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Abstract: This paper introduces an automatic synthesis technique and tool to implement inter-heterogeneous-
processor communication for programmable system-on-chips (PSoCs). PSoCs have an ARM-based hard processor
system connected to an FPGA fabric. By implementing the soft processors in the FPGA fabric, PSoCs realize hetero-
geneous multiprocessors. Since the number and type of soft processors are configurable, PSoCs can be various het-
erogeneous multiprocessors. However, the inter-heterogeneous-processor communications are not supported by single
binary operating systems. Proposed method automatically synthesizes the inter-heterogeneous-processor communi-
cations at an application layer from a general model description. The case study shows that automatically generated
inter-heterogeneous-processor communication exactly runs the system on heterogeneous multiprocessors.
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1. Introduction

FPGAs have been used widely in a lot of systems because of
their flexibility and high performances. Currently, new FPGAs
called programmable system-on-chip (PSoC) show up in the mar-
ket. Examples of PSoCs are Altera SoC [1] and Xilinx ZYNQ [2].
PSoCs have an ARM-based hard processor system [3] connected
to an FPGA fabric by a high-bandwidth interconnect. By im-
plementing soft processors into the FPGA fabric, PSoCs can be
a heterogeneous multiprocessor (Hetero-MP). Figure 1 shows
an example of Hetero-MP which consists of an ARM-based hard
processor and three NiosII soft processors.

There are two types of multiprocessor, a homogeneous mul-
tiprocessor (Homo-MP) and a Hetero-MP. A Homo-MP con-
sists of multiple same processors. Since the Homo-MP has same
processors, all processors can run a single binary of a general-
purpose operating system (GPOS) such as Linux. The GPOS run-
ning on the Homo-MP generally takes long time to handle an in-
terrupt processing which requires low latency. To solve this prob-
lem, Hetero-MPs have been getting the attention. A Hetero-MP
consists of multiple different processors. In addition, different
operating systems (OSs) can run on them. For example, a GPOS
runs on ARM-based hard processor to execute applications, and
a single-processor real-time OS (SP-RTOS) runs on NiosII soft
processors to handle processes in low latency (see Fig. 1). Thus,
Hetero-MPs potentially have an advantage to improve the real-
time property.

The single binary OS running on the Homo-MP provides com-
munication services among the same processors. However, the
OSs running on the Hetero-MP do not provide the communica-
tion services among the different OSs. Instead of the OSs, the
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designers usually implement the communications among the dif-
ferent OSs at the application layer. Furthermore, various archi-
tectures of the Hetero-MP can be realized in PSoCs. The design-
ers have to modify the implementation of communication among
different OSs because each architecture has different number and
type of soft processors. Therefore, a standard specification of
communication among the different OSs is required.

The Multicore Association [4] has been working to specify
standard APIs for Hetero-MPs, which is named Multicore Com-
munication API (MCAPI). MCAPI specifies the APIs for syn-
chronization and its semantics. In particular, MCAPI mentions
that a shared memory and interrupt signals raised by other pro-
cessors (inter-processor interrupt) are needed to realize the com-
munication for Hetero-MPs. Meakin et al. [5] and Matilainen
et al. [6] have been implemented a communication architecture
based on MCAPI. However, they have to modify their imple-
mentations if the configuration of the Hetero-MP changes.

This paper introduces a synthesis tool which automatically im-
plements the communications for Hetero-MP on PSoCs. The
tool takes a model description consisting of functionalities and
communications. Then, it automatically generates the target im-
plementation including the communication among the different
OSs. Since typical Hetero-MPs have inter-processor interrupts
and shared memories, the communications among different OSs
are realized using them. The case study demonstrates that the
system communicates among the different OSs by automatically
generated inter-heterogeneous-processor communications.

This paper is organized as follows. Section 2 mentions the
Hetero-MP systems on PSoCs. Section 3 explains our commu-
nication synthesis tool. Section 4 presents a case study with our
synthesis tool, and Section 5 concludes this paper.
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Fig. 2 An automatic communication synthesis tool and an example of target implementation.

Fig. 1 An example of a Hetero-MP on Altera SoC.

