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Abstract: Background: Spleen tyrosine kinase (SYK) is a protein related to various diseases. Aberrant SYK ex-
pression often causes the progression and initiation of several diseases including cancer and autoimmune diseases.
Despite the importance of inhibiting SYK and identifying candidate inhibitors, no clinically effective inhibitors have
been reported to date. Therefore, there is a need for novel SYK inhibitors. Results: Candidate compounds were inves-
tigated using in silico screening by chooseLD, which simulates ligand docking to proteins. Using this system, known
inhibitors were correctly recognized as compounds with high affinity to SYK. Furthermore, many compounds in the
DrugBank database were newly identified as having high affinity to the ATP-binding sites in the kinase domain with a
similar affinity to previously reported inhibitors. Conclusions: Many drug candidate compounds from the DrugBank
database were newly identified as inhibitors of SYK. Because compounds registered in the DrugBank are expected to
have fewer side effects than currently available compounds, these newly identified compounds may be clinically useful
inhibitors of SYK for the treatment of various diseases.
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1. Introduction

Spleen tyrosine kinase (SYK) has been a drug target since it
was identified as a disease-related non-receptor kinase [1], [2].
SYK regulates many key proteins that are involved in the initia-
tion or progression of various diseases. The Gendoo server [3],
[4] lists many diseases reported to be related to SYK (Table 1).
The deletion of SYK has been reported to suppress the formation
of immune complex arthritis [5]. SYK has also been reported
to be activated in diffuse large B-cell lymphoma [6]. Hyperme-
thylation of the SYK gene promoter region has been reported to
be associated with oncogenesis and metastasis of gastric carci-
noma [7]. Furthermore, specific inhibition of SYK has been re-
ported to suppress leukocyte immune function and inflammation
in animal models of rheumatoid arthritis [8]. We have recently
observed that the SYK gene promoter is often aberrantly methy-
lated in three autoimmune diseases [9]. Thus, effective SYK in-
hibitors are urgently required for the treatment of numerous dis-
eases.

There are several targets for SYK inhibition. SYK consists of
a C-terminal kinase domain and two Src homology 2 (SH2) do-
mains separated by a linker domain [10]. Inhibitors that target the
kinase domain mainly target the ATP-binding sites. For example,
R112, R406, R788 and R343 are structurally related pyrimidine
analogs that compete with ATP binding [10].
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Alternatively, some inhibitors target the SH2 domains [11].
Many compounds have been reported to inhibit SYK [12]. The
inhibition of protein complex formation has also been pro-
posed [13].

Despite these reported studies, no clinically effective SYK in-
hibitors have been established to date. Based on recent devel-
opments in computational methods, many studies have identi-
fied drug candidate compounds computationally. Li et al. [14]
have tried to identify SYK inhibitors using machine learning
methods. Kaur et al. [15] have investigated SYK inhibitors us-
ing 3D-Quantitative Structure Activity Relationship (QSAR), and
Xie et al. [16] have used chemical features based on 3D pharma-
cophore models. Although several listed drug candidate com-
pounds have been identified, they were based on features ex-
tracted from candidate compounds, thus, the estimation of drug
activity was indirect. To our knowledge, there have been no com-
prehensive screens of compounds that target the kinase domain
using docking-based prediction.

This study evaluated the docking affinity between SYK and
over 1,000 compounds extracted from the DrugBank database
and ranked these based on their binding affinity using chooseLD,
a docking-based in silico drug-screening software. Top-ranked
compounds were considered promising SYK inhibitor drug can-
didate compounds.

2. Materials and Methods

2.1 Tertiary Structure Prediction of SYK
Tertiary structure prediction of SYK was performed by Full

Automatic Modeling System (FAMS) [17], [18]. The amino
acid sequence of SYK (uniprot ID P43405.1) in fasta format

c© 2015 Information Processing Society of Japan 14



IPSJ Transactions on Bioinformatics Vol.8 14–20 (Aug. 2015)

Table 1 Diseases reported to be related to SYK by the Gendoo server.

