version of all feature de-
scriptors. From this point of view, we observe that most of the
time HOG descriptor produces the best test accuracies (except 1-
NN and 5-NN classifiers). Compared to other descriptors, HOG
descriptor is more powerful as it considers a few important feature
extraction processes, such as the uses of image gradient, overlap-
ping blocks, and histogram normalization.

The performance of Gabor descriptor in our experiments is
also slightly different with works of Bartlett et al., possibly due
to the use of different dataset™ and different cross-validation
approach [21]. Here, we use 20-round repeated random sub-
sampling validation while Bartlett et al. use leave-one-subject-out
cross validation.

7. Parameters Sensitivity Analysis

As described in Section 4, all Gabor, Haar, LBP, HOG, and
BRIEF descriptors have a number of parameter choices that may
significantly affect our experiment performances. We varied a
few important parameters during the feature extraction processes
in our experiments and report their sensitivities in this section.
For all feature descriptors, we focus on PCA+LDA, SVM, and
AdaBoost classifiers. All other experiment settings remain un-
changed unless mentioned otherwise. Note that some results in
this section are not exactly the same with the results in the previ-
ous section because we are using repeated random sub-sampling
validation in our experiments.

7.1 Gabor Parameters

As shown in Eq. (1), Gabor filter has five parameter choices,
where the differences in oscillation frequency (1) and orienta-
tion (#) can result in very different filters. In Section 6, we
extracted Gabor descriptors by using 5 oscillation frequencies
(A = 4,4v2,8,8V2,16 pixels per cycle) and 8 orientations
@ = 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°). Here,
we denote this setting as f = 5 and o = 8. We varied these two
parameters individually by first using 3 oscillation frequencies
(4 = 4,8, 16 pixels per cycle) or 1 oscillation frequency (4 = 8
pixels per cycle). Then, we used 4 orientations (6 = 0°, 45°, 90°,
135°) or 2 orientations (6 = 0°, 90°) to extract Gabor descriptors.

We summarized the classification results of the three classifiers
in Table 5, where f and o represent the number of oscillation fre-
quencies and orientations mentioned in the last paragraph. From
the first three rows, we can observe that all three classification

*3 We use the latest version of CK+ Database.
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Table 5 Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset)
with varied oscillation frequencies and orientations when extract-
ing Gabor descriptor. Please refer to the text for more details.

Gabor PCA+LDA SVM AdaBoost
f=1,0=8 779 + 4.4 733+67 753+6.2
f=3,0=8 832 +59 80.1 £6.1 78.8+4.7
f=5,0=8 83.3+4.7 834+55 798+44
f=50=4 81.3 +4.1 788 +65 79.0+4.6
f=5,0=2 784 £4.3 73.8+57 77.0+£53

Table 6 Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset)
with varied step sizes and filter types when extracting Haar descrip-
tor. Please refer to the text for more details.

Haar PCA+LDA SVM AdaBoost
s=4,t=5 829+54 759+63 649+59
s=3,t=5 84.0 £ 5.3 78.1£6.0 70.6 +6.5
s=2,t=5 83.7+4.2 788 £57 76.7+5.3
s=2,t=4 83.1 +4.6 794 +£58 77.6 +6.3
s=2,t=2 83.1+5.0 797 +£50 775+54

results improve steadily, indicating that increasing the number of
oscillation frequencies has a positive impact towards the perfor-
mance. From the last three rows, we can also observe that all three
classification results improve steadily (from bottom to the third
row), indicating that increasing the number of orientations has a
positive impact towards the performance. In a short summary,
these two parameters have high sensitivity towards the classifi-
cation performance. While further increase the numbers of both
parameters might continue to improve the classification perfor-
mance, we limit f = 5 and o = 8 in our experiments in order to
save computational cost.

7.2 Haar Parameters

Compared to Gabor filter, Haar filter has less parameter
choices. In Section 6, we extracted Haar descriptors with 5 types
of Haar filter and with a step size of 2 pixels. Here, we denote
this setting as s = 2 and ¢ = 5. Similar to the Gabor filter case, we
varied these two parameters individually by first using step sizes
of 4 or 3. After that, we used the first 4 types or the first 2 types
of Haar filter (please refer to Fig. 5) to extract Haar descriptors.

We summarized the classification results of the three classifiers
in Table 6, where s and 7 represent the number of step size and
number of types of filter mentioned in the last paragraph. From
the first three rows, we can observe that all three classification
results improve steadily, indicating that increasing the number of
step size has a negative impact towards the performance. Out of
our expectation, from the last three rows, we observe that using
more types of Haar filter indeed does not improve the results of all
three classifiers. While more types of Haar filter could be help-
ful in differentiating face and non-face images [46], we find that
using the first two types of Haar filter (the simplest Haar filter) is
the best for FER. In a short summary, one should use a step size
of 2 pixels of and use the first two types of Haar filter for FER **.

