
Electronic Preprint for Journal of Information Processing Vol.23 No.5

Regular Paper

System-level Design Method for Control Systems with
Hardware-implemented Interrupt Handler

Yuki Ando1,a) Shinya Honda1,b) Hiroaki Takada1,c) Masato Edahiro1,d)

Received: November 21, 2014, Accepted: May 9, 2015

Abstract: In this paper, we propose a system-level design method for control systems that enables the development
of Hardware-implemented interrupt handler. The increasing complexity of control systems has led to a rise in the
frequency of interrupts. As a result, the processor load increases, leading to a deterioration in the latency of inter-
rupt processing. To solve these problems, we require dedicated hardware that is activated by an interrupt and can
directly access devices during its processing. The proposed method enables control systems with the above dedicated
hardware to be developed using a model that abstracts an interrupt, interrupt processing, and communication between
the control processing and devices. We have developed a system-level design tool which automatically generates the
target implementation from the model. Case studies on a motor control system show that the proposed method reduces
the processor load, improves the latency of the interrupt processing, and enables the design space exploration for the
control system.

Keywords: hardware/software co-design, design environments, design space exploration, interrupt handling

1. Introduction

Technological advances in system-on-chips, actuators, and in-
put/output hardware (HW) have led to the realization of high-
level control systems. In any control system, there is a need for
communication between the control processing running on the
processor and the devices under control. For example, a typi-
cal sensor converts analog data to digital data through an analog-
to-digital converter (ADC). The control processing then reads
this digital data. As well as the communication between control
processing and devices, the control system must also handle any
interrupts that are asynchronously notified from the devices. In
general, the control system consists of several devices, and the
processor handles the frequent interrupts that originate from the
devices. The interaction of these interrupts can increase the la-
tency of the interrupt processing. Furthermore, handling the in-
terrupt processing causes an increase in processor load.

One method of improving the latency of interrupt processing
and reducing the processor load is Renesas’s Event Link Con-
troller (ELC) [15]. ELC is a HW circuit being connected to sev-
eral interrupt signals. Instead of an interrupt processing running
on a processor, ELC directly activates a module (e.g., timer) by
an interrupt itself. Then, the module starts its processing without
the activation of the processor. Another method involves an HW-
implemented interrupt handler (HW-INH). HW-INH is a ded-
icated system that handles the interrupt processing. To enable
this, the HW-INH is activated by the interrupt itself, and often

1 Nagoya University, Nagoya, Aichi 464–8603, Japan
a) y ando@ertl.jp
b) honda@ertl.jp
c) hiro@ertl.jp
d) eda@ertl.jp

requires access to one or more devices while it is running. An
example of HW-INH is Atmel’s SleepWalking technology [2]. In
this approach, the HW-INH is activated by the interrupt, and then
judges whether the processor should be activated. If the proces-
sor needs to be activated, the HW-INH sends an activation noti-
fication to the processor. Otherwise, the HW-INH accesses the
relevant device(s) and handles the interrupt processing. In these
cases, the processor load is reduced, because the processor is not
activated. Furthermore, it is possible to improve the latency of
the interrupt processing, because the HW-INH can handle the in-
terrupt processing of each device in parallel. Therefore, HW-INH
is important to enable high-performance control systems.

System-level design methods produce systems consisting of
processors and dedicated HW. System-level design first consid-
ers the system at a high level of abstraction, without considering
the eventual HW and software (SW). The designers then deter-
mine a suitable mapping that allocates the processing implemen-
tation. The specification of the system is revised by repeatedly
changing and evaluating this mapping. By evaluating the sys-
tem performance at a high level of abstraction, designers hope
to avoid the need to step back during the second half of the de-
sign process. Thus, system-level design makes the design process
more efficient.

A number of system-level design tools have been proposed and
developed [7]. Some tools provide a modeling and simulation
environment at a system level, although they do not include the
ability to generate an implementation of the resulting prototypes.
Others provide a unique model description, and offer the ability
to generate prototypes on the target architecture using this model.
However, these existing tools do not support the design of HW-
INH.

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

This paper proposes a design methodology that can describe
a control system at a high level of abstraction as a model. In
addition, we develop a system-level design tool that can automat-
ically generate a target implementation, including the HW-INH,
from this model. The proposed method automatically generates
the HW-INH by extending a system-level design tool that we
have been developing, named SystemBuilder [9]. Unlike previ-
ous system-level design tools including SystemBuilder, the pro-
posed system-level design tool can handle an interrupt, interrupt
processing, HW-INH, and communication to devices. By sup-
porting them, the proposed system-level design tool expands the
design space. We also present a control system model to real-
ize the system-level design of control systems. Using this control
system model, designers can describe interrupts, interrupt pro-
cessing, and the communication between processing and devices
at a high level of abstraction. The interrupt processing in the con-
trol system model is implemented as an interrupt handler on the
processor, or it is implemented as the HW-INH. The tool auto-
matically generates the target implementation from the control
system model. Therefore, it is possible to explore the design
space of a control system, and the control system can be effi-
ciently designed.