Diseases P-values

Breast Neoplasms 3.92 × 10−9

Arthus Reaction 5.09 × 10−7

Lymphoma, B-Cell 1.79 × 10−6

Neoplasm Metastasis 7.67 × 10−6

Inflammation 8.28 × 10−5

Agammaglobulinemia 2.38 × 10−4

Lymphoma, Extranodal NKT-Cell 4.91 × 10−4

Leukemia 5.00 × 10−4

Neoplasm Invasiveness 5.38 × 10−4

Purpura 9.13 × 10−4

Gonorrhea 1.33 × 10−3

Lymphoma, Large B-Cell, Diffuse 1.38 × 10−3

Ehrlichiosis 1.47 × 10−3

Lymphoma 3.86 × 10−3

Leukemia, Lymphocytic, Chronic, B-Cell 3.33 × 10−3

Lymphedema 3.86 × 10−3

Lymphoma, T-Cell, Peripheral 5.46 × 10−3

Leukemia, Basophilic, Acute 6.09 × 10−3

Mediastinal Neoplasms 7.41 × 10−3

Carcinoma, Ductal 7.56 × 10−3

Urticaria 7.77 × 10−3

Autoimmune Diseases 7.84 × 10−3

Rhinitis 9.02 × 10−3

Lymphoma, T-Cell, Cutaneous 9.23 × 10−3

Synovitis 9.37 × 10−3

Breast Neoplasms, Male 9.92 × 10−3

Lymphoma, Large-Cell, Anaplastic 1.14 × 10−2

Precursor B-Cell Lymphoblastic Leukemia-Lymphoma 1.31 × 10−2

Leukemia, B-Cell 1.38 × 10−2

Peritonitis 1.62 × 10−2

Lymphatic Metastasis 1.69 × 10−2

Nasal Polyps 1.80 × 10−2

Bronchial Hyperreactivity 1.81 × 10−2

Mammary Neoplasms, Animal 2.00 × 10−2

Carcinoma, Intraductal, Noninfiltrating 2.12 × 10−2

Arthritis, Rheumatoid 2.25 × 10−2

Edema 2.34 × 10−2

Arthritis, Experimental 2.42 × 10−2

Vasculitis 2.67 × 10−2

Wiskott-Aldrich Syndrome 2.80 × 10−2

Stomach Neoplasms 3.09 × 10−2

Melanoma 3.11 × 10−2

Melanoma, Experimental 3.55 × 10−2

Immunologic Deficiency Syndromes 3.63 × 10−2

Hodgkin Disease 4.28 × 10−2

Bacterial Infections 4.40 × 10−2

Shock, Septic 4.70 × 10−2

obtained from uniprot [19] was uploaded to an isolated FAMS
server. Then, the obtained top-ranked model proteins modeled us-
ing the Protein Data Bank (PDB) structure 3VF8 A (SYK) were
regarded as drug discovery template candidates beuase of the fol-
lowing reasons.

3VF8 A includes 0JE (3-[5-(5-ETHOXY-6-FLUORO-
1H-BENZIMIDAZOL-2-YL)-1H-PYRAZOL-4-YL]-1,1-
DIETHYLUREA). Each of other enzymes which have almost
same sequences and other binding ligands in the same ATP bind-
ing sites was superimposed using the Combinatorial Extension
(CE) [20] fit program to a temporally reference protein. Each
binding ligand was simultaneously transferred using the same
transformation matrix used in the CE fit. The enzyme structures
having fewer short contact atoms between the enzyme and the
transferred ligand set were remarked. As the results, we selected
3VF8 A as the reference protein in this paper.