** Since we perform this analysis at the later stage of our comparison study,

we keep the results of the original setting, i.e., s = 2 and ¢ = 5 in all other
sections. Note that this does not affect our conclusion that HOG is the
best descriptor for FER since different 7 produce similar test results.
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Table7 Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset)
with varied neighboring points and radial distances when extract-
ing LBP descriptor. Please refer to the text for more details.

LBP PCA+LDA SVM AdaBoost
p=4,r=2 86.8 + 4.7 86.5+52 77.8+48
p=6,r=2 89.2+37 883+39 793+42
p=8,r=2 85.8+4.5 854+54 794+5.0
p=8r=3 88.9 +4.0 859+50 789+55
p=8,r=4 87.4+4.2 839+47 795+5.1

Table 8 Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset)
with varied cell sizes and combination when extracting HOG de-
scriptor. Please refer to the text for more details.

HOG PCA+LDA SVM AdaBoost

c=8 84.7+6.2 84.1+44 808+64

c=6 90.6 + 3.5 89.1+£39 84.1+5.0

c=4 91.6 +3.6 90.7+39 86.0+3.9
c=8,c=6 89.8 £ 3.6 89.8+3.5 838+54
c=8,c=4 912+32 913+40 852+50
c=6,c=4 90.6 + 3.7 90.6 +4.5 853+5.8
c=8,c=6,c=4 91.2+4.1 91.6 +3.7 84.8+43

7.3 LBP Parameters

LBP descriptor has two parameter choices. In Section 6, we
extracted LBP descriptors with 8 neighboring pixels at radial dis-
tance of 2 pixels. Here, we denote this setting as p = 8 and r = 2.
Similar to the previous cases, we varied these two parameters in-
dividually by first using 6 or 4 neighboring pixels. After that, we
used the radial distance of 3 or 4 pixels to extract LBP descriptors.

We summarized the classification results of the three classifiers
in Table 7, where p and r represent the number neighboring pix-
els and radial distance. From the first three rows, we can observe
that all three settings produce the best results when p = 6. From
the last three rows, we find that PCA+LDA and SVM classifiers
perform the best at = 2 and r = 3 while AdaBoost classifier per-
form similarly and appears to be independent of radial distance.
In contrast to a previous study [11] and our default parameter set-
tings, one should use 6 neighboring pixels and different range of
radial distance depending on the classifiers *>.

7.4 HOG Parameters

As described in Section 4, HOG descriptor is compact and has
only one parameter choice—its cell size. In Section 6, we ex-
tracted HOG descriptors with cell sizes of 8 and 4, and stacked
the two feature vectors together eventually. Here, we denote this
setting as ¢ = 8 and ¢ = 4. Different with the previous cases,
we varied the cell size and analyze the test accuracies by using
individual feature vector or stacked feature vectors.

We summarized the classification results of the three classi-
fiers in Table 8, where ¢ represents the cell size in pixel values.
The rows with multiple ¢ represent stacked feature vectors with
different cell sizes. From the first three rows, we can observe
that all three classification produce the best classification results
when ¢ = 4. When ¢ = 4, the resulting number of blocks and
dimension of HOG descriptor is larger and can potentially cap-
ture more detailed edge information from the facial expression

*> Similarly, we keep the results of the original setting, i.e., p = 8,r = 2 in
all other sections. This does not affect our conclusion since the LBP de-

scriptor with the latest settings still does not outperform HOG descriptor.
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Table9 Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+ Dataset)
with varied number of binary pixel pairs and descriptors when ex-
tracting BRIEF descriptor. Please refer to the text for more details.

BRIEF PCA+LDA SVM AdaBoost
b=2,f=10,000 83.1+58 82.6+55 80.6+42
b=5,{=10,000 83.6+48 83.0+44 795+50
b=8,f=10,000 82953 83.0+49 80.9 4.0
b=5,1=5,000 82.7+5.1 822+54 T15+£56
b=5,f=2,000 80.1 £5.5 809+£52 764+52

Table 10 Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+
Dataset) with LBP and LBP Histogram Fourier descriptors.

PCA+LDA SVM AdaBoost
LBP 86.4+2.6 860+4.0 81.2+39
LBP-HF  82.1+62 80.6+44 73.6+49

images. From the last four rows, we find that all classifiers pro-
duce similar (PCA+LDA and AdaBoost) or slightly better (SVM)
test accuracies than HOG descriptor with one cell size. Note that
we use ¢ = 8 and ¢ = 4 as our default experiment settings, which
has similar outcomes to the best test accuracies in the Table 8.