In the past, designers have been able to handle an event, event
processing, HW-INH, and communication to devices by them-
selves. However, previous system-level design tools including
SystemBuilder have not been able to do that. Unlike previous
system-level design tools, SystemBuilderCtr can handle an event,
event processing, HW-INH, and communication to devices. By
supporting them, SystemBuilderCtr expands the design space.

Hence, the contributions of the proposed method are:
• A tool for the design of HW-INH
• A control system model
• An efficient design method for control systems (automatic

generation of the target implementation)
This paper is organized as follows. Section 2 introduces the re-

lated works. Section 3 indicates the concept behind the proposed
method, and Section 4 presents the details of the control system
model. In Section 5, we describe how the proposed tool enables
automatic system implementation. Section 6 demonstrates the
effectiveness of the proposed method through a case study on a
motor control system, and Section 7 concludes the paper.

2. Related Works

Various researches have been conducted on system-level de-
sign tools. The tools mainly assume heterogeneous Multi-
Processor System-on-a-Chip as a target architecture.

SCE (System-on-Chip Environment) [4] is a system-level de-
sign framework based on the SpecC language [6]. It realizes an
interactive and automated design flow with a consistent and seam-
less tool chain, and supports all the way from specification of the
system down to hardware/software implementation.

Artemis [14] provides modeling and simulation methods and
tools for efficient performance evaluation and exploration of het-
erogeneous embedded multimedia systems. Artemis’s design
flow starts at a sequential application specification, and it is trans-
formed to a concurrent application specification. Then, Artemis

allows designers to estimate performance through co-simulation
of a concurrent application specification.

PeaCE (Ptolemy extension as a Codesign Environment) [8] is a
hardware-software codesign environment that provides seamless
codesign flow from functional simulation to system prototyping.
Its target application is multimedia applications with real-time
constraints. Unlike other system-level design tools, PeaCE is a
reconfigurable environment into which other design tools can be
easily integrated.

Metropolis [3] is a modeling and simulation environment based
on the platform-based design paradigm. It provides a general,
proprietary metamodel language that is used to capture separate
models for behavioral model, platform model, and their binding
and scheduling. Metropolis itself does not define any specific de-
sign tools but rather a general framework and language for mod-
eling with support for simulation, validation and analysis of mod-
els.

ARTS [12] provides a simulation platform for a model written
in SystemC. It supports multiple PE models and network model
among PEs. ARTS assumes that the application model simulated
on it is already developed and separated properly in order to ex-
plore allocation to PEs.

These five tools do not support the generation of HW-INH. Our
system-level design tool, SystemBuilderCtr, is the first system-
level design tool which automatically synthesizes the implemen-
tation with dedicated HW.

3. System-level Design Tool for Control Sys-
tems

This section describes SystemBuilderCtr, a system-level de-
sign tool for control systems. This tool is an extension of Sys-
temBuilder [9], which we are in the process of developing.

3.1 Target Control System
Figure 1 (a) shows an example of the target control system

(motor control system). This system controls the motor so that
it maintains the target rotation rate. The control processing is
activated by the ADC interrupt, which notifies the end of ADC.
Control parameters are then calculated from sensor values pro-
vided by the device(s) to enable the control of the motor. Next,
the system controls the motor by writing the calculated parame-
ters to the devices. Note that a dedicated HW which is activated
by the processor can accelerate some control processing (e.g., cal-
culation of parameters). The main processing first initializes the
trigonometric table and control parameters, and then supervises
the motor status. The command processing sets the target rate of
rotation depending on commands received from an external sys-
tem.

The design scope of the proposed method is shown by the dot-
ted lines in Fig. 1 (a), and does not include processors, buses, and
devices. The processing of the control system is executed on the
processor and the dedicated HW. Devices are HW units that may
be designed using the hardware description language (HDL). We
do not include them in the design scope, instead assuming that
existing devices are to be used. Devices have device registers,
which are mapped to the same memory space as the processors

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

Fig. 1 An example of a target system (motor control).

and the dedicated HW. Hence, the processing can communicate
with the devices. When an asynchronous notification (e.g., an
interrupt) arises in a device, the processing modules gets the no-
tification from the device. In this paper, the asynchronous notifi-
cation is described as an “event,” and the processing activated by
an event is described as “event processing.” For example, in the
case of sensors, an event is the ADC interrupt that notifies the end
of ADC. The event processing is the control processing activated
by the ADC interrupt and implemented as an interrupt handler.

3.2 HW-implemented Interrupt Handler (HW-INH)
HW-INH is dedicated hardware that is activated by the inter-

rupt itself, and then handles the interrupt processing. The HW-
INH often requires access to one or more devices while it is run-
ning. Figure 1 (b) shows an example of the motor control sys-
tem with the HW-INH. The control processing is implemented
as HW-INH that is activated by an ADC interrupt. The HW-
INH then handles the control processing, and accesses the devices
while it is running.