2.2 Drug Compound Candidates
A total of 6,583 compounds included in the DrugBank [21],

Table 2 Ten template proteins with ligands used for in silico screening.

protein ligand
PDB name ID name

4DFN SYK 0K1 3-amino-6-[3-(1-methyl-1H-pyrazol-
4-yl)phenyl]-N-[(1R,2r,3S,5s,7s)-5-
hydroxyadamantan-2-yl]pyrazine-2-
carboxamide

3FQE SYK P5C 2-{[(1R,2S)-2-aminocyclohexyl]amino}-
4-[(3-methylphenyl)amino]pyrimidine-5-
carboxamide

1XBB SYK STI IMATINIB
1XBC SYK STU STAUROSPORINE
3VF8 SYK 0JE 3-[5-(5-ethoxy-6-fluoro-1H-benzimidazol-2-

yl)-1H-pyrazol-4-yl]-1,1-diethylurea
3VF9 SYK 477 3-{2-[5-(difluoromethyl)-2H-thieno[3,2-

c]pyrazol-3-yl]-1H-indol-6-yl}pentan-3-ol
3SRV SYK S19 GSK143
4DFL SYK 0K0 3-amino-6-{3-

[(methylsulfonyl)amino]phenyl}-N-
(piperidin-4-ylmethyl)pyrazine-2-carboxamide

3FQH SYK 057 N-(2-hydroxy-1,1-dimethylethyl)-1-methyl-3-
(1H-pyrrolo[2,3-b]pyridin-2-yl)-1H-indole-5-
carboxa mide

3EMG SYK 685 2-{2-[(3,5-dimethylphenyl)amino]pyrimidin-
4-yl}-N-[(1S)-2-hydroxy-1-methylethyl]-4-
methyl- 1,3-thiazole-5-carboxamide

[22] were downloaded. Of these, 6,510 tertiary structures were
produced using Babel software [23]. Then, 1,043 compounds
with a Tanimoto index greater than 0.25, with at least one of 10
ligands that have been reported to bind to one of 10 template pro-
teins included in the PDB, were selected as drug compound can-
didates. Tanimoto indices were computed by Babel 2.2.3 with the
default options [24]. The 10 template proteins’ PDB IDs together
with ligand IDs are listed in Table 2.

2.3 Execution of Ligand FAMS
Although many tertiary structures of SYK have been reported

in the PDB (Table 2), it is impossible to align them with each
other, because distinct ligands were bound to each of them,
and thus their structures were not completely identical. Ligand
FAMS [25] tended to map multiple ligands, whose binding struc-
tures to homologous proteins have been reported in the PDB, to
one structure predicted by homology modeling. In mapping mul-
tiple ligands process CE fit program was used. In ligand FAMS,
after structure alignments of multiple tertiary structures of SYK
reported in PDB, main and sub chains are arranged in a way that
multiple ligands can bind to one unique protein structure. The
obtained tertiary protein structure of SYK, as well as ligands that
bind to SYK, were used for chooseLD.

2.4 In silico Screening
In silico screening was performed using the template-based lig-

and docking simulation program, chooseLD [26]. In chooseLD,
the ligand affinity to SYK was evaluated based on comparisons
with 10 known ligand compounds (Table 2). If the ligands tested
were well aligned with known ligand compounds, the ligand was
given a high ranked score, i.e., FingerPrint Alignment Scores
(FPAScores). Then, all tested compounds were ranked based on
their attributed FPAScores. During this simulation, atom types
were modified to achieve more accurate FPAScores. Three inde-
pendent trials were performed for each compound, and the mean
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Table 3 14 compounds from ChEMBL used to evaluate the chooseLD per-
formance to estimate ligands’ binding affinity to SYK, in the de-
scending order of Ki or log10Ki.

CHEMBL ID Ki (nM) log10Ki

CHEMBL553 1584.89 3.20
CHEMBL340384 1584.89 3.20
CHEMBL196363 1258.93 3.10
CHEMBL211378 1258.93 3.10
CHEMBL422897 794.33 2.90
CHEMBL213505 501.19 2.70
CHEMBL262433 398.11 2.60
CHEMBL1421 199.53 2.30
CHEMBL49120 79.43 1.89
CHEMBL243088 63.1 1.80
CHEMBL7064 63.1 1.80
CHEMBL396523 31.62 1.50
CHEMBL244378 10 1.00
CHEMBL379975 6.31 0.80

FPAScores were used to rank the compounds.