7.5 BRIEF Parameters

BRIEF descriptor has two parameter choices—the number bi-
nary pixel pairs and number of BRIEF values. In Section 6, we
extracted 10,000 BRIEF values with 5 binary pixel pairs. Here,
we denote this setting as b = 5 and f = 10,000. Similar to the
Gabor, Haar, and LBP cases, we varied these two parameters in-
dividually by first using 2 or 8 binary pixel pairs while extracting
10,000 BRIEF values. After that, we fixed binary pixel pairs to 5
and extracted 5,000 or 2,000 BRIEF values.

We summarized the classification results of the three classifiers
in Table 9, where b and f represent the number of binary pixel
pairs and number of BRIEF values. From the first three rows,
we can observe that PCA+LDA and SVM perform the best when
b = 5 while AdaBoost performs the best when b = 8. From the
last three rows, we can observe that the test accuracies deteriorate
with decreasing number of BBIEF values. In general, one should
use a larger f if the computational cost is not an issue. On the
other hand, we find that using » = 5 has a good balance in be-
tween computational cost and accuracy performance (except for
the AdaBoost case, but nevertheless the difference is small).

7.6 Advanced Variants

In addition to the analysis of feature parameters, it is also worth
testing some advanced variants of the classic feature descrip-
tors. We further compared the FER performance by extracting
LBP Histogram Fourier (LBP-HF) descriptor [64] and Gaussian
BRIEF descriptor (G-BRIEF) [65]. The LBP-HF descriptor is a
rotation invariant descriptor computed from Fourier transforms
of LBP histogram. It has been reported that LBP-HF descriptor
outperforms classic LBP in texture classification and face recog-
nition tests [64]. Table 10 summarized the test results of the clas-
sic LBP and LBP-HF descriptors. Based on our experiments, we
find that the LBP-HF descriptor produce worse test results when
compared to the classic LBP descriptor. We speculate that the
LBP-HF descriptor will perform better on datasets with in-plane
rotations. Since our current datasets always have the same head
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pose, the LBP-HF descriptor does not prove to be very useful.
Table 11 summarizes the test results of the classic BRIEF and
G-BRIEF descriptors. Based on our experiments, we find that
the G-BRIEF descriptor perform slightly better than the classic
BRIEF descriptor only in the case of SVM classifier. It has been
reported that G-BRIEF is good at dealing with image Gaussian
noise and partial occlusions. We speculate that G-BRIEF will
performs better if there is Gaussian noises or partial occlusions in
our FER datasets. To this end, we find that HOG descriptor is still
the best descriptor for FER in consideration of the test accuracy.

8. Confusion Matrices

We present confusion matrices of HOG descriptor applied with
SVM classifier in order to identify the weak points of feature de-
scriptors. Table 12 presents the confusion matrix of HOG de-
scriptor with linear SVM classifier applied to the CK+ Dataset,
with ‘An’, ‘Di’, ‘Fe’, ‘Ha’, ‘Sa’, ‘Su’, and ‘Ne’ represent ‘Angry’,
‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, ‘Surprise’, and ‘Neutral’ fa-
cial expressions respectively. From the table, we observe that the
"Happy’ class performs the best and achieves accuracy of nearly
97%. On the other hand, ’Sad’ classifier performs the worst and
achieves accuracy of only about 44%, where most of the ’Sad’
class images are mis-classified as "Neutral’ class. We find that
this bad performance is caused by the small number of training
samples in *Sad’ class. Note that the "Fear’ class also has a small
number of training samples and performs second worst. In or-
der to prove our speculation, we run the same experiment with
KDEF Dataset, in which it has same number of images in all
classes. Table 13 presents the confusion matrix of HOG descrip-
tor with linear SVM classifier applied to the CK+ Dataset. From
the table, we observe that *Sad’ classifier performs much better
with the KDEF Dataset, proving that our speculation is correct.
In Section 11, we will present more experiment results on KDEF,
MUG, and JAFFE Datasets.

Table 11  Test accuracies of PCA+LDA, SVM, and AdaBoost (CK+
Dataset) with BRIEF and Gaussian-BRIEF descriptors.

PCA+LDA SVM AdaBoost
BRIEF 83.7+ 3.4 832+34 79.7+44
G-BRIEF  81.7+5.7 83.9+47 783x6.1

Table 12 Confusion matrix of HOG descriptor with linear SVM classifier
(CK+ Dataset).