By implementing interrupt processing through HW-INH, the
interrupt processing is not executed on the processor. HW-INH
has the potential to reduce the processor load of the control sys-
tem. In addition, by handling the interrupt processing of each
device in parallel, the HW-INH can improve the latency of the
interrupt processing. The advantages of HW-INH can be summa-
rized as follows:
• Reduced processor load
• Improved latency of interrupt processing

3.3 Concept of the Proposed Wethod
Designers have been able to handle an event, an event pro-

cessing, HW-INH, and communication to devices by themselves.
However, previous system-level design tools including System-
Builder have not been able to do that. Figure 2 illustrates the de-
sign of a control system by SystemBuilderCtr, which is an exten-
sion of SystemBuilder [9]. Unlike previous system-level design
tools, SystemBuilderCtr can handle an event, an event process-
ing, a HW-INH, and communication to devices. By supporting
them, SystemBuilderCtr expands the design space.

SystemBuilderCtr takes three inputs:
• Control system model
• Mapping

• Architecture template
The control system model describes the processing and commu-
nication in the target system at a high level of abstraction (see
Fig. 1 (a)). This model is an extension of the Kahn Process Net-
work [11]. In the model, the processing and communication are
indicated as a process and a channel, respectively. All processes
are written in the C language, using APIs for channel access. De-
tails of the control system model are explained in Section 4. The
architecture template includes the number and type of proces-
sors, number and type of memory modules, bus structure, and in-
put/output (IO) module information. In other words, it describes
the target architecture. The mapping indicates the allocation of
processes to SW or HW. For example, in the 1motor-SP map-
ping shown in Fig. 2, all processes are implemented as SW. In
contrast, 1motor-SP-HW shows a mapping in which the Control1
process is implemented as HW, and the other processes are im-
plemented as SW.

SystemBuilderCtr automatically generates the target imple-
mentation from three inputs according to the given mapping.
While the implementation is being generated, processes are al-
located to the processor and the dedicated HW, and channels are
allocated to the memory modules. APIs to access the channels
are implemented as drivers, a master interface (IF), and a slave
IF. By changing the mapping in this way, SystemBuilderCtr au-
tomatically generates the target implementation according to the
mapping, as shown in Fig. 2. Without SystemBuilderCtr, design-
ers have to modify a configuration file of real-time operating sys-
tem (RTOS), a driver description, HDL description of master IFs,
and HDL description of slave IFs by themselves to change the
allocation of processes. Even if the designers use a high-level
synthesis (HLS) [5] tool, they still need to modify a configuration
file for HLS tool and HDL description of registers and bus IFs. At
least, a few lines of files should be modified. In some cases, hun-
dreds of lines of files should be modified. On the other hand, with
SystemBuilderCtr, the designers just need to modify a few lines
of mapping information to change the allocation of processes. In
this way, the automatic implementation can reduce the number of
modified lines during exploration. Thus, designers can efficiently
explore different mappings and can easily evaluate and compare
various implementations.

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

Fig. 2 Diagram showing the workflow of the tool and example implementations.

3.4 Requirements of the Control System Model and Design
Tool

To realize the concept described in the previous section, the
target control system shown in Fig. 1 (a) must be described as a
control system model. Furthermore, we also require a tool that
automatically generates the implementation from this model. The
requirements needed to realize the concept and tool are listed be-
low.
R1: Ability to describe an event and event processing
R2: Ability to describe communication between the processing

and devices
R3: Ability to realize HW-INH
R4: Ability to formulate a model without significant changes in

system performance
The target control system shown in Fig. 1 (a) includes the event,

event processing, and communication between the processing and
the devices. As these items are essential to the control system, the
model must be able to describe them. Considering the realization
of HW-INH, an event processing should be implemented as HW-
INH when it is mapped to HW, while it should be implemented
as an interrupt handler when it is mapped to SW. The implemen-
tation of a model should not lead to large changes in system per-
formance, because such changes may render the control system

unable to control the target.

4. Control System Model

This section describes a control system model that satisfies the
requirements outlined in Section 3.4. First, we give a summary
of the control system model, and then present a more detailed
description.

4.1 Summary of the Control System Model
An example of the control system model is shown in Fig. 3.

This is a model description of a part of the motor control system
shown in Fig. 1 (a). The control system model consists of an IO
module (IO-Mod) to represent a device, a process to represent
the system processing, and a channel to represent communication
among the processes and the IO-Mod. All processes are written
in the C language, using APIs for channel access. In the figure,
examples of C description with APIs for channel access are de-
scribed.

We consider a standard process (SP) and an event process (EP).
SPs realize all system processing except event processing. An EP
realizes an event processing. Table 1 lists the characteristics of
these processes. All processes can be mapped to either SW or
HW. If mapped to SW, SPs are implemented as tasks, whereas

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

Fig. 3 An example of a control system model.

Table 1 Summary of processes.

Type of process Standard process Event process
Available mapping SW/HW SW/HW

Implementation of SW Task Interrupt handler
Use of DC Allowed Partially banned

Use of EC / IOC Allowed Allowed
Wake-up channel DC EC

EPs are implemented as an interrupt handler. Furthermore, the
HW-INH can be realized by mapping the event process to HW.

There are three channel types: data channels (DCs), event
channels (ECs), and IO-Mod channels (IOCs). DCs allow com-
munication among processes, and ECs carry the notification of
an event from an IO-Mod to an event process. IOCs realize com-
munication between the IO-Mod and the processes. Basically, all
processes can handle all channel types. However, EPs cannot use
part of the DC, because the DC has an ability to terminate the
processing. Channels are also used to wake up processes. For
instance, DCs and ECs can be used to wake up the SPs and EPs,
respectively.