2. Hetero-MP Systems on PSoCs

2.1 The Definition of Hetero-MP System
In this paper, the definition of Hetero-MP system is a system

that does not share a single OS’s execution binary. For example,
a typical Hetero-MP system has several different processors, and
it runs different OS on each processor. A system that has same
processors but runs different OSs is also a Hetero-MP system in
our definition. Furthermore, a system that runs the same OSs but
does not share a single OS’s execution binary is also a Hetero-
MP system. On the other hand, a system using ARM’s BIGlittle
processor is a Homo-MP system because it shares a single OS’s
execution binary.

2.2 The Target Architecture of Hetero-MP on Altera SoC
Figure 1 shows the target architecture of Hetero-MP on Altera

SoC [1]. Altera SoC integrates an ARM-based hard processor
system and an FPGA fabric in a single chip, and they are con-
nected using a high-bandwidth interconnect. The ARM-based
hard processor system consists of an ARM Cortex-A9 MPCore
processor, peripherals, and DDRMEM, which are connected by
AXI bus. The configuration of ARM-based hard processor sys-
tem is fixed. On the other hand, the FPGA fabric is configurable.

In the FPGA fabric, several NiosII soft processors are con-
nected to interrupt senders, shared memories, mutexes, and other
IPs (e.g., DMAs) by the Avalon bus. An interrupt sender is used

to raise inter-processor interrupt from other processors. The inter-
rupt numbers of NiosII-1, NiosII-2, NiosII-3, and ARM processor
are assigned to 1, 2, 3, and 4, respectively. The shared memories
in the FPGA fabric are used in order to communicate among the
ARM processor and NiosII soft processors. In addition, mutexes
are used to ensure the consistency of data in the shared memory.
Since the FPGA fabric is configurable, IPs such as DMA can be
optionally allocated.

In this work, the FPGA fabric is assumed to include following
elements to realize the communication among the ARM proces-
sor and NiosII soft processors.
• A shared memory
• An interrupt sender for each processor
• A mutex

Note that each processor should receive an inter-processor inter-
rupt from other processors by the interrupt sender. This is a suit-
able assumption for PSoCs because a shared memory, interrupt
senders and a mutex can be integrated in the FPGA fabric.

3. Communication Synthesis for Hetero-MP

In this section, we introduce a model description and an au-
tomatic communication synthesis tool. Figure 2 shows an au-
tomatic communication synthesis tool and an example of target
implementation. Our synthesis tool takes three inputs, a model
description, a mapping description, and architecture information.
Then, the tool automatically generates a target implementation of
the model depending on the mapping information.

Before the explanation of the tool, a “domain” is defined in
following section. Then, the details of the tool is described from
Section 3.2.

3.1 The Definition of Domain
A domain has to satisfy the following conditions:
• A domain includes at least one processor
• A domain has only a single OS (including BareMetal)
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Fig. 3 An example of domains.

• A domain has an unique ID (this is called domain ID)
• A processor does not belong to several domains

Note that a Hetero-MP system is redefined as a system consisting
of several domains.

An example of domains is shown in Fig. 3. All domains in the
figure satisfy the conditions described above. The concept of do-
main is needed because of Domain 2 in the figure. In domain
2, there are three same processors, and a single OS runs on them.
Among the processors in domains 2, there must be inter-processor
communications. Such inter-processor communications should
be handled by communication services provided by the OS run-
ning on three processors because the OS has an ability to ef-
ficiently realize such communications. Thus, our method sup-
ports only the communications among domains but does not sup-
port those inside a domain. Hereafter, the inter-heterogeneous-
processor communication among domains is described as “inter-
domain communication (IDC).”

3.2 Model Description
The model description is the same as the model description

used by SystemBuilder [7], which is related to Kahn Process Net-
work [8]. The model description consists of processes and chan-
nels as shown in Fig. 2. Processes represent functionalities of the
system. Processes are written in C language with access APIs
which are interfaces to channels. Channels represent communi-
cations among processes. There are three types of channels:
• Blocking channel (BC)
• Non-Blocking channel (NBC)
• Memory channel (MEM)
BC is a synchronous channel used to synchronize processes.

BC behaves as a FIFO buffer. Thus, a sender process has to wait
until the buffer has some spaces while a receiver process has to
wait until the buffer has data. NBC and MEM are asynchronous
channels used to transfer data among processes. NBC and MEM
are a shared variable and a shared array, respectively. All pro-
cesses can access NBC and MEM anytime without being blocked.

These three types of channels are basic communication. Thus,
by realizing them in the shared memory, any type of IDC can be
realized by the combination of them. Depending on the design-
ers’ decisions, processes and channels are allocated to processors
and memories, respectively. Since the implementation of the pro-
cesses and channels is not determined until their allocation are
decided, the model is suitable to describe Hetero-MP systems.