% An Di Fe Ha Sa Su Ne

An | 764 6.8 1.1 1.1 1.1 2.3 11.2
Di 1.9 904 1.0 1.9 0.0 1.9 2.9
Fe 3.6 1.8 71.3 3.6 1.8 3.6 14.3
Ha 0.0 0.0 00 971 0.0 0.7 22
Sa | 102 6.8 5.1 8.5 44.0 00 254
Su 0.0 0.0 12 0.0 06 934 48
Ne 0.7 0.0 0.6 0.5 0.7 02 973

9. Feature Fusion Investigation

Since all feature descriptors possess different characteristics,
one common question would be—could the test accuracies be
further improved by using multiple feature descriptors for im-
age classification? We have analyzed this issue by considering
the following experiment. We combined the LBP, HOG, and
BRIEF descriptors and tested the outcomes with AdaBoost clas-
sifier. It would be also interesting to realize this experiment by
using SVM or other techniques such as multiple kernel learning
(MKL) [66], [67]. Similar to AdaBoost, MKL has the ability to
perform feature selection and classification simultaneously. How-
ever, our main objective is to analyze the description power of
the feature descriptors by explicitly counting the number of fea-
ture descriptors selected by AdaBoost. To this end, we chose to
consider MKL as our future work for FER.

Table 14 summarizes our experiment results. From the table,
we can observe that the combined LBP & HOG & BRIEF de-
scriptors perform the best, followed by HOG descriptor, LBP de-
scriptor, and BRIEF descriptor. In addition, Table 15 shows the
number of feature descriptors selected by AdaBoost during the
combined-features experiment. We observe that HOG descrip-
tor almost always have the largest number of selection, indicating
that HOG descriptor has more description power than other fea-
ture descriptors in the AdaBoost classification experiment.

10. Image Pre-processing Investigation

In this section, we investigate the effects of image pre-
processing towards the FER test performances. Specifically, we
investigated the effect of image resolutions towards the test per-
formances. In addition to the effect of image resolutions, we also
compared the results under normal pre-processing, i.e., face de-
tection and cropping procedures described in Section 3, to the
results with additional pre-processing steps. We considered his-

Table 13  Confusion matrix of HOG descriptor with linear SVM classifier
(KDEF Dataset).

% An Di Fe Ha Sa Su Ne

An | 787 7.1 6.4 1.4 1.1 2.5 2.8
Di 4.1 80.7 4.1 22 22 4.5 22
Fe 5.0 40 656 43 5.7 43 11.1
Ha 0.7 1.0 04 952 07 1.0 1.0
Sa 1.1 0.4 0.4 1.1 93.8 1.4 1.8
Su 3.1 5.8 6.2 2.7 50  76.0 1.2
Ne 0.3 1.0 6.3 0.7 33 1.6 86.8

Table 14 Test accuracies of AdaBoost classifier with combined features in
CK+ Dataset.

Descriptors AdaBoost
LBP 81.2+39
HOG 85.7+3.0
BRIEF 79.7+4.4
LBP+HOG+BRIEF 87.3+38

Table 15 Percentages of feature selected by AdaBoost in 20 validation cycles with CK+ Dataset.

Descriptors  An(%) Di(%) Fe(%) Ha(%) Sa(%) Su(%) Ne (%)
LBP 30 24 35 29 24 28 33
HOG 40 54 35 35 41 42 42
BRIEF 30 22 30 36 35 30 25

© 2015 Information Processing Society of Japan
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Table 16 Comparison of size of feature vectors at different image resolution.

Descriptors 12x12 =144 24 x 24 = 576 48 x 48 = 2,304 96 X 96 = 9,216
LBP 3% x 59 = 531 82 x 59 = 3,776 132 x 59 = 9,971 192 x 59 = 21,299
HOG (17 +22)x36=180 (22+5%)x36=1,044 (52+11%)x36=5256 (5% + 11? +23%) x 36 = 24,300
BRIEF 2,500 5,000 10,000 20,000
100 100 pixels (because higher image resolution would produce similar

®
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Test Accuracy
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o

‘—LBP
—BRIEF 40 ¢
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Image Resolution

12x12 24x24 48x48 96x96 192x192
Image Resolution

Fig. 15 Test accuracies of AdaBoost classifier under different image reso-
lution settings in CK+ Dataset (left) and KDEF Dataset (right).

togram equalization (HE) and median filtering (MF) in our ex-
periments. HE could potentially enhances facial features that
are not obvious in the low contrast images. On the other hand,
MF could filter the image noises and smoothen the facial images.
Note that we do not consider illumination normalization since the
datasets we are using now are collected under controlled settings
(i.e., have same illumination within datasets).