The control system model is an extension of the model of Sys-
temBuilder [9]. However, the control system model differs from
the model of SystemBuilder. The control system model has the
following new elements which do not exist in the model of Sys-
temBuilder.
• event channel
• event process
• IO-Mod channel

In addition, the control system model satisfies requirements R1,

R2, and R3, which are described in Section 3.4. The control sys-
tem model satisfies R1, because an event and an event processing
are described as an EC and an EP, respectively. Because an IOC
describes the communication between the processes and devices,
the control system model satisfies R2. Furthermore, the event
process can be mapped to HW as shown in Table 1. This real-
izes the HW-INH, and the control system model satisfies R3. To
evaluate R4, system performances should be measured. Thus, R4
is evaluated in Section 6.1. The following subsection gives a de-
tailed description of the processes and channels.

4.2 Standard Processes and Data Channels
SPs describe all system processing, except for event process-

ing. For example, in the control system model, the Command and
Main processes are SPs because they are not event processing.

DCs transfer data among processes, and can be one of the fol-
lowing four types.
• Blocking channel
• Non-blocking channel
• Memory channel
• Exclusive access object

Blocking channels realize synchronous communication with first-
in first-out buffers. They are used to wake up SPs, and mainly
realize synchronization between two SPs. Non-blocking chan-
nels and memory channels realize asynchronous communication,
transferring single data points and sets of data, respectively. Ex-
clusive access objects are used to realize exclusive access control
among the processes.

4.3 Event Processes and Event Channels
EPs describe the event processing. For example, in the control

system model, the Control1 is EP. The event processing can-
not be terminated during its execution. Thus, the EPs are distin-
guished from the standard processes which can be terminated by
the blocking channels. For the same reason, the EPs cannot be
activated by the blocking channels. Instead of the blocking chan-
nels, the EPs are woken up by the EC which is described below.

An EC carries the notification of an event from the IO-Mod
to the event process. The ADC interrupt is an example of an EC.
ECs connect a single event and a single event process. If the event
occurs in an IO-Mod, they carry a wake-up signal to the relevant
event process.

In this way, the event and the event processing are described as
a channel and a process in the control system model. In addition,
EPs can be implemented as HW-INH when they are mapped to
HW.

4.4 IO-Mod and IO-Mod Channel
The IO-Mod indicates the device. For example, the ADC Inter-

face is an IO-Mod. It translates analog data from the sensors into
digital data, and stores the translated data in the device register.
The processor and dedicated HW can access the device register
via the bus.

The IOC realizes the transfer of data between the IO-Mod and
the processes. For example, the API to read data provided by
the IOC is called to read data from the ADC Interface. This API

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

is implemented to read data in the device register inside the IO-
Mod. A single IOC is needed for each IO-Mod, and each IOC can
be connected to multiple processes. The control system model
can describe communication between the processes and the de-
vices through the IOC.

5. Automatic Implementation from the Con-
trol System Model

Figure 2 shows an example of the automatic generation of
an implementation from the control system model. In the case
that an SP is mapped to SW, it is implemented as a task in a
RTOS [16]. If the SP is mapped to HW, it is translated to HDL
using HLS, and is implemented on dedicated HW (the figure does
not show this part). Our tool supports a HLS tool named eX-
Cite [10]. In the case that an EP is mapped to SW, it is imple-
mented as an interrupt handler in the RTOS, and is called when
the RTOS receives a relevant interrupt. When the EP is mapped
to HW, it is translated to HDL using HLS tool, and implemented
on the dedicated HW. In this case, because an interrupt-receive
circuit is also implemented, the EP is implemented as HW-INH
that is activated by the notification of a relevant interrupt.

The DCs are allocated to the memory. In the case that the pro-
cess connected to the DC is mapped to HW, the slave IF is im-
plemented. If the process connected to the EC is mapped to SW,
the EC is registered to the RTOS as an activation condition of the
interrupt handler. However, if this process is mapped to HW, the
EC is converted to an interrupt-receive circuit. If the process con-
nected to the IOC is mapped to SW, it is implemented as a driver
on the processor. When such a process is mapped to HW, the IOC
is converted to a master IF.

6. Case Studies on a Motor Control System

This section describes case studies using the motor control sys-
tem [13]. The motor control system controls up to two motors as
shown in Fig. 1 (a). The motor control system is implemented on
DE2 board having an Altera’s FPGA which runs at 100 MHz [1].
In the FPGA fabric, there are up to two NiosII soft-core proces-
sors that are connected to the devices through the Avalon buses.
The ADC Interfaces raise an interrupt signal with a period of
62.5 µs (16 KHz). The control processing is executed by the ADC
interrupt. The control parameters calculated by the control pro-
cessing are then transferred to the drive board by writing them to
the devices. Finally, the drive board rotates the motor depending
on the setup control parameters.

Figure 2 shows the control system model of 2motors system
which controls two motors. The control system model for 1mo-
tor system which controls one motor is shown inside the dotted
lines. This figure also shows three examples of implementation
that were automatically generated by SystemBuilderCtr. The con-
trol system model of 2motors system consists of the following
four processes.
• Command (SP): corresponding to the command processing
• Main (SP): corresponding to the main processing
• Control1 (EP): corresponding to the control processing for

motor1
• Control2 (EP): corresponding to the control processing for

Table 2 Mapping patterns.