3.3 Mapping Description and Architecture Information
A mapping description indicates the type of processors and

type of OS for each domain by CORE directive and OS direc-
tive, respectively. This also indicates the allocation of processes

to the domains by SW directive.
Architecture information describes the architecture of target

Hetero-MP. It includes the type and number of processors, the
type of bus, and the type and number of memories, and so on. By
changing these two, the designers can configure the Hetero-MP
systems in PSoCs.

3.4 Synthesis Tool
The synthesis tool takes a model description, a mapping infor-

mation, and architecture information, and it automatically gen-
erates the target implementation. The synthesis tool consists of a
front-end tool, SystemBuilder, and IDC synthesis tool. The front-
end tool takes the three inputs. Then, it generates files for Sys-
temBuilder and IDC synthesis tool.
3.4.1 SystemBuilder

SystemBuilder is a system-level design toolkit which supports
to generate the implementation of intra-domain system. It takes a
model description, a mapping description, and architecture infor-
mation. Then, it automatically generates a target implementation
including software, hardware, and Com. library of intra-domain
communication among the processes. Since SystemBuilder only
supports intra-domain systems, it only generates Com. libraries
for BC12 and BC34 (see Fig. 2). SystemBuilder cannot generate
the Com. library of IDC.
3.4.2 IDC Synthesis Tool

The IDC synthesis tool automatically generates the Com. li-
brary of IDC. In particular, the tool generates the Com. library
for MEM41, BC41, BC23, and NBC23 (see Fig. 2). The Com.
library of IDC consists of following three elements.
• Access APIs (generated by tool)
• Architecture Library (static)
• Common Library (static)
The tool generates access APIs of channels in order to access

data in the shared memory. In addition, the tool automatically
allocates the data structure of channels among the domains to the
shared memory as shown in Fig. 4. For example, a writing access
API of MEM takes data and an index to access. The API cal-
culates the absolute address using the allocated base address and
index. Then, it stores the data to the shared memory indicated by
the absolute address.

Architecture Library includes architecture dependent algo-
rithms and configurations. Examples of such algorithm are a way
to raise an inter-processor interrupt and a way to access mutex.
In addition, an example of such configuration is the address of
the shared memory. An architecture library is prepared for each
architecture (ARCH1, ARCH2, and ARCH3 in Fig. 2).

Common Library includes the implementation of NBC, MEM,
and BC channels. The implementation of NBC and MEM is sim-
ple because they provide the function to access data in the shared
memory without blocking. On the other hand, the implementa-
tion of BC is complex because BC provides a function to send
and receive a message in a manner of FIFO.

The data structures of BCs are allocated to the shared memory.
Figure 4 shows an example of the data structure of BCs gener-
ated from the model description in Fig. 2. A data structure of BC
consists of Data, SendWaitQue, and RecvWaitQue. In addition,
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Fig. 4 The data structure of shared memory.

each domain has a WakeUpReqQue in the shared memory which
is shared by BCs related to the domain. A mutex is used to ensure
the consistency of data in the shared memory.

Data is a region to save the messages in FIFO manner. The
size of Data is defined in the model description, and it should
be greater than or equal to zero. If the size of Data is zero, BC
behaves as a handshake communication.

SendWaitQue keeps the information of processes waiting for
sending a message while RecvWaitQue keeps those waiting for
receiving a message. Information of processes includes process
ID and domain ID. The information is kept in FIFO manner in
each queue.

WakeUpReqQue keeps the process ID in FIFO manner in order
to wake up the waiting processes of related domain. Since each
domain has its own WakeUpReqQue, each domain can wake up
the waiting processes according to the related WakeUpReqQue
when the domain receives an interrupt. The combination of Send-
WaitQue/RecvWaitQue and WakeUpReqQue realizes IDC of BC.
3.4.3 Target Implementation

Currently, the synthesis tool supports Altera SoC. Figure 2
shows an example of target implementation. In this example, pro-
cesses P1 and P2 run on GPOS, and processes P3 and P4 run on
SP-RTOS. With the synthesis tool, the designers can get differ-
ent implementations by only changing the mapping description.
Furthermore, the designers can implement the system on different
architectures by using different architecture information. There-
fore, they can efficiently evaluate and compare the performances
of different implementations of Hetero-MP systems.