10.1 Effect of Image Resolution

We investigate the effect of image resolution on test accura-
cies in this section. Looking for an optimal image resolution that
produces high test accuracy and low computational cost is impor-
tant but is not commonly focused in research analysis. Table 16
summarizes the size of all the five feature descriptors used in our
experiments under different image resolution settings. The fourth
column (48x48 = 2,304) is the original setting in our previous
experiments. Specifically, LBP operator has size of 12x12 pix-
els and shift horizontally and vertically by 3 pixels, resulting in
a feature vector with size of 13x13x59 = 9,971. HOG opera-
tor has two combined settings—block size of 16x16 pixels and
8x8 pixels respectively, resulting in a feature vector with size of
(5%5 + 11x11)x36 = 5,256. BRIEF descriptor was set to have
10,000 values, which is close to the LBP descriptor size of 9,971.
We only considered LBP, HOG, and BRIEF descriptors in this
section. The dimensions of Gabor and Haar descriptors of im-
ages at higher resolution are too large and significant amount of
computational resources are required for the experiments.

Figure 15 summarizes the test accuracies of CK+ and KDEF
Datasets under different image resolutions with AdaBoost classi-
fier. Test results of both datasets are consistent. We observe that
LBP and HOG descriptors produce test accuracies higher than
BRIEF descriptor at high resolution images (> 48x48 pixels). In
contrast, BRIEF descriptor produces higher test accuracies than
LBP and HOG descriptors at low resolution images (< 48x48
pixels). Furthermore, BRIEF descriptor can produce surprisingly
good test accuracies across all different image resolutions despite
its much lower computational cost. We also observe that HOG
descriptor almost always performs better than LBP descriptor
across all image resolution settings. In practice, we recommend
to normalize a high resolution image (> 48x48) to size of 48x48
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performance) and use HOG descriptor for FER. When original
image resolution is lower than 48x48 pixels, we recommend to
use BRIEF descriptor.

10.2 Effect of Image Filtering

We find that comparing the results of HE and MF with the re-
sults of normal processing is challenging because their results
strongly depend on the feature descriptors and classifiers. For
the ease of understanding, we summarized the test results in five
tables (Tables 21, 22, 23, 24 and 25), in which each of them cor-
responds to Gabor, Haar, LBP, HOG, and BRIEF descriptors. For
Gabor descriptor, we find that HE always produces the best test
results, while MF always produces the worse test results in all
three classifiers. This is reasonable as HE could enhances facial
features that are not obvious in the low contrast images while MF
smoothen the facial features and would deteriorate the test results.

For HOG descriptor, we find that all three classifiers produce
the best results without additional pre-processing. Different to
Gabor filter, this indicates that HOG descriptor could capture the
edge features in the facial images efficiently even without addi-
tional HE. This again would lead us to favor HOG descriptor
in FER. For Haar, LBP, and BRIEF descriptors, the test perfor-
mances vary depending on the chosen classifiers and we could

not make a clear conclusion.

11.

We performed three types of generalization test in this sec-

Generalization Tests

tion. First, we applied the same experiments to the MUG, KDEF,
and JAFFE Datasets. Second, we combined all the CK+, MUG,
KDEF, and JAFFE Datasets into a large dataset (totally 2,748 im-
ages), performed the same procedures, and report its test perfor-
mance. Third, we trained the PCA+LDA, SVM, and AdaBoost
classifiers with all CK+ Dataset images and tested classifiers’ per-
formance with all MUG, KDEF, and JAFFE Datasets.

11.1 MUG, KDEF, and JAFFE Datasets

Table 17 summarizes the test accuracies of five feature de-
scriptors with RFS+LDA and PCA+LDA classifiers applied to
the MUG, KDEF, and JAFFE Datasets. Again, as expected, PCA
performs better than RFS because PCA reduces the size of fea-
ture descriptors while capturing the most important information
systematically. We also find that HOG descriptor produces the
best test accuracies in PCA+LDA classifier.

Table 18 summarizes the test accuracies of five feature descrip-
tors with SVM and AdaBoost classifiers applied to the MUG,
KDEEF, and JAFFE Datasets. We observe that SVM classifier per-
forms better than AdaBoost classifier across all the three datasets
and HOG descriptor produces the best test accuracies in SVM
classifier. Moreover, we find that SVM classifier performs better

115



IPSJ Transactions on Computer Vision and Applications Vol.7 104-120 (Aug. 2015)

Table 17 Test accuracies of Random Feature Selection+LDA and PCA+LDA.

