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Abstract: In systems ranging from mobile devices to servers, Dynamic Random Access Memories (DRAM) have a
big impact on performance and contributes a significant part of the total consumed power. Conventional DDR3-based
solutions are stretched thin as their maximum bandwidth is limited by the I/O count and interface speed. As new
solutions are coming onto the market (JEDEC DDR4, JEDEC WIDE I/O, Micron’s hybrid memory cube: HMC or
JEDEC’s high bandwidth memory: HBM) it is critical to evaluate the performance of these solutions and assess their
suitability for specific applications. Furthermore, in systems with 3D stacking, the challenges of high power densities
and thermal dissipation are exacerbated. It is crucial to have a flexible and holistic DRAM subsystem framework for
exhaustive design space explorations, which can handle all this different types of memories, as well as the aspects of
performance, power and temperature.
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1. Introduction

The increasing gap between the bandwidth requirements of re-
cent multi-core architectures and the I/O data rate delivered by
the attached main memories (DRAM), known as the Memory
Wall [1], limits the performance of today’s data-intensive appli-
cations. Recent memory subsystems based on JEDEC Double
Data Rate 3 (DDR3) [2] or DDR4 [3] try to hide this gap, to some
extent, by using faster and multiple memory interfaces. However,
the number of I/O pins is limited by the package, power consid-
erations and costs. The energy consumed per bit for accessing
off-chip memory is two to three orders of magnitude higher than
the energy required for on-chip memory accesses. This is due to
complex and power hungry I/O transceiver circuits that have to
deal with the electrical characteristics of the high-speed intercon-
nections (transmission lines) between the chips.

Moreover, memory energy consumption has become a signifi-
cant concern in mobile computing, servers and high-performance
computing platforms. There are applications, such as used in the
GreenWave computing platform [4], in which 49% of the total
power consumption has to be attributed to DRAMs. Thus, the
efficient utilisation of the available DRAM bandwidth and the ef-
ficient usage of DRAM power-down modes are the major contri-
butions to a high energy efficiency of DRAM subsystems and the
computing system in which they are integrated.

Three-dimensional (3D) stacked memories like WIDE I/O [5],
Micron’s Hybrid Memory Cube (HMC) [6], [7], [8] have been
proposed as a promising solution to the memory wall and the
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high power consumption. These memories reduce the distance
between CPU and external RAM from centimetres to microme-
tres by means of TSV (through silicon via) technology. The avail-
able bandwidth has increased but more importantly this technol-
ogy provides a major boost in energy efficiency in comparison
to standard off-chip DDR3/4 DRAM devices [9], [10], [11]. The
combination of high bandwidth communication with the lower
power consumption of 3D integrated memory is an ideal fit for
high-performance and embedded applications.

However, a 3D stacked System on Chip (SoC) aggravates the
thermal crisis, which can provoke errors in circuits and especially
in the stacked DRAMs as they are highly sensitive to temperature
changes and have to be refreshed regularly due to their charge-
based bit storage property (capacitor). The retention time of a
DRAM cell is defined as the amount of time that a DRAM cell
can safely retain data without being refreshed [12]. This DRAM
refresh operation must be issued periodically and causes both per-
formance degradation and increased energy consumption. Liu et
al. [13] predicted that 40% to 50% of the power consumption of
future DRAM devices will be caused by refresh commands. 3D
integrated DRAM worsens the temperature behaviour. Due to the
much increased leakage at the cells the refresh frequency needs
to be adjusted accordingly to avoid data loss (retention errors).

To tackle the above mentioned challenges with respect to ap-
plications, performance, power, temperature, retention errors and
different DRAM architectures a holistic exploration framework is
needed. Figure 1 shows an overview of the design space explo-
ration framework DRAMSys:
• It consists of models that are reflecting the DRAM function-

ality, power, temperature and retention time errors.
• With these models system designers are able to analyse the

limiting parameters and issues. Therefore, the framework

c© 2015 Information Processing Society of Japan 63



IPSJ Transactions on System LSI Design Methodology Vol.8 63–74 (Aug. 2015)

Fig. 2 Base architecture of DRAMSys.

Fig. 1 Design space exploration framework DRAMSys.

provides several analysis tools that assist the designer.
• With this valuable insights the designer is able to optimise

the DRAM subsystem with respect to the controller archi-
tecture, power and thermal management as well as device
selection and channel configuration for a specific applica-
tion.

Consequently, the paper is organised as follows: Section 2 dis-
cusses the base models of DRAMSys including functional, power
and thermal modelling, as well as a retention time error model for
DRAMs. Section 3 explains the analysis and debug capabilities
of DRAMSys. Furthermore, Section 4 demonstrates optimisa-
tions on several examples. Section 5 surveys the related work
and Section 6 finally concludes the paper.

2. Models

The main objective of our exploration framework is to opti-
mise the DRAM subsystem. Hence, fast and accurate models are
needed for a truthful exploration. However, there is a challenging
trade-off between a fast and an accurate simulation. Traditional
cycle and pin accurate (CA) Register Transfer Level (RTL) mod-
els provide the highest temporal accuracy, but they are inflexible
in terms of the large design space and the very long simulation
times. This is due to the large number of signals, processes and
events that have to be simulated [14]. However, it is possible to
simulate at a higher level of abstraction without loosing simula-
tion accuracy.

One way to achieve a higher abstraction level is to use the C++
based SystemC Transaction Level Modelling (TLM2.0) IEEE
Standard [15]. TLM can help to speedup the simulation by re-
placing all pin-level events with a single function call. For in-
stance, a single bus transaction produces approximately 75 events

in an RTL simulation compared to only a handful of events in a
TLM simulation [16]. It is possible to reach speedup factors up
to 10.000 x [15]. Moreover, TLM provides interoperability and
easy integration of other TLM components. However, simula-
tion speed comes at the cost of reduced timing accuracy. For the
purpose of modelling DRAM subsystems, the standard TLM cod-
ing styles are not accurate enough to reflect a realistic behaviour.
Therefore, we show in Section 2.1 a DRAM specific extension of
the TLM standard.

Our framework supports a wide range of standard and emerg-
ing DRAM subsystems such as DDR3, DDR4, LPDDR3,
WIDE I/O and HMC. Therefore, the framework is composed
of flexible and extensible models that are designed in a modular
fashion.

The DRAMSys framework uses TLM as the main virtual plat-
form infrastructure and can be connected to any TLM2.0 based
core and bus models for generating input data for the subsequent
memory subsystem. To get even faster simulations it is possi-
ble to record transaction traces and replay them with elastic trace
players [17]. The ability to process traces from other simulators
like Gem5 [18] or Simplescalar [19] opens up the opportunity of
using multiple sources for analysis and explorations. It can be
used in professional virtual platform environments like Synopsys
Platform Architect [20] or it can be used as a standalone simulator
with native SystemC TLM2.0.

Figure 2 shows the flexible base architecture of the framework.
DRAMSys itself consists like state-of-the-art memory controllers
of a frontend and a backend part. The frontend contains an ar-
bitration and mapping block that handles the incoming transac-
tions and forwards them to the different channel schedulers ac-
cording to specific priority schemes and mappings. The single
channels of the subsystem are independent. Therefore each chan-
nel has its own scheduler and controller. The scheduler module
collects transactions and reorders them with respect to latency
and power savings and issues them to the backend with the chan-
nel controller that takes care of the correct use of the DRAM.
DRAMSys supports state-of-the-art scheduling algorithms, FR-
FCFS [21], Par-BS [22] and SMS [23] or it can simply disable the
scheduling unit. Furthermore, the model has a Reorder Buffer
(ROB) to provide in-order responses to the requester and it also
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Fig. 3 Example of a typical TLM trace with DRAM related phases.

supports a multi-rank configuration of the DRAM subsystem.
Since SystemC is based on the object oriented C++ language

we can easily exchange components, like the scheduling algo-
rithms, due to predefined class interfaces. Therefore, this frame-
work gives us the flexibility for exhaustive explorations and re-
search, which are impossible on Register Transfer Level (RTL).

2.1 Functional DRAM TLM Model
All connections are implemented in the TLM2.0 Approxi-

mately Timed (AT) coding style. An exception is the connection
between controller and channel: For this connection we extended
the TLM2.0 non-blocking protocol with DRAM specific phases,
called DRAM-AT [24] (see Fig. 2). With these phase extensions
we can achieve the exactly required accuracy to observe e.g., the
detailed impact of different address mappings or reordering algo-
rithms of the scheduler.

The TLM non-blocking base protocol consists of the follow-
ing phases: BEGIN REQ, END REQ, BEGIