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Abstract: In recent printed circuit board (PCB) design, due to the high density of integration, the signal propagation
delay or skew has become an important factor for a circuit performance. As the routing delay is proportional to the
wire length, the controllability of the wire length is usually focused on. In this research, a heuristic algorithm to get
equal-length routing for disordered pins in PCB design is proposed. The approach initially checks the longest common
subsequence of source and target pin sets to assign layers for pins. Single commodity flow is then carried out to gen-
erate the base routes. Finally, considering target length requirement and available routing region, R-flip and C-flip are
adopted to adjust the wire length. The experimental results show that the proposed method is able to obtain the routes
with better wire length balance and smaller worst length error in reasonable CPU times.
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1. Introduction

In recent PCB design, the routing is still achieved manually to
meet the high performance. As integrated circuit technology ad-
vances rapidly, the dimensions of packages and PCBs are reduced
while the pin counts and routing layers keep increasing [1]. Due
to the high density of integration, the signal propagation delay or
skew has become an important factor for a circuit performance.
In addition, in PCB, a lot of cells are required to receive the sig-
nal at the same time point. Hence, the signal propagation delay
and skew have been taken into consideration in the PCB routing
design [2], [3]. For one net, the signal propagation delay includes
the routing delay and the gate delay, and is decided by lots of pa-
rameters. As the gate delay is often fixed in the PCB design, we
can control the signal propagation delay by adjusting the routing
delay. As the routing delay is proportional to the wire length,
the controllability of the wire length is usually focused on. If the
routing area is large enough, it is not different to control the wire
length of the net. However, the routing area is usually limited
and multi-nets should be considered in the dense area. Hence,
how to balance the wire length of the multi-nets becomes a very
important problem, which is formulated as equal-length routing
problem in PCB design.

A modern PCB usually hosts several chip packages whose
footprints are pin arrays which are expected to be routed by non-
crossing nets [1]. There are two important problems called escape
routing and river routing in PCB, as shown in Fig. 1. Escape rout-

1 Graduate School of Information, Production and Systems, Waseda Uni-
versity, Kitakyushu, Fukuoka 808–0135, Japan

a) zhangran@toki.waseda.jp
b) tieyuan pan@fuji.waseda.jp
c) zhuli2543@ruri.waseda.jp
d) watt@waseda.jp

Fig. 1 Illustration of PCB routing problems [2].

Fig. 2 Order of pins.

ing is to route from the pins inside the pin arrays to the boundary
of the arrays, like helping the pins “escape” the pin array. River
routing is to connect the escaped routes between the pin arrays
with length constraints. Escape routing and river routing have
their different tasks. The major task of escape routing is to escape
a set of pins using as few layers as possible because it usually
dominates the number of layers. On the other hand, river rout-
ing’s major task is to connect pin pairs to meet the length con-
straints while maintaining the planar topology generated by the
escape routing.

For river routing problems, in general the positions of pins
are fixed on the component before routing starts. If the order
of source pins around a component is reverse of the order of
target pins around another component, they are called ‘ordered’
(Fig. 2 (a)); otherwise, called ‘disordered’ (Fig. 2 (b)). Assuming
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routing area is large enough, if the source and target pins are or-
dered, the routing can be completed in single layer without cross-
ing. However, as usually the source and target pins are disor-
dered, some inevitable crossing cannot be solved in single layer,
as the example of net 2 in Fig. 2 (b). Therefore, multi-layers are
adopted for routing disordered pins, and a practical problem that
how to assign layers for these pins and in what order to route them
needs to be solved.