. MUG Dataset KDEF Dataset JAFFE Dataset
Descriptors
RFS+LDA  PCA+LDA RFS+LDA  PCA+LDA RFS+LDA  PCA+LDA
Gabor 76.7 + 4.3 80.3 +5.0 69.2 +4.3 71.5+34 629+ 11.3 79.1 £8.2
Haar 754 5.1 79.4 £5.1 68.8 +4.6 702 +£3.5 65.0 +11.2 76.0+10.9
LBP 56.7+5.1 77.8 +3.7 524 +43 72.0+43 343+94 63.3+6.2
HOG 71.7+4.8 82.6 +4.5 68.0 + 4.7 771 +3.7 543 +11.2 85.5 + 6.6
BRIEF 54.1 £6.6 745 £3.6 50.6 +4.7 69.9 +3.8 374+ 133 69.3 +8.2
Table 18 Test accuracies of SVM and AdaBoost.
. MUG Dataset KDEF Dataset JAFFE Dataset
Descriptors
SVM AdaBoost SVM AdaBoost SVM AdaBoost
Gabor 82.7+34 T715+4.1 726+55 T71.3+3.1 82.4+7.1 69.0 + 10.3
Haar 78.6+4.7 73.5+4.6 69.0+64 67.6+5.0 77.1+£102  674+125
LBP 79.0+42 679+5.6 74752 66.7+39 55.7+9.8 49.5+9.6
HOG 853+42 77.0+53 80.2+41 752+4.0 89.5 +6.3 64.0+11.0
BRIEF 814+42 7T1.7+44 73.4+£57 68.8+54 72.6+£104  62.1+13.0

Table 19 Test accuracies of Random Feature Selection+LDA and PCA+LDA.

Combined Dataset

CK+ Dataset

Descriptors
RFS+LDA PCA+LDA RFS+LDA PCA+LDA
Gabor 552+27 56.6 +2.4 79.4+£52 82.7+3.4
Haar 554+28 58.6+34 80.8 +4.9 83.4+42
LBP 47.0+3.5 63.7 £ 2.1 66.4 + 6.0 86.4+2.6
HOG 60.5 + 3.5 68.1 +3.2 825 +4.1 90.9 + 3.2
BRIEF 44.0+3.2 593+35 67.2+59 83.7+3.4
Table 20 Test accuracies of SVM and AdaBoost.
. Combined Dataset CK+ Dataset
Descriptors
SVM AdaBoost SVM AdaBoost
Gabor 61.6+24 628+3.1 83.6+34 81.1+58
Haar 59.9+28 60.0+3.6 80.2+35 78.0=+4.1
LBP 70.5+2.7 59.6+3.0 86.0+4.0 81.2+39
HOG 73.3+33 63.2+32 91.2+32 85.7+3.0
BRIEF 73.0+£2.7 593+25 83.2+34 79.7+44

than the PCA+LDA classifier in Table 17.

11.2 Combined Datasets

Table 19 summarizes the generalization performance of
RFS+LDA and PCA+LDA classifiers in the combined dataset
(we also repeat the test results of CK+ Dataset for direct com-
parison purpose). While the combined dataset is about 4 times
larger than CK+ Dataset, we observe that both RFS+LDA and
PCA+LDA classifiers perform worse in the combined dataset.
This is not surprising, as the four datasets are collected under
controlled indoor environment with different backgrounds and
light settings. Moreover, the four datasets have different de-
mographical settings, e.g., CK+ Dataset was collected in North
America, MUG and KDEF Datasets were collected in Europe,
while JAFFE Dataset was collected in Asia. Our generalization
test performance conforms with previous FER studies, suggest-
ing that we need to collect more FER images in the wild in order
to achieve a more robust FER [11], [21].

Table 20 summarizes the generalization performance of SVM
and AdaBoost classifiers in the combined dataset (we repeat
the test results of CK+ Dataset for direct comparison purpose).
Similar to the preceding discussion, we observe that both SVM
and AdaBoost classifiers perform worse in the case of combined
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dataset, suggesting that we need to collect more FER images in
the wild in order to achieve a more robust FER.

11.3 Cross Datasets

In addition to the combined dataset, we also trained the
PCA+LDA, SVM, and AdaBoost classifiers with all CK+ images
and tested classifiers’ performance with all MUG, KDEF, and
JAFFE images. We summarized the test accuracies of the three
datasets in Table 26. From the table, we can observe that in gen-
eral, all test performances are much worse than the performances
of individual CK+ Dataset and combined datasets cases due to
the reasons discussed in Section 11.2. By referring to the dataset
images (Fig. 1-3), we can observe that each dataset was collected
under very different controlled indoor environment, which even-
tually lead to these unsatisfactory results. Similar to the previous
sections, these test results suggest us to collect more FER images
in the wild in order to achieve more robust FER.

In addition, we also observed that JAFFE Dataset produces
much worse cross-dataset results than MUG and KDEF Datasets.
Upon careful investigation, we found that JAFFE Database has a
few ambiguous facial expressions posed by models. Figure 16
illustrates a few faces with ambiguous facial expression. For in-
stance, the first image has a label of ‘Angry’ but may be poten-
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Table 21  Test accuracies of Gabor descriptor (CK+ Dataset) by using
PCA+LDA, SVM, and AdaBoost classifiers with normal, his-
togram equalization, median filtering pre-processing.