2.5 Selection of Compounds in the Evaluation Set
To evaluate the performance of chooseLD in estimating the

binding affinity to SYK, 14 compounds, whose absolute inhibi-
tion constant Ki values are listed in ChEMBL [27], [28], were
downloaded (see Table 3).

The selection of the 14 compounds was as follows: Five-
hundred-seventy-five binding experiments associated with the Ki
values of compounds for the tyrosine-protein kinase SYK of
Homo sapiens are included as ChEMBL2599 in the ChEMBL
Database. In the database they are shown as “ChEMBL Bioactiv-
ity Search Results: 575.” The first column shows the ingredients
for the compound. The fifth column shows the standard value for
the Ki value. The standard unit of the Ki value is shown in the
sixth column using the nM unit.

To check whether the FPAScore values negatively correlate
with the logarithmic Ki value or not, a training set of 14 com-
pounds was selected by eye from ChEMBL2599 in the ChEMBL
Database so that the sampling interval of the logarithmic Ki val-
ues between the 14 compounds were taken to be as equal as possi-
ble (see Table 3). Although this intentional selection criteria may
affect the quality of validation, it is unavoidable to some extent,
because of the relatively small number of listed compounds with
higher affinity (smaller Ki).

2.6 Validation of Evaluation Set Using SwissDock
To evaluate the performance of chooseLD, compounds in the

evaluation set were also tested by SwissDock [29], [30]. Com-
pound structures were computed by the canonical Simplified
Molecular-Input Line-Entry System (SMILES) using open Ba-
bel [23], and were uploaded to SwissDock as the ligand structure.
For target protein structures, model protein structures inferred by
FAMS using 3VF8 A as a reference protein were uploaded to
SwissDock. Minimum dGs for each compound were used for
evaluation.

3. Results

To perform in silico drug screening for SYK, the tertiary struc-
ture of the SYK protein must be determined. To infer the SYK
tertiary structure, we used FAMS [17], [18]. SYK (uniprot ID

P43405.1) has 635 amino acids. Using 2OZO A (tyrosine-protein
kinase ZAP-70) as a reference protein, 625 amino acids of SYK
were successfully modeled (E-value obtained by BLAST search
was 1 × 10−170), and the sequence similarity between 2OZO and
SYK was 50%. Amino acids 363-635 of SYK were modeled
using 3VF8 A (SYK) (E-value obtained by BLAST search was
1×10−95). Comparison of the model structures based on 2OZO A
or 3VF8 A showed no significant difference within the commonly
predicted regions of the protein. Because the ATP-binding region
was included in both models, we used the model protein structure
based on 3VF8 A for the in silico screening.

In addition, the binding ligand, 0JE (for more details, see Ta-
ble 2), has been described for 3VF8 A. To use a tertiary structure
as a template for ligand docking, a reference protein must have a
ligand that binds to it.

Following the procedure described in the Materials and Meth-
ods, we successfully obtained ranking for 1,043 compounds
based on FPAScores (the 20 top-ranked compounds are listed in
Table 4. The full list of the ranked compounds is available in
additional file 1).

4. Discussion

4.1 Evaluation of Top-ranked Compounds
The 20 top-ranked compounds shown in Table 4 are

reported as kinase inhibitors in either the DrugBank or
ChEMBL databases. Table 4 also includes four SYK in-
hibitors (DB07194, CHEMBL512172 (cmpd 648) ranked 3rd;
DB04739, CHEMBL56904 (cmpd 507) ranked 4th; DB06834,
CHEMBL1229525 (cmpd 550) ranked 12th; DB07545,
CHEMBL383899 (cmpd 744) ranked 17th), excluding the SYK
inhibitor included in the template ligands, imatinib (see Table 2),
ranked 2nd. As a result, five of the 20 top-ranked compounds
were identified as SYK inhibitors. Thus, the remaining 15
compounds were also expected to be SYK inhibitors.