In this research, we consider the multi-layer equal-length rout-
ing problem for disordered pins in PCB. The objective of this
problem is to minimize the wire length skew between obtained
routes and reduce the worst length error. In other words, we aim
to get a better wire length balance. The whole design process is
composed of three phases. In the first phase, we assign layers
for pins by checking the longest common subsequence (LCS) be-
tween source and target pins. In the second phase, single com-
modity flow is used to generate the base routes and the com-
ponents are merged. This routing is carried out for multi-nets
simultaneously. Finally, considering the equal target length re-
quirement and available routing region, R-flip and C-flip [4], [5]
are employed to adjust the wire length. The experimental results
show that the proposed method is able to obtain the routes with
better wire length balance and smaller worst length error in rea-
sonable CPU times.

The remainder of this paper is organized as follows: Section 2
describes some previous works related to this research. Section 3
describes the problem definition of this work. Section 4 details
the three phases of proposed routing algorithm. Section 5 illus-
trates the experimental results and analysis. Finally, the conclu-
sion is given in Section 6.

2. Related Works

Some researches for river routing problem have been proposed.
Reference [6] proposed an automatic bus planner for dense PCBs.
In Refs. [7] and [8], a Lagrangian-relaxation framework was used
to allocate routing resources during routing to control the length
of each net. In Refs. [9] and [10], a river routing based algorithm
was proposed to detour the net inside its bounded area. The length
matching routing inside a channel was considered in Ref. [11],
which used symmetric-slant grid interconnect to transform the
length matching problem into a general grid routing problem.
In Ref. [12], a length matching routing method was presented
with no restriction on routing topology using bounded slice-line
grid [13]. However, these works mentioned above do not consider
the obstacles in routing area.

In fact, there are several obstacles in PCB, such as device and
IC package, etc. Thus, consideration of obstacles is important
in PCB design. For obstacle-aware routing problems, Ref. [14]
explored a length matching routing method based on region par-
tition. A transactional parallel routing algorithm was studied in
Ref. [15]. In Refs. [4] and [5], an obstacle-aware routing algo-
rithm was proposed to expand the wave-front of all nets to obtain
routes with target wire lengths. However, they are adopted in sin-
gle layer routing and do not work well in the case of disordered
pins.

In Ref. [16], a length matching routing method was presented

with no restriction on routing topology using bounded slice-line
grid (BSG) in multi-layer. This BSG routing method firstly em-
beds the given topology onto a BSG, and then sizes the cells to
make the total area of the cells occupied by a net satisfying its
target length. When in the routing area there is no obstacle, BSG
routing method is able to achieve the target length by sizing cells
and performing detail routing inside each cell to turn the assigned
area into the expected length. However, if obstacles exist, the tar-
get length may not be achieved, because the embedded topology
onto the BSG dominates the available wire length, where not only
obstacles but also other nets would impact on the sizing of the
BSG cells. For example in Fig. 3 (a), an input topology is em-
bedded onto BSG with obstacles. In this case, the longest wire
generated by BSG routing method is shown in Fig. 3 (b), which
cannot make full use of routing space. Hence, achieving the tar-
get length seems difficult when obstacles exist, and this defect is
also discussed in Ref. [5].

A practical approach to solve the fixed disordered pins routing
problem was discussed in Refs. [17], [18]. However, this work
used a greedy way to assign layers for pins and merge all multi-
components at the same time, which was not efficient. Moreover
it didn’t consider the wire length balance between nets in dense
routing problems. For example, in Fig. 4 (a), given a target length
as 19, for the periphery nets, net 0 and net 1, there are enough area
for detouring to achieve the target length. But for the inner net,
net 2, whose routing area is insufficient, it only reaches length 13.
It leads to a worst length error as 4 and unbalanced nets routing
result.

In this paper, we focus on the routing for disordered pins in
dense routing problems, where the target length requirement and
available routing region are taken into consideration. Compared
with BSG routing method, our method can take advantage of effi-

Fig. 3 Comparison with BSG routing method [16].