PCA+LDA SVM AdaBoost

Normal 82.7+34 83.6+34 81.1+58
HE 844+34 847+48 825+4.7
MF 80.0+5.3 80.1 4.5 78.8+4.8

Table 22 Test accuracies of Haar descriptor (CK+ Dataset) by using
PCA+LDA, SVM, and AdaBoost classifiers with normal, his-

togram equalization, median filtering pre-processing.

PCA+LDA

Normal 83.4+42
HE 84.5+43
MF 82.7+4.6

SVM

80.2+3.5
81.1 +6.1
77.7+£5.6

AdaBoost

78.0 + 4.1
77.1 £ 6.1
745 +£5.6

Table 23 Test accuracies of LBP descriptor (CK+ Dataset) by using
PCA+LDA, SVM, and AdaBoost classifiers with normal, his-

togram equalization, median filtering pre-processing.

PCA+LDA

Normal 86.4+2.6
HE 87.1+£53
MF 88.0 + 4.7

SVM

86.0 + 4.0
84.6 £4.9
844 +54

AdaBoost

81.2+3.9
81.3+5.0
75.6 +6.7

Table 24 Test accuracies of HOG descriptor (CK+ Dataset) by using
PCA+LDA, SVM, and AdaBoost classifiers with normal, his-

togram equalization, median filtering pre-processing.

PCA+LDA

Normal 90.9 + 3.2
HE 88.9+5.5
MF 88.3+4.0

SVM

91.2 +3.2
88.6 4.0
87.1+6.0

AdaBoost

85.7 + 3.0
82.0+5.3
83.1+4.38

Table 25 Test accuracies of BRIEF descriptor (CK+ Dataset) by us-
ing PCA+LDA, SVM, and AdaBoost classifiers with normal,

histogram equalization, median filtering pre-processing.

PCA+LDA SVM AdaBoost

Normal 83.7 + 3.4 832+34 797+44
HE 828+50 835+45 794+38
MF 83.0+5.5 83.0+53 80.6+5.7

Table 26 Test accuracies of MUG, KDEF, and JAFFE Datasets (1st, 2nd,
3rd numbers in all the triplets) with PCA+LDA, SVM, and Ad-
aBoost classifiers by using CK+ Dataset as training data.

PCA+LDA SVM AdaBoost
Gabor  24.6/24.0/11.7 29.6/249/155 26.2/229/16.0
Haar 27.6/27.0/150 31.2/322/169 33.3/31.3/16.0
LBP 269/302/14.1 28.1/27.6/13.6 26.4/26.6/20.7
HOG 319/353/13.6 29.5/355/18.8 27.8/33.3/23.0
BRIEF  27.5/263/11.7 29.4/25.1/150 29.1/26.1/17.4

- BBBEE D E B EA

Angry | Disgust sad ‘ Fear Surprise | Disgust

Labels Angry sad Disgust  Surprise

Perception | Sad

Happy Angry Happy

sad Happy Neutral

Neutral  Neutral sad

Fig. 16 Ambiguous facial expression labels in JAFFE Dataset.

tially perceived as ‘Sad’ expression. Since JAFFE Database is
small, these ambiguity represents about 5% of the all 213 im-
ages. We believe that this is the main reason that JAFFE Dataset
performs the worst in our cross-dataset experiments.
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12. Computational Efficiency

Feature descriptor should be computationally efficient while
leading to the best classification results. In this section, we an-
alyze the computational cost of five feature descriptors in term
of number of multiplication (NOM) and summation (NOS) oper-
ations. We first list up a few assumptions and describe our cal-
culation process. In all five feature descriptors, we consider a
grayscale image with size of 48x48 pixels.

Among the five feature descriptors, Gabor descriptor has the
most expensive computational cost because it involves 48x48
summation and 48x48 multiplication operations. On the other
hand, taking the computational cost of integral image into con-
sideration, Haar descriptor has computational cost of only

NOS paar = 15 X numberOfS elected Features
+ imageS ize? X 3. (12)

The computation of LBP descriptor involves thresholding, bi-
nary mapping, and histogram binning operations. For simplicity,
we assume one binary thresholding operation is equivalent to one
summation operation. Besides, we assume that binary mapping is
realized with Lookup Table (LUT) technique and is considered as
one summation operation as well. We also assume that histogram
binning operation is equivalent to one summation operation. Un-
der these assumptions, our implementation of one LBP descriptor
has computational cost of

NOS 1gp = x@+1+1). (13)