4.2 Comparisons with Known SYK Inhibitors’ Binding
Affinity

Although the top-ranked compounds were candidate SYK in-
hibitors, it is important to validate the FPAScores-based ranking
using independent samples. For this purpose, we prepared a val-
idation set of compounds (see Materials and Methods). Figure 1
shows comparisons between the FPAScores and Ki values. Be-
cause smaller Ki values indicate a larger binding affinity, the sig-
nificant negative correlation observed shows that chooseLD cor-
rectly determined the binding affinity of compounds to SYK in
the validation set (we regarded negative correlations associated
with P-values less than 0.05 as significant); the FPAScores had
correlation coefficients of −0.58 with Ki (P = 0.0278) and −0.58
with log10 Ki (P = 0.030). Although one may wonder whether
outliers affect the significance, it is unlikely that outliers affect the
significance much, because the Spearman’s rank correlation coef-
ficient (Fig. 1 (b)), which is supposed to be robust to outliers [31],
was still significant.

In addition, the largest FPAScores attributed to compounds
with the smallest Ki in the validation set (Fig. 1, vertical axis)
were at most 1,400 to 1,500. As seen in Table 4, there were at
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Table 4 Twenty top-ranked compounds based on FPAScores.

Rank FPAScore “Drug Name (cmpd No.)” “DrugBank No.;
CHEMBL No.”

Target/Activity ∗

1 1583.5 “N-[(1S)-2-amino-1-phenylethyl]-5-(1H-
pyrrolo[2,3-b]pyridin-4-yl)thiophene-2-
carbox amide (cmpd 807)”

“DB07812;
CHEMBL471034”

“—–”;“RAC-beta serine/threonine-protein kinase, Glyco-
gen synthase kinase-3 beta, Inhibition of AKT1”

2 1481 “Imatinib (cmpd 55)” “DB00619;
CHEMBL941”

“—–”;“Inhibitor of BCR/ABL fusion protein isoform X9,
Antagonist of Alpha and Beta platelet-derived growth fac-
tor receptor, Inhibitor of Proto-oncogene tyrosine-protein
kinase ABL1, Inhibition of PTK, Abl, carbonic anhydrase,
CSF1R, PDGFRα, LYN, LCK, FRK, 5HT2A, MAPK10,
and BLK”

3 1468 “2-{2-[(3,5-dimethylphenyl)amino]pyrimidin-
4-yl}-N-[(1S)-2-hydroxy-1-methylethyl]
-4-methyl-1,3-thiazole-5-carboxamide
(cmpd 648)”

“DB07194;
CHEMBL512172”

“—–”;“Tyrosine-protein kinase SYK, Inhibition of SYK,
ZAP70, ROCK, SRC, and CDK2”

4 1456.3 “4-[(4-methyl-1-piperazinyl)methyl]-N-[3-
[[4-(3-pyridinyl)-2-pyrimidinyl]amino]phen
yl]-benzamide (cmpd 507)”

“DB04739;
CHEMBL56904”

“—–”;“Proto-oncogene tyrosine-protein kinase Src, Inhi-
bition of SYK, v-Abl tyrosine kinase, c-Src-tyrosine ki-
nase, and platelet-derived growth factor”

5 1436.4 “N-[4-Methyl-3-[[4-(3-pyridinyl)-
2-pyrimidinyl]amino]phenyl]-3-
pyridinecarboxamide (cmpd 413)”

“DB03878; —” “—–”;“Proto-oncogene tyrosine-protein kinase ABL,
—–”

6 1436 “4-[4-(1-amino-1-methylethyl)phenyl]-
5-chloro-N-[4-(2-morpholin-4-
ylethyl)phenyl]pyrimidin-2-amine
(cmpd 242)”

“DB02491;
CHEMBL233209”

“—–”;“Fibroblast growth factor receptor 2, Inhibition of
VEGFR2, CDK1, and HeLa, A375, HCT116 cells”

7 1432.1 “4-[4-(4-methyl-2-methylamino-thiazol-
5-Yl)-pyrimidin-2-ylamino]-phenol
(cmpd 472)”

“DB04407;
CHEMBL47590”

“—–”;“Cell division protein kinase 2, Inhibition of
Cyclin-dependent kinase 2 (CDK2), CDK4, and Plk1”

8 1418.1 “N-(2-methoxyethyl)-4-({4-[2-methyl-1-(1-
methylethyl)-1H-imidazol-5-YL]pyrimidi
n-2-YL}amino)benzenesulfonamide
(cmpd 799)”

“DB07790;
CHEMBL478409”

“—–”;“Cell division protein kinase 2, Inhibition of
Cyclin-dependent kinase 2 (CDK2), CyclinE, CDK4,
MCF7 and LoVo cells”

9 1405.4 “4-(4-chlorobenzyl)-1-(7H-pyrrolo[2,3-
d]pyrimidin-4-yl)piperidin-4-aminium
(cmpd 908)”

“DB08150; —” “cAMP-dependent protein kinase inhibitor alpha”:“ —–”

10 1391.6 “4-(2,4-dimethyl-thiazol-5-Yl)-pyrimidin-
2-Yl]-(4-trifluoromethyl-phenyl)-amine
(cmpd 294)”

”DB02915;
CHEMBL48109”

“—–”;“Cell division protein kinase 2 and Cyclin-A2, Inhi-
bition of Cyclin-dependent kinase 2 (CDK2), CDK4, and
A549, HT-29, SaOS-2 tumor cells”

11 1379.7 “4-[(4-imidazo[1,2-a]pyridin-3-Ylpyrimidin-
2-Yl)amino]benzenesulfonamide
(cmpd 214)”

“DB02197;
CHEMBL73303”

“—–”;“Cell division protein kinase 2, Inhibition of
Cyclin-dependent kinase 2 (CDK2), 1GF1R, and MCF7
cells”

12 1352.2 “N-(2-hydroxy-1,1-dimethylethyl)-1-methyl-
3-(1H-pyrrolo[2,3-b]pyridin-2-yl)-1H-in
dole-5-carboxamide (cmpd 550)”

“DB06834,
CHEMBL1229525”

“—–”;“Tyrosine-protein kinase SYK, Inhibition of SYK”

13 1335.4 “3-[4-(2,4-dimethyl-thiazol-5-Yl)-pyrimidin-
2-ylamino]-phenol (cmpd 486)”

“DB04518;
CHEMBL47527”

“—–”;“Cell division protein kinase 2, Inhibition of
Cyclin-dependent kinase 2 (CDK2) and CDK4”

14 1334 “(2R)-1-[(5,6-diphenyl-7H-pyrrolo[2,3-
D]pyrimidin-4-YL)amino]propan-2-ol
(cmpd 770)”

“DB07647;
CHEMBL371415”

“—–”;“Serine/threonine-protein kinase Chk1, Inhibition
of serine/threonine-protein kinase Chk1, cyclin-dependent
kinase 1 (CDK 1), and protein kinase A (PKA)”

15 1312.7 “(2R)-3-{[(4Z)-5,6-diphenyl-6,7-dihydro-
4H-pyrrolo[2,3-D]pyrimidin-4-ylidene]
amino}propane-1,2-diol (cmpd 771)”

“DB07648,
CHEMBL372247”

“—–”;“Serine/threonine-protein kinase Chk1, Inhibition
of serine/threonine-protein kinase Chk1, cyclin-dependent
kinase 1 (CDK 1), and protein kinase A (PKA)”

16 1311.1 “[4-(2-amino-4-methyl-thiazol-5-Yl)-
pyrimidin-2-Yl]-(3-nitro-phenyl)-amine
(cmpd 281)”

“DB02833;
CHEMBL298445”

“—–”;“Cell division protein kinase 2 and Cyclin-A2, In-
hibition of Cyclin-dependent kinase 2 (CDK2), CDK9,
CDK4, CDK7, CDK1, GSK3-beta, Aurora A/B, and Abl
Kinase”