Fig. 4 Balance wire length of nets.
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ciently using routing area to achieve a longer target length when
obstacles exist, as shown in Fig. 3 (c). Moreover, we balance the
nets by revising the adjusted wire length. The proposed method
can generate routes with better wire length balance as shown in
Fig. 4 (b), all the nets are with the same length 17 and the worst
length error is reduced to 2. In Ref. [19], we already discussed
the length matching routing for disordered pins in dense routing
problems. However, the method for pin sets selection and wire
length adjustment were not so efficient. In this paper, the algo-
rithm for pin sets selection is improved, and the standard devia-
tion of all nets’ wire lengths is used to revise the adjusted wires.
In addition, more experimental data are tested to further validate
the proposed routing method. The following sections discuss the
proposed algorithm in detail.

3. Problem Definition

In this paper, the multi-layer equal-length routing problem is
defined as follows: the input includes a grid graph G(V, E), pins
on each component, obstacles, and target length; it outputs the
routes of pin pairs. The objective is to effectively assign lay-
ers for the disordered pins and generate routes with a better wire
length balance of all the nets. In this paper, standard deviation
is used to evaluate the routing results, which shows how much
dispersion exists from the expected value (the value of average
length of each net). It is defined as Eq. (1), where x1, . . . , xN are
the values of sample items, x is the average value of x1, . . . , xN ,
and N stands for the size of the sample.

S N =

√√√
1
N

N∑
i=1

(xi − x)2 (1)

We give an example in Fig. 5 (a), where the routing area is de-
fined by routing grids. The white and black grids stand for the
available routing resource and obstacles, respectively. The gray
grids represent the components with pins on their boundaries.
Let C1,C2, . . . ,Cn be n components and Pi be a set of pins on
Ci(i = 1, 2, . . . , n), called “pin set” of this component. The same
labeled elements in different sets should be connected, called
pin pairs. As illustrated in Fig. 5, there are three sets of pins,
P1 = {0, 1, 2}, P2 = {2, 3}, P3 = {0, 1, 3}. A net consists of a
sequence of grids, and the wire length is defined as the number of
grids used in the path.

Basically, the proposed method proceeds routing in single-
layer. However, if net crossing is unavoidable, another layer
should be used. In such a multi-layer model, to simplify the prob-
lem, the components are mapped to the added layer as obstacles
and the impact of via included in the route is not considered in the
wire length (Fig. 5 (b)). In this research, at most three layers are
permitted, as adding layers without limitation is not much sense.

In this research, trunk routing problem between two compo-
nents is dealt with. Trunk routing problem is introduced in
Refs. [4] and [5], which is a sub-problem of river routing prob-
lem, The trunk routing topology condition is defined as follows:
(1) all the pins are put on the boundary of the routing area; (2) the
boundary pins sequence can be divided into the source pins se-
quence and the target pins sequence, where source pins sequence
is in the reverse order of target pins sequence and vice versa. In

Fig. 5 Routing model.

Fig. 6 Example of trunk routing topology.

this research, all the pins are on the boundaries, but the pins se-
quence do not satisfy the above-mentioned topology condition.
Therefore virtual boundaries are introduced to solve this prob-
lem. For example in Fig. 6, after adding the virtual boundaries,
represented by dotted lines, source pins sequence is 0 → 1 → 2,
and target pins sequence is 2 → 1 → 0, which satisfy the trunk
routing topology condition.

4. Proposed Routing Algorithm

In this research, since multi-components are given, the routing
for multiple pin sets is considered. As mentioned in Section 2,
Refs. [17] and [18] introduced a method to solve the fixed disor-
dered pins routing problem, which routes nets as many as pos-
sible in a current layer, and then routes crossing nets in added
layers to release the crossings. In this paper, we adopt the simi-
lar idea but implement in different way. Instead of dealing with
the routing among all the components at the same time, our basic
idea is to firstly handle the routing problem between two compo-
nents and merge them as a new one. Then this process is repeated
until all the pins are handled. It is easier to implement the cross-
ings minimization between two components than that among all
the components by adopting LCS (longest common subsequence)
algorithm [20]. Another difference is that, in the initial routing
phase of Refs. [17] and [18], against-the-wall routing method is
adopted, which may generate some long wires, and it increases
the workload for wire length adjustment. In our method, single
commodity flow is used for initial routing, and it makes the initial
routing result easier for further adjustment. The proposed routing
algorithm includes three phases: pin sets selection and layer as-
signment, initial routing, and wire length adjustment. The flow
chart of the whole routing process is shown in Fig. 7. Algorithms
1 to 4 are described in detail in the following sections.