4. Experimental Results

4.1 Target Application
This section shows a case study to design an AES encryp-

tion and decryption application (AES system). We used Al-
tera SoC [1] as a target which has three NiosII soft processors
as shown in Fig. 1. We used three OSs, TOPPERS/ASP, TOP-
PERS/FMP [9], and Linux. TOPPERS/ASP and TOPPERS/FMP
are SP-RTOS and MP-RTOS, respectively, and Linux is GPOS.

Figure 5 shows the model description of AES system. AES
system consists of three processes named TOP, ENC, and DEC.
Process TOP sets the data to encrypt, the keys for encryption and
decryption, and a type of data. Then, it starts the process ENC
which encrypts the data and sends encrypted data to process DEC.
After that, process ENC starts the process DEC which decrypts
the encrypted data. Finally, process DEC sends decrypted data
to process TOP. In this case study, we allocated ENC and DEC
into the same domain in order to make the system simple. Thus,
channels named DEC DATA and DEC ST are not IDC.

Fig. 5 Model description of AES encryption and decryption application.

Table 1 Execution time of AES system on NiosII processors.

pattern NiosII-1 NiosII-2 NiosII-3 time(s)
P1-1 – D1:SP-RTOS D2:SP-RTOS 6.470

SW=TOP SW=ENC,DEC
P1-2 D1:MP-RTOS D2:SP-RTOS 6.479

SW=TOP SW=ENC,DEC
P1-3 D1:MP-RTOS D2:SP-RTOS 6.559

SW=ENC,DEC SW=TOP

Table 2 Execution time of AES system on ARM multicore processors with
a NiosII processor.

pattern ARM-1 ARM-2 NiosII time(s)
P2-1 D1:MP-RTOS D2:SP-RTOS 2.182

SW=TOP SW=ENC,DEC
P2-2 D1:MP-RTOS D2:SP-RTOS 0.258

SW=ENC,DEC SW=TOP
P2-3 D1:GPOS D2:SP-RTOS 2.197

SW=TOP SW=ENC,DEC
P2-4 D1:GPOS D2:SP-RTOS 0.717

SW=ENC,DEC SW=TOP

4.2 Evaluation of Execution Time
We generated three patterns of AES system on three NiosII

processors as shown in Table 1. In the table, D1 and D2 indicate
domain 1 and domain 2, respectively, and SW indicates processes
allocated to the domain. We only changed the mapping descrip-
tion to generate three patterns. All three patterns were correctly
executed. Since all processors are NiosII, the execution times of
three patterns are almost same.

We also generated four patterns of AES system on an ARM
dual-core processor with a NiosII processor as shown in Table 2.
Even ARM processor was used, we only needed to change the
mapping description in order to generate these patterns. All four
patterns were correctly executed. Since ARM processor runs
much faster than NiosII does, the execution time of P2-2 and P2-4
were faster than those of P2-1 and P2-3.

4.3 The Design Efficiency
Using our method, about 30 lines of mapping description was

only changed to replace the target architectures. The synthesis
tool automatically generated the Com. library of IDC which con-
sists of following files for each domain.
• Common and architecture library: about 400 lines of C code
• Access APIs: about 80 lines of C code

Without the synthesis tool, the designers had to implement the
IDC. Even they can re-implement the IDC from a previous im-
plementation, they still need to change about 80 lines of C code
on this case study. This costs longer time than our method does.
In fact, we needed less than one hour to generate and evaluate
above implementations. With that, designers can efficiently de-
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sign a system on Hetero-MP SoCs with our method.
In addition, our method has an advantage to replace the target

architecture. Changing the mapping information is only needed
to replace the target architecture. As shown in Section 4.2, the de-
signer replaced the architecture without rewriting the model de-
scription in this case study. Therefore, our method is effective in
order to compare the several Hetero-MP SoCs in short time.

5. Conclusion

This paper introduces an automatic communication synthesis
technique for Hetero-MP systems in PSoCs. We focus on that
typical Hetero-MP has inter-processor interrupts and a shared
memory. With these two elements, we propose an implemen-
tation of IDC which is essential for Hetero-HP systems. To make
the design efficiency better, we developed a tool which automat-
ically generates the IDC for the target system. The case study
shows that our method increases the design efficiency by the auto-
matic synthesis of inter-heterogeneous-processor communication
implementation.
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