17 1301.4 “N-{3-[(4-{[3-
(trifluoromethyl)phenyl]amino}pyrimidin-
2-YL)amino]phenyl}cyclopropanecar-
boxyamide (cmpd 744)”

“DB07545;
CHEMBL383899”

“—–”;“Serine/threonine-protein kinase 6, Inhibition of
Aurora Kinase A, Lck, Bmx, IGF1R, SYK, and EGFR”

18 1287.7 “K-252a (cmpd 209)” “DB02152;
CHEMBL281948”

“—–”;“Hepatocyte growth factor receptor and Dual speci-
ficity mitogen-activated protein kinase kinase 1, Inhibition
of trka, VEGFR, protein kinase C, and myt1 kinase”

19 1279.9 “1-(dimethylamino)-3-(4-{{4-(2-
methylimidazo[1,2-A]pyridin-3-
YL)pyrimidin-2- YL]amino}phenoxy)propan-
2-ol (cmpd 828)”

“DB07889,
CHEMBL102926”

“—–”;“Cell division protein kinase 2, Inhibition of
Cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4”

20 1276.9 “2-{4-[4-({4-[2-methyl-1-(1-methylethyl)-
1H-imidazol-5-yl]pyrimidin-2-yl}amin
o)phenyl]piperazin-1-yl}-2-oxoethanol
(cmpd 854)”

“DB07982;
CHEMBL477786”

“—–”;“Cell division protein kinase 2, Inhibition of
CDK2, MCF7 cells and ERG”

∗ “—–” means that we cannot find a description for the corresponding compound in the database of CHEMBL or DrugBank.
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Fig. 1 Comparison between Ki and FPAScores (a) Vertical: FPAScores,
horizontal: log10 Ki. Pearson’s correlation coefficient was −0.58
(P = 0.0278). (b) Vertical: FPAScores, horizontal: Ki. Spearman’s
rank correlation coefficient was −0.58 (P = 0.030). Solid lines indi-
cate regression line.

least 10 compounds with FPAScores in this range, suggesting that
the top-ranked compounds listed in Table 4 are promising SYK
inhibitors.

Finally, to verify and demonstrate the advantage of chooseLD,

Fig. 2 Comparison between Ki and dG (a) Vertical: dG, horizontal:
log10 Ki. Pearson’s correlation coefficient was −0.48 (P = 0.079).
(b) Vertical: dG, horizontal: Ki. Spearman’s rank correlation coeffi-
cient was −0.49 (P = 0.077). Solid lines indicate regression line.

SwissDock [29], [30] was used for validation (Fig. 2). Although
the dGs (the amount of Gibbs free energy reduction due to lig-
and binding) negatively correlated with the Ki as expected, the
correlation coefficients were not significant; the dGs had correla-
tion coefficients of −0.48 with the Ki (P = 0.079) and −0.49 with
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log10 Ki (P = 0.077). This suggests that candidate compounds
identified by chooseLD were superior compared with those iden-
tified by SwissDock.

Although we have successfully demonstrated the advantage of
chooseLD over SwissDock, because the former needs (or can
make use of) known binding ligands to homologous proteins
while the latter does not (or cannot make use of), one should rec-
ognize that the advantage is more or less context dependent.

4.3 Conclusion
This study performed comprehensive in silico drug screening

for SYK using chooseLD software. Top-ranked drug candidate
compounds were kinase inhibitors that included several reported
SYK inhibitors. The performance of chooseLD was evaluated
using an independent evaluation set, and the FPAScores obtained
by chooseLD significantly and negatively correlated with exper-
imentally reported Ki values as expected. The significance of
chooseLD was higher than that of SwissDock, another in silico

screening software. Thus, the predicted drug candidate com-
pounds are promising new SYK inhibitors for the treatment of
several diseases.
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Additional file 1 — Full list of FPAScores of drug candidate
compounds

Mean FPAScores of three independent trials for 1,043 drug
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candidate compounds taken from the DrugBank. http://dx.doi.
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