4.1 Pin Sets Selection and Layer Assignment
Given the placement of components and disordered pins, ini-

tially we assign layers for pins in this phase. Note that, if there
are two or more than two parts of components not related with
each other, in other words, there are no nets to be routed between
them, they are considered as two or more than two sub-problems.
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Fig. 7 Flow chart of routing process.

The layer assignment is processed by the following two steps:
Step 1: Select two pin sets;
Step 2: Find longest common subsequence between two sets to

determine layer for pins.
[Step 1] Initially, if there are more than two pin sets in one

sub-problem, these sets should be handled one by one. Hence, in
Step 1 we need to select which two pin sets to be handled. To
make full use of the available routing area, we need to assign the
pins as much as possible in current layer. Hence the two pin sets
selected to construct a new set should include pins as much as
possible. However, if no nets to be routed between the selected
two pin sets, it is impossible to merge them by routing. Hence,
the selected two pin sets should have common elements. The
pseudo-code of this process is shown in Algorithm 1.

In Algorithm 1, P1, P2, . . . , Pn are the pin sets of components.
The two pin sets to be handled are noted as Ps and Pt. Pi

⋂
Ps

means the intersection set of Pi and Ps.
If there are more than two pin sets, to construct a new set in-

cluding more pins, we need to find Ps∪Pt includes most elements
in any two Pi, under the condition of Ps and Pt having common
elements. Ps ∪ Pt means the union set of Ps and Pt. Firstly com-
pare the number of elements in each Pi, and the largest set is se-
lected as Ps. Then, for other sets, if their intersection set with Ps

is not empty, the set whose Pi−Pi
⋂

Ps includes most elements is
selected as Pt. When comparing the elements number of pin sets,
if there are more than one set have most elements, the smaller la-
bel set is chosen. If there are only two pin sets, they are noted as
Ps and Pt.

Take the example in Fig. 8 to explain Algorithm 1. As there
are three pin sets, we need to select which two to be first handled.
Each set is as follows: P1 = {0, 1, 2, 3, 4, 5}, P2 = {0, 6, 7}, and
P3 = {1, 2, 3, 4, 5, 6, 7}, and they are related with each other. We
calculate the quantity of elements of each component set: P1 is
6, P2 is 3, and P3 is 7. According to Algorithm 1, P3 is deter-
mined as Ps. Then by calculating, both P1

⋂
Ps = {1, 2, 3, 4, 5}

Fig. 8 Placement of components and disordered pins.

and P2
⋂

Ps = {6, 7} are not empty, and the quantity of elements
of P1 − P1

⋂
Ps is 1, P2 − P2

⋂
Ps is 1. Since the number of

elements is the same, according to the algorithm, we choose the
smaller label set P1 as Pt.

[Step 2] Then, the longest common subsequence between two
pin sets is used to determine layer for pins. The pseudo-code of
this process is shown in Algorithm 2.

In Algorithm 2, Q is a set of the common elements in Ps and
Pt. S is defined as an array of elements in Q arranged in coun-
terclockwise order of pins on the boundary of Ps’s component.
Similarly, T is an array of elements in Q, arranged in clockwise
order of pins on the boundary of Pt’s component. Note that S and
T have the same elements but different order. Here, the boundary
of a component is defined as the passed path that starting from
any point on the component, going along the edge of this com-
ponent or the merged components and the periphery routed wires
and ultimately returning to that point. L is an array of longest
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common subsequence of elements of S and T . CQL stands for
the complementary set of L in Q.

Because of the disordered pins, the longest common subse-
quence between two components is used to determine a layer for
pins. First we store the same labeled elements of Ps and Pt in
Q. In trunk routing topology, the source pins sequence should
be the reverse ordering of the target pins sequence. Hence, the
elements of array S is in counterclockwise order of pins on the
boundary of a component having Ps, while the elements of array
T is in clockwise order of pins on the boundary of a component
having Pt. Note that, the first element of S and T are the same.
Then we obtain the longest common subsequence of elements in
S and T by LCS algorithm [20], and put the result into array L.
LCS algorithm is a well-known method to find the longest com-
mon subsequence in two sequences. The reason why we find the
longest common subsequence is to make full use of the available
routing area in the current layer. Finally, assign pins in L to the
current layer, and reserve pins in CQL for other layers.

We also take the case in Fig. 8 to explain Algorithm 2.
From the last step, we know Ps = {1, 2, 3, 4, 5, 6, 7} and Pt =

{0, 1, 2, 3, 4, 5}. According to Algorithm 2, we can obtain Q =

{1, 2, 3, 4, 5}, and then S = [1, 3, 5, 4, 2], T = [1, 2, 3, 4, 5]. By
LCS algorithm, we can get the longest common subsequence is
L = [1, 3, 4] and then CQL = {2, 5}. As a result, we assign net1,
net3 and net4 in layer1, and reserve net2 and net5 to layer 2.

4.2 Initial Routing by the Single Commodity Flow Method
After layer assignment for some pin pairs, single commodity

flow is used to generate the path of assigned pin pairs in current
layer. This routing is carried out for multi-nets simultaneously.
The pseudo-code of this phase is shown in Algorithm 3.

The routing by single commodity flow method is shown in
Fig. 9. All the available routing grids are treated as the vertices
and the edges connected vertices are represented in bi-direction.
The capacity of each direction is set as 1, shown in Fig. 9 (a).
Augmenting paths are explored by breadth first search, shown as
net1 in Fig. 9 (b). In the path, the residual capacity of directions
from source to target is changed to 0. Then, repeat this process
until no augmenting path exists. If it crosses with the already ex-

Fig. 9 Single commodity flow method.

Fig. 10 Virtual boundary setting.

isting nets, the reverse flow is applied as shown in Fig. 9 (c). The
edges whose both bi-directions are used need to be deleted and
non-crossing nets can be generated, shown in Fig. 9 (d). In this
way, we obtain the base routes of pin pairs.

In addition, before the routing, virtual boundaries need to be
set if the pins sequence do not satisfy trunk routing topology con-
dition. Virtual boundaries are added as paired straight lines be-
tween the source or target components and edge of routing region,
shown as dotted lines in Fig. 10. The function of virtual bound-
ary is to cut off the connection between the two grids in the right
and left sides of it. We set the virtual boundaries in a greedy way.
Initially, the virtual boundary is set between the two pins same
numbered with the first one and last element in array L. The posi-
tion of virtual boundary is on the counterclockwise side from the
first one to last one of source pins, and clockwise side of target
pins. If the component corner exists between these two pins, the
virtual boundary is set on the corner. The direction of a virtual
boundary (horizontal or vertical) is decided by whose capacity
is less. If there is more than one corner, the first one is chosen
(Fig. 10 (a)). If between two pins no component corner exists, the
virtual boundary is set in the middle of them (Fig. 10 (b)).

Then, we generate routes by a single commodity flow method.
If the routing cannot be completed using current virtual bound-
ary, we reset another virtual boundary between the two pins
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Fig. 11 Pin sets merging.