( imageS ize )2

The computation of HOG descriptor involves convolution,
square-root, arctangent, histogram binning, and normalization
operations. However, it has surprisingly low computational cost
when LUT technique is employed. Convolution process (by ap-
plying 1-D horizontal and vertical Sobel masks) seems to be ex-
pensive but it is in fact equivalent to one summation operation for
each gradient map computation process. Square-root and arctan-
gent operations can also be replaced with LUT technique since
there are only 511x511 possibilities for an 8-bit grayscale image.
Hence, we count these as two summation operations for every
pixel when calculating gradient magnitude and gradient orienta-
tion maps. Subsequent histogram binning operations is consid-
ered equivalent to one summation operation. Local normaliza-
tion involves 35 summation and 72 multiplication operations for
each block. Under these assumptions, our implementation of one
HOG descriptor has computational cost of

imagesS ize
NOS og = ((gT

NOMpyog =72 . (14)

2
) ><(2+2+1)+35),

BRIEF descriptor is well-known for its simplicity and fast
computation. It involves only five comparison operations (equiv-
alent to five summation operations) and one binary mapping oper-
ation (counted as one summation operations). BRIEF descriptor
is also the only feature that has computation cost independent of
image size. Overall, our implementation of one BRIEF descriptor
has computational cost of
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Fig. 17 Number of summation operations of feature descriptors with varied
number of features (top) and varied size of images (bottom).
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Fig. 18 Visualization of Gabor descriptors selected by AdaBoost classi-
fier. Each column represents the first five Gabor descriptors selected
by ‘Angry’, ‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, ‘Surprise’, ‘Neutral’
classifier respectively.

NOSBR[EF=(5+1). (15)

In descending order, Gabor descriptor has the most expensive
computational cost, followed by HOG, LBP, Haar, and BRIEF
descriptors. Assuming that one multiplication operation is equiv-
alent to ten summation operations, we show two interesting plots
in Fig.17. We investigated the number of summation opera-
tions by varying the number of selected features and changing
the image size. We observe that all features’ computational
cost increase approximately linearly when number of features
increase. On the other hand, LBP and HOG descriptors have
exponentially increasing summation operations when image size
increases. Nevertheless, all features have very low computation
cost in modern computers. For instance, it takes less than 15 us to
compute one LBP and HOG descriptor respectively in MATLAB
(C & C++ implementations). It is worth noting that Haar and
BRIEF descriptors have even lower computational cost in the two
cases shown in Fig. 17. Haar descriptor has a low computational
cost thanks to the integral image technique while BRIEF descrip-
tor has a computational cost independent of the image size.

13. Feature Visualization

Figures 18 and 19 visualize Gabor and Haar descriptors se-
lected by AdaBoost classifiers in CK+ Dataset. These figures
show some insights about the size and position of the descriptors
selected by the AdaBoost classifier. We can see that most Gabor
and Haar descriptors are small and concentrate at the image cen-
ter. In Fig. 20, we overlap all 80 feature descriptors selected by
AdaBoost classifier. We can observe that all feature descriptors
concentrate at the image center. The observation also suggests us
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Fig. 19 Visualization of Haar descriptors selected by AdaBoost classifier.
Each column represents the first five Haar descriptors selected by
‘Angry’, ‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, ‘Surprise’, ‘Neutral’
classifier respectively.

ﬁﬁ?%&% B%g@@& §

ERNC )

Fig. 20 Visualization of 80 overlapping Gabor, Haar, LBP, HOG, and
BRIEF descriptors (row-wise) of ‘Angry’, ‘Disgust’, ‘Fear’,
‘Happy’, ‘Sad’, ‘Surprise’, and ‘Neutral’ classifier (column-
wise) respectively.

to put more weights on these location when we extract the feature
descriptors from the face images. This concept is similar to the
idea in Ref. [11], when LBP descriptor is extracted with different
weighting effect based on their extraction location.

14. Conclusion

In this paper, we empirically evaluate five feature descriptors,
namely Gabor, Haar, LBP, HOG, and BRIEF descriptors in FER.
We examine each feature descriptor by considering six classifica-
tion methods, such as k-NN, LDA, SVM, and AdaBoost with four
unique facial expression datasets. In the end, we identified HOG
descriptor as the best feature descriptor for FER when image res-
olution of a detected face is higher than 48x48. On the other
hand, when the image resolution of the detected face is smaller
than 48x48, our experiment results show that BRIEF descriptor
performs the best. In general, Gabor descriptor performs well but
has a higher computational cost. In addition to the test accuracies,
we presented confusion matrices of FER. We analyzed the effect
of combined features and image resolutions on FER performance.
We also generalized our experiments to other datasets, analyzed
the computational efficiency of each feature descriptors, and vi-
sualized the feature descriptors selected by AdaBoost classifier.

In this study, we only consider frontal facial expression images.

118



IPSJ Transactions on Computer Vision and Applications Vol.7 104-120 (Aug. 2015)

The use of facial expression dataset under different head poses

is necessary to consolidate our findings. We also focus FER on

single image. Temporal information provides strong clues about

facial expression and should be carefully considered in the future.
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