Mapping Main Command Control1 Control2
1motor-SP CPU1 CPU1 CPU1 —

1motor-SP-HW CPU1 CPU1 HW —
2motors-SP CPU1 CPU1 CPU1 CPU1
2motors-MP CPU1 CPU1 CPU1 CPU2

2motors-SP-MIX CPU1 CPU1 CPU1 HW
2motors-SP-HW CPU1 CPU1 HW HW

Fig. 4 Quality of speed control.

motor2
The Main process is connected to the Param1, Param2, and Sin-
Cos DCs. The Param1 DC and the Param2 DC retain the con-
trol parameters of motor1 and motor2, respectively. The Sin-
Cos DC holds the trigonometric table value. The Command pro-
cess is connected to the Param1 and Param2 DCs. The Control1
process and the Control2 process are connected to the Param1
DC and the Param2 DC, respectively, and they are connected
to the SinCos DC. The Control1 process is connected to four
IOCs (SM1 IO, BiSS1 IO, PWM1 IO, ADC1 IO), and the Con-
trol2 process is connected to four IOCs (SM2 IO, BiSS2 IO,
PWM2 IO, ADC2 IO). In addition, the Control1 process and the
Control2 process are connected to the ADC1 EC and the ADC2
EC, respectively. Using SystemBuilderCtr, six implementations
(see Table 2) were automatically generated from the above con-
trol system models. In the following sections, all six implemen-
tations are compared.

6.1 Evaluation of Requirements
We show that the proposed method and this case study satisfy

the requirements described in Section 3.4. Because the control
system model of 2motors system includes ECs and event pro-
cesses, this case study satisfies R1. This case study satisfies R2
because the model includes up to eight IOCs. The implementa-
tion of 1motor-SP-HW in Fig. 2 has a HW-INH which is automat-
ically generated by SystemBuilderCtr. Thus, SystemBuilderCtr
satisfies R3.

We have measured the system performance in terms of control
quality in order to evaluate requirement R4. Figure 4 shows the
change in the rate of rotation of the motor when the target rate
of rotation is changed from −500 rotations per minute (rpm) to
+1,000 rpm. The figure shows the result of three implementa-
tions of 1motor system. 1motor-SP and 1motor-SP-HW were im-
plemented from the control system model by SystemBuilderCtr.
The one named “w/o model” was implemented as SW without the
control system model. Because of a limitation of the drive board,
we only measured the rate of rotation on 1motor system. Note
that all implementations could rotate the motor correctly.

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

Fig. 5 Comparison of the number of logic elements.

From the figure, we can confirm that the rate of rotation con-
verges. The root-mean-square error between the rate of rotation
produced by 1motor-SP and the rate of rotation produced by w/o
model is 2.4%, and that for 1motor-SP-HW is 2.4%. These re-
sults indicate that the system performance is not changed by the
system modeling approach. The control system model and Sys-
temBuilderCtr satisfy R4. Therefore, the proposed method and
this case study satisfy the requirements R1, R2, R3, and R4.

6.2 Comparison of the Number of Logic Elements
Figure 5 shows the number of logic blocks of Altera’s Cyclone

IV FPGA (logic elements: LEs) for six implementations, which
includes CPUs, buses, motor control devices, slave IFs, master
IFs, and dedicated HW. At least, a CPU, a bus, and motor con-
trol devices are common to six implementations. In detail, a sin-
gle processor and bus need about 6,000 LEs. A HW-INH of the
Control1/2 process needs about 13,000 LEs, and motor control
devices need about 37,000 LEs.

1motor-SP and 2motors-SP use the same target implementa-
tion which has a CPU and a bus. 2motors-SP only needs a bus
because the Control1 and Control2 processes run on the CPU in
sequence. 2motors-MP has two CPUs and two buses. Because
the Control1 and Control2 processes run on different CPU, two
buses are required to avoid a bus collision. In the result, 2motors-
MP has more LEs than 2motors-SP.

The number of LEs for 1motor-SP-HW and 2motors-SP-MIX
is almost the same. 1motor-SP-HW has a single bus because it
only controls a motor. 2motors-SP-MIX has two buses because a
CPU controls a motor and a dedicated HW controls another one
in parallel. Thus, 2motors-SP-MIX slightly has larger usage of
LEs than 1motor-SP-HW. 2motors-SP-HW has the largest usage
of LEs among the six implementations because it has two dedi-
cated HWs (HW-INH).

Adding an HW-INH increases the usage of LEs. On the other
hard, the HW-INH brings some advantages which are discussed
in coming sections. Therefore, the designer has to consider the
trade-offs between the usage of LEs and the advantages of HW-
INH.

6.3 Reduction of Processor Load by HW-INH
We measured the processor load by the Control1 and Control2

processes. The Command process basically waits commands

Fig. 6 Comparison of the processor load.

Fig. 7 An example of the execution time and latency of the Control1 and
Control2 processes.

from outside of the system. The processor load of the Main pro-
cess depends on cycle of Main process’s supervision function.
Since we focused on unveiling that the HW-INH reduces the pro-
cessor load, the Main and Command processes were not executed
during this measurement. Figure 6 shows the processor load of
the six implementations.

In the implementations of 1motor system, the processor load
for 1motor-SP was 27.2%, while that for 1motor-SP-HW was
0.0%. In 1motor-SP-HW, the Control1 process is implemented
as HW-INH, and therefore its processing is offloaded from the
processor. As a result, the processor load is reduced to 0.0%. In
other words, the processor did not execute any processing.

The processor load for 2motors-SP was 56.4%, which is about
double that of 1motor-SP. This is because CPU1 runs the Con-
trol1 and Control2 processes in sequence. The processor load
for 2motors-SP-MIX was 27.9%, which is almost the same as
1motor-SP. The Control2 process is implemented as HW-INH,
and therefore its processing is offloaded from the processor. As
a result, CPU1 only runs the Control1 and its processor load be-
came the same as 1motor-SP. The processor loads of CPU1 and
CPU2 for 2motors-MP were both 31.2% because CPU1 runs the
Control1 process and CPU2 runs the Control2 process. Because
this implementation uses RTOS for multi-processors, the over-
head of interrupt handling is larger than that for single-processor.
As a result, the processor loads of 2motors-MP were larger than
that of 1motor-SP. The processor load for 2motors-SP-HW was
0.0% because the Control1 and Control2 processes are imple-
mented as HW-INH, and therefore their processing is offloaded
from the processor.

By implementing the HW-INH, no interrupt processing was ex-
ecuted on the processor. Offloading the interrupt processing has
a prospect to keep the processor in a standby mode. Therefore,
the HW-INH has a possibility to reduce the processor load of the
control system.

6.4 Confirmation of the Real-time Requirements
We measured the execution time, latency, and response time of

the Control1 and Control2 processes as shown in Fig. 7. In this
figure, ADC1 and ADC2 indicate interrupt signals from ADCs,

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

Fig. 8 Comparison of execution time of the Control1/Control2 processes.

Fig. 9 Comparison of latency of the Control1/Control2 processes.

and Control1 and Control2 indicate the execution of the Control1
process and the Control2 process, respectively. The execution
time is the time from the activation of the Control1 (Control2)
process to the end of its execution. The latency is the time from
the occurrence of an ADC interrupt to the activation of the Con-
trol1 (Control2) process.

Figure 8 shows the execution time of the Control1 and Con-
trol2 processes. For the 1motor system, the execution time of the
Contorl1 process in 1motor-SP was 11,860 ns, and that in 1motor-
SP-HW was 4,000 ns. For the 2motors system, the execution time
of the Control process which is implemented as a CPU was ap-
proximately 12,300 ns. On the other hand, the execution time of
the Control process which is implemented as HW was approxi-
mately 4,400 ns. Since the Control1 and Control2 processes share
a SinCos DC, their execution times are longer than those of 1mo-
tor system. By implementing the Control process as HW, the
execution time could be reduced by a factor of 2.0 at least.

Figure 9 shows the latency of the Control1 and Control2 pro-
cesses. The latencies of the Control1 process in 1motor-SP,
2motors-SP, and 2motors-SP-MIX were about 1,350 ns, which
is handled by RTOS for single-processor. On the other hand,
the latencies of the Control processes in 2motors-MP were about
1,640 ns. Because of the overhead of RTOS for multi-processors,
the latencies of the Control processes in 2motors-MP were longer
than those handled by RTOS for single-processor. All latencies
implemented as HW were 30 ns. At a frequency of 100 MHz,
30 ns is equivalent to 3 cycles.

Figure 10 shows the response time of the Control1 and Con-
trol2 processes. The response time of the Control2 process in
2motors-SP was the longest because both Control1 and Con-
trol2 were run on CPU1. Because its response time (28.26 µs)
was shorter than the interrupt period (62.5 µs), all implementa-
tions satisfy the real-time requirement. Additionally, the response
times which were implemented as HW were improved compared

Fig. 10 Comparison of response time of the Control1/Control2 processes.

Table 3 The number of modified lines of files.

w/o SysCtr w/ SysCtr
No. RTOS APIs HLS HDL Mapping

1 (1motor-SP) — — — — —
2 (1motor-SP-HW) 2 18 35 1,021 2
3 (2motors-SP) 2 18 — — 2
4 (2motors-MP) 8 — — — 2
5 (2motors-SP-MIX) 2 18 — — 2
6 (2motors-SP-HW) 2 — — 126 2

total 1,252 10

with those implemented as SW. As shown in Figs. 8 and 9, HW-
INH reduced the execution time and the latency. This resulted
in a reduction of the response time as well. From this point, the
HW-INH is effective to improve the real-time performance.

By implementing the Control process as HW-INH, the latency
was reduced to no less than 3 cycles, which is 1/45 of the latency
of the interrupt handler. Shorter latencies are preferable in the
design of control systems such as the motor control system. In
addition, the HW-INH reduced the response time and improved
the real-time performance. Thus, the HW-INH provides better
real-time characteristics in terms of:
• A reduction in latency
• Faster execution of interrupt processing
• Shorter response time of interrupt processing

6.5 Efficiency of Exploration by Automatic Generation
Without SystemBuilderCtr, the designers have to modify sev-

eral files by themselves to change the allocation of processes as
decribed in Section 3.3. On the other hand, the designers just
need to modify a few lines of mapping information to change
the allocation of processes by using SystemBuilderCtr. To show
the efficiency of the exploration with SystemBuilderCtr, we com-
pared the number of modified lines of files between the imple-
mentations without SystemBuilderCtr and the implementations
with SystemBuilderCtr.

Table 3 lists the number of modified lines of files during the ex-
ploration of six mappings. The six mappings were implemented
in ascending order in the table. The column named “w/o SysCtr”
indicates the number of modified lines of files without Sytem-
BuilderCtr. The columns named RTOS, APIs, HLS, and HDL in-
dicate a configuration file of RTOS, C code of the channel access
APIs, a configuration file of HLS, and a HDL file of channels, re-
spectively. In column “w/ SysCtr” indicates the number of modi-
fied lines of mapping information inputted to SytemBuilderCtr.

Since 1motor-SP is the first implementation, there is no mod-
ified file. The modification of RTOS file was a registration and

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

unregistration of an interrupt handler and task. When the alloca-
tion of processes was changed, each process required a modifi-
cation of two lines in the RTOS file. The modifications of APIs
were a read and write implementation and a configuration of base
address. Each channel implementation required a modification of
three lines in the file. Thus, 18 lines were modified for 6 channels
when the channel implementations were changed. The modifi-
cation of HLS was a configuration file for the HLS tool. Since
a HW module generated by the HLS tool was reusable, 35 lines
were modified at the first use of the HLS tool. The modification
of HDL includes IF’s circuits and connections between channels
and HW modules. More than 1,000 lines were modified in the
HDL file at the first use of dedicated HW (1motor-SP-HW). Since
most of the description in the HDL file was reusable, no line was
modified on 2motors-SP-MIX and 126 lines were modified on
2motors-SP-HW. Without SystemBuilderCtr, 1,252 lines in total
were modified in four files.

With SystemBuilderCtr, two lines were modified in mapping
information (CPU1=, CPU2=, or HW=) to change the allocation
of processes as shown in Fig. 2. In total, only 10 lines of map-
ping information were modified during the exploration with Sys-
temBuilderCtr. Comparing with the exploration without System-
BuilderCtr, the number of modified lines was reduced to 1/120. In
addition, the designers do not need expert knowledge (e.g., a con-
figuration file of RTOS and a HDL description) to explore differ-
ent mappings. Especially, SystemBuilderCtr automatically gen-
erates HDL descriptions that HLS tools cannot generate. System-
BuilderCtr is very effective to change the allocation of processes
from SW to HW because the designers had to change more than
1,000 lines of HDL without SystemBuilderCtr (see 1motor-SP-
HW in Table 3). Therefore, SystemBiulderCtr can realize more
efficient design space exploration by reducing the number of lines
which should be modified.

Table 4 shows the time to implement the system from the mod-
els. SysCtr, SW compile, eXCite and QuartusII indicate a time
to generate files by SystemBiulderCtr, a time to compile RTOS
and tasks for processor, a time to generate HDL of processes by
eXCite HLS tool, and a time to synthesize FPGA logics by Quar-
tusII [1], respectively. For all implementations, we took less than
one second for SysCtr and less than 15 seconds for SW compile.
Implementations which have a process(es) mapped to HW addi-
tionally took time to generate dedicated HW (as shown eXCite
and QuartusII), which are time consuming steps.

Because we only changed the mapping information and the
implementation of channels and IFs which have traditionally re-
quired expert knowledge were automatically generated by Sys-
temBiulderCtr, we only took one and a half hours to realize six
implementations. Therefore, not only expert designers but also

Table 4 Time to implement the system from the model [seconds].

Mapping SysCtr SW compile eXCite QuartusII
1motor-SP � 1 9.9 — —

1motor-SP-HW � 1 9.7 47 1,463
2motors-SP � 1 11.1 — —
2motors-MP � 1 14.0 — —

2motors-SP-MIX � 1 11.0 47 1,506
2motors-SP-HW � 1 10.8 95 2,092

novice designers can efficiently explore design space of the con-
trol systems by our method.

7. Conclusion

We have presented a system-level design tool for control sys-
tems that enables the development of HW-INH that is activated by
an interrupt. We also described a control system model that ab-
stracts an interrupt, interrupt processing, and communication be-
tween control processing and devices. The proposed method au-
tomatically generates HW-INH from this control system model.
Case studies using a motor control system demonstrated that our
approach improves the efficiency of the design space exploration
of control system design, and the control quality of the automati-
cally generated implementation was found to be the same as that
of a conventionally designed implementation. The HW-INH was
shown to reduce the processor load, to shorten the execution time
of interrupt processing, and to improve the latency of interrupt
processing. Furthermore, our method enables designers to effi-
ciently explore the design space of the control system.

Acknowledgments This work was in part supported by
STARC (Semiconductor Technology Academic Research Cen-
ter).

References

[1] Altera Corporation (online), available from 〈http://www.altera.com/〉
(accessed 2014-10-27).

[2] Atmel Corporation (online), available from 〈http://www.atmel.com〉
(accessed 2014-10-27).

[3] Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C. and
Sangiovanni-Vincentelli, A.: Metropolis: An Integrated Electronic
System Design Environment, Computer, Vol.36, No.4, pp.45–52 (on-
line), DOI: http://dx.doi.org/10.1109/MC.2003.1193228 (2003).

[4] Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi,
S. and Gajski, D.D.: System-on-chip environment: A SpecC-based
framework for heterogeneous MPSoC design, EURASIP J. Embedded
Syst., Vol.2008, pp.1–13 (online), DOI: http://dx.doi.org/10.1155/
2008/647953 (2008).

[5] Gajski, D.D., Dutt, N.D., Wu, A.C.-H. and Lin, S.Y.-L.: High-level
Synthesis: Introduction to Chip and System Design, Kluwer Aca-
demic, Norwell, MA, USA (1992).

[6] Gajski, D.D., Zhu, J., Dömer, R. and Gerstlauer, A.: SpecC: Specifi-
cation language and design methodology, Kluwer Academic (2000).

[7] Gerstlauer, A., Haubelt, C., Pimentel, A.D., Stefanov, T.P., Gajski,
D.D. and Teich, J.: Electronic system-level synthesis methodologies,
Trans. Comp.-Aided Des. Integ. Cir. Sys., Vol.28, No.10, pp.1517–
1530 (online), DOI: http://dx.doi.org/10.1109/TCAD.2009.2026356
(2009).

[8] Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S. and Joo, Y.-P.: PeaCE:
A hardware-software codesign environment for multimedia embed-
ded systems, ACM Trans. Des. Autom. Electron. Syst., Vol.12, No.3,
pp.1–25 (online), DOI: http://doi.acm.org/10.1145/1255456.1255461
(2007).

[9] Honda, S., Tomiyama, H. and Takada, H.: RTOS and Codesign Toolkit
for Multiprocessor Systems-on-Chip, Design Automation Conference,
ASP-DAC ’07, Asia and South Pacific, pp.336–341 (online), DOI:
10.1109/ASPDAC.2007.358008 (2007).

[10] Y Explorations Inc.: eXCite (online), available from 〈http://www.yxi.
com/〉 (accessed 2014-10-27).

[11] Kahn, G.: The semantics of a simple language for parallel program-
ming, Proc. IFIP Congress 74, pp.471–475 (1974).

[12] Mahadevan, S., Virk, K. and Madsen, J.: ARTS: A SystemC-based
framework for multiprocessor systems-on-chip modelling, Design Au-
tomation for Embedded Systems, Vol.11, No.4, pp.285–311 (2007).

[13] Multiaxis Motor Control Development Board (online), available from
〈http://www.altera.com/products/devkits/altera/kit-multi-axis-motor-
control.html〉 (accessed 2014-10-27).

[14] Pimentel, A.D.: The Artemis workbench for system-level perfor-
mance evaluation of embedded systems, International Journal of Em-
bedded Systems, Vol.3, pp.181–196 (2008).

[15] Renesas Electronics Corporation (online), available from 〈http://www.

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

renesas.com/index.jsp〉 (accessed 2014-10-27).
[16] TOPPERS Project (online), available from 〈http://www.toppers.jp/

en/index.html〉 (accessed 2014-10-27).

Yuki Ando received his Ph.D. degree in
Information Science from Nagoya Uni-
versity in 2014. Currently he is a
researcher at the Center for Embedded
Computing systems, Nagoya University.
His research interests include system-
level design and embedded systems.

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Infor-
mation Engineering, Toyohashi Univer-
sity of Technology in 2005. From 2004 to
2006, he was a researcher at the Nagoya
University Extension Course for Embed-
ded Software Specialists. In 2006, he
joined the Center for Embedded Comput-

ing Systems, Nagoya University, as an assistant professor, where
he is now an associate professor. His research interests include
system-level design automation and real-time operating systems.
He received the best paper award from IPSJ in 2003. He is a
member of ACM, IEEE, IEICE, and JSSST.

Hiroaki Takada is a professor at the In-
stitute of Innovation for Future Society,
Nagoya University. He is also a pro-
fessor and the executive director of the
Center for Embedded Computing Systems
(NCES), the Graduate School of Infor-
mation Science, Nagoya University. He
received his Ph.D. degree in Information

Science from the University of Tokyo in 1996. He was a research
associate at the University of Tokyo from 1989 to 1997, and was
a lecturer and then an associate professor at Toyohashi University
of Technology from 1997 to 2003. His research interests include
real-time operating systems, real-time scheduling theory, and em-
bedded system design. He is a member of ACM, IEEE, IEICE,
JSSST, and JSAE.

Masato Edahiro is a professor at the
Department of Information Engineering,
the Graduate School of Information Sci-
ence, Nagoya University. He received his
Ph.D. degree in Computer Science from
Princeton University in 1999. He joined
NEC Corporation in 1985, had worked in
its research center for 26 years, and moved

to Nagoya University in 2011. His research topics include graph
and network algorithms and software for multi- and many-core
processors. He is a member of IEEE, IEICE, ORSJ.

c© 2015 Information Processing Society of Japan