Fig. 12 Initial routing.

same numbered with the second element and first one in array
L(Fig. 10 (b)), then between the third and second one, and so on,
until the routing is completed. In addition, if the routing is not
feasible with any virtual boundary, we should reserve the last pin
in L to other layers and repeat the process until the routing be-
tween selected two pin sets Ps and Pt is completed. After the
routing, the first chosen two pin sets are merged as new pin set,
as shown in Fig. 11. For the new pin set, its component is in irreg-
ular shape, and the pins of it do not include the routed pins and
reserved pins. The area surrounded by peripheral routed wires,
illustrated as the shaded part in Fig. 12, is treated as the interior
of the new component.

We repeat first two processes of layer assignment and initial
routing for other pin sets until all the routing in current layer are
accomplished.

Take the example of Fig. 8 again. Since L = [1, 3, 4] in the
last phase, we set the virtual boundary between pin pair 1 and 4,
as shown in Fig. 10 (a). Then the routes are generated by single
commodity flow method. After the routing between P1 and P3 is
finished, they are then treated as a new pin sets P1’ = {0, 6, 7}.
Repeat the above processes until all the pin sets are handled.

4.3 Wire Length Adjustment
Based on the generated paths of all the nets, we need to ad-

just the wire length of each net to satisfy the length constrains.
Both the target length requirement and available routing region
are considered. The pseudo-code of this phase is shown in Algo-
rithm 4.

In Algorithm 4, lt stands for the given target length and A

means the available routing area after routing; Li and Lai rep-
resent the current wire length and the adjusted wire length of net
i respectively; α means utilized coefficient of A.

To leave space for other nets, the peripheral nets are firstly han-
dled. An array Ni stores the nets id sorted according to position
from periphery to the inner counterclockwise. The net closest to
the up border of the routing area is first stored, then the net clos-
est to the bottom border. If there is more than one net has the
same vertical ordinate, we choose the net whose horizontal ordi-
nate is smaller. Then store the second closest nets and continue
this process until all the nets are completed. For the wire length

adjustment of each net, it is processed by the following two steps:
Step 1: Reroute wires along the boundary of routing area;
Step 2: Adjust length by R-flip or C-flip;
Step 3: Revise adjusted wire length.
[Step 1] Initially, we extend the source pin and target pin to the

outer boundary of a routing region. If the pin is on the horizon-
tal boundary of the component, the extend direction is horizontal,
otherwise, the extend direction is vertical. Then the wires are
rerouted along the boundary. This process can reserve space for
the succeeding inner nets. If we directly adjust the wire length
based on the initial path, there may be not enough space for other
nets.

For the example in Fig. 13, Ni = [1, 0, 3, 6, 4]. So, the first net
to be adjusted is net 1, and the last one is net 4. The extend wire
of net 1 is shown in Fig. 13 (a).

[Step 2] Then, based on the extended wires, we adjust the
wire length to meet the target length using R-flip or C-flip opera-
tions [4], [5]. R-Flip detours a partial route of length two to four
by searching a rectangle along the initial route from the source
to target. C-Flip, a generalization of R-Flip, replaces a partial
route by another route with the same terminals to increase the
wire length, and vice versa to shorten length. Note that, either
lengthening or shortening a wire is a first-go-then-back process,
where the adjustment of wires takes even number not odd. Hence,
the adjusted wire length Lai is calculated by [(lt − Li)/2] ∗ 2. If
Lai is negative, then we need to shorten the wire. Otherwise, we
lengthen the wire.

For the example in Fig. 13 (a), lt is set to 25, L1 = 46. Accord-
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ing to the definition, La1 = [(25 − 46)/2] ∗ 2 = −20. So, the
wire length of net 1 is shortened by seven times R-flip and once
C-flip operations. The adjustment result is shown in Fig. 13 (b).
Similarly, the other nets as adjusted one by one until all the nets
are completed.

[Step 3] As the aim of this research is to generate routes with a
better wire length balance of all the nets, after the adjustment, we
check the standard deviation S N0 of all nets’ wire lengths accord-
ing to Eq. (1), to decide whether further revise. As mentioned
above, the adjustment of wires takes even number not odd, there-
fore sometimes one unit length error is inevitable, where length
error is defined as |Li− lt |. As a result, even though all the nets are
successfully adjusted, S N0 may be not 0, and the maximum value
is 1.15. If S N0 > 1.15, we revise adjusted wire length.

In this research, for equal-length routing, a coefficient
α(0.1, 0.2, . . . , 1) is defined to adjust the wire length skew be-
tween nets. The coefficient α represents the utilized region, since
not all the available routing grids can be used due to the position

Fig. 13 Wire length adjustment.

Table 1 Properties of experiment data.

Table 2 Experiment results on different target length for Data00 (without α).

of components and obstacles. Then the adjusted wire length is
revised as Lai = [([α ∗ A]/n − Li)/2] ∗ 2. Under the condition of
[α ∗ A]/n < lt, apply different α to get a smaller S N .

Also for the example in Fig. 13, Fig. 13 (c) shows its adjusted
routing result. By calculating, S N0 = 0.84 < 1.15, hence we do
not further revise. Then similarly, the other nets as adjusted one
by one until all the nets are completed. After completing the rout-
ing in Layer 1, we should check if there are any non-routing pins
left. If there are, repeat the whole process above in next layer
until all the pins are routed.

4.4 Discussion on Time Complexity
As mentioned above, the proposed routing method is divided

into three phases: layer assignment, single commodity flow, and
wire length adjustment. For layer assignment, based on LCS al-
gorithm, the time complexity of this phase is O(m2), where m is
the number of the total pins for routing. Since the complexity
of one net flow in a grid graph is O(n), where n is the number
of grids, the time complexity of routing all nets is O(mn). In
wire length adjustment, for one net the adjusted length is O(n)
in the worst case. So the time complexity of modifying all nets
is O(mn). Therefore, the total time complexity of the proposed
routing method is O(mn).

5. Experimental Results

We implemented our proposed method in C language, which
is compiled by MinGW Developer Studio 2.06, and executed on
a PC with 2.66GHz Intel Core 2 CPU and 2GB RAM. Six ex-
perimental data named from Data00 to Data05 for evaluation are
synthesized by referring the test cases in Ref. [17]. We narrow
the range of the routing area to simulate a dense routing problem.
10% of the routing area is randomly set with obstacles. The prop-
erties of each experimental data are listed in Table 1, where Grid

size is the scale of the routing problem, and #Obstacle denotes the
number of obstacles, #Component is the quantity of components,
#Nets is the number of two-pin nets, and A means the available
routing area after initial routing. Three experiments are carried
out. Experiment 1 is executed on obstacles, Experiment 2 is on
the same target length but different utilized coefficient α, and Ex-
periment 3 is on comparison with another routing method based
on Ref. [17] followed by some adjustment.

For Experiment 1, Data00 is executed without utilized coef-
ficient α. Cases without obstacles and with obstacles are con-
sidered. The experimental results are listed in Table 2. Std dev
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Table 3 Experiment results on different utilized coefficient for Data00 (lt = 130).

Table 4 Experiment results on comparison with another method.

denotes the standard deviation of the wire length, that shows how
much dispersion exists from the average length of nets. The wire
lengths are given in accordance with the number of unit grid.
From this table, we note that, our proposed method could be ap-
plied in both no-obstacle routing and obstacle-ware routing prob-
lems. When obstacles are set, the maximum network becomes
smaller, so some nets should be reassigned to Layer 2. From
Table 2, we also note that, when target length is set larger, the
standard deviation becomes larger, and the worst length error in-
creases. The reason is that, as the peripheral nets are first ad-
justed, the inner nets do not have enough area to detour, which
leads to the larger differences among the nets.

In Experiment 2, also for Data00, we change the value of α
from 1 to 0.1 to analysis of the impact of α on standard deviation,
while target length is not changed. From the experimental results
in Table 3, when α = 0.7, 0.6, 0.5, 0.3, 0.2, a minimum standard
deviation can be obtained. Moreover, when α = 0.7, the worst
length error is smallest, thus α 0.7 is considered as an optimal
coefficient for wire length balance.

We compare the proposed routing method with another rout-
ing method [17] in Experiment 3. Since the method [17] does
not focus on the equal-length routing problem, we adopt R-flip
and C-flip to adjust its routing result as well. There are six data
Data00 to Data05 with different grid sizes from small to large. If
we set the target length too small (less than the largest distance
among pin pairs of all nets) or too large (larger than the average
routing area for each net), it may make the achievement of the tar-
get length impossible for some nets. In this experiment, for each
data, we only test two bound target lengths, one is a smaller target
length which is set as the least common multiple of ten larger than
the largest distance among pin pairs of all nets, and another is a
larger target length which is set as the largest common multiple

Fig. 14 Length comparison for Data00.

Fig. 15 Length comparison for Data01.

Fig. 16 Length comparison for Data02.

of ten less than the average routing area for each net, A/#Nets.
The experimental results are shown in Table 4. And the length

comparison of each net is illustrated in Fig. 14, Fig. 15, Fig. 16,
Fig. 17, Fig. 18 and Fig. 19, where Y-axis means a resultant net
length for each net mapped on X-axis, and a dotted line repre-
sents the target length. The experimental results show that, the
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Fig. 17 Length comparison for Data03.

Fig. 18 Length comparison for Data04.

Fig. 19 Length comparison for Data05.

Fig. 20 Worst length error comparison.

method [17] has a smaller standard deviation for the small target
length and a larger standard deviation for the large one. However,
our method has the smaller standard deviation in spite of the tar-
get length. This mainly owes to the adoption of an appropriate
α. Especially for the small target lengths in Data00 and Data01,
we obtain an optimal result without using coefficient α. From the
experimental results we also get that, for the same data with the
same target length, the standard deviation obtained by our method
is always less than or equal to that of the method [17], no matter
the target length is small or large. As a result, our method gets a
better wire length balance among the nets.

In addition, Fig. 20 shows the worst length error comparison
between the proposed method and the method [17]. From this fig-
ure we obtain that, executed no matter by the method [17] or our
method, the worst length error is smaller when the target length
is small, while it becomes larger when the target length is large.
The reason is that, when target length is larger, some nets adjusted
later do not have enough space to detour, which leads to the larger
worst length error of net. For each data, the worst length error ob-
tained by our method is always less than or equal to that by the
method [17], which confirms that our method is effective in re-

Fig. 21 Routing result (Layer 1).

ducing worst length error. This means that the wire lengths of all
nets obtained by our method are more concentrative. Though this
concentration is at the expense of average length error (that is,
| target length – average length |) increasing, our method is effec-
tive in getting better wire length balance, when we pay attention
to the equal-length routing, which is the main objective in this
study.

Figure 21 (a) and (b) show the routing results of Data01 and
Data04 in layer 1, respectively. Combining the results in Table 4
and Fig. 21, we can get that, the more intensive the pins are, the
more difficult it is to get the ideal standard deviation of all the
wires. It is because of the interacting between wires and the lim-
itation of R-flip and C-flip. Hence, how to further optimize the
sharing of limited routing region between nets, and how to make
much fuller use of the routing space remain for our future works.

6. Conclusions

In this research, a heuristic algorithm to get equal-length rout-
ing for disordered pins in PCB design is proposed. The approach
initially checks the longest common subsequence of source and
target pin sets to assign layers for pins. Single commodity flow is
then carried out to generate the base routes. Finally, considering
target length requirement and available routing region, R-flip and
C-flip are adopted to adjust the wire length. The experimental re-
sults show that the proposed method is able to obtain the routes
with better wire length balance and smaller worst length error in
reasonable CPU times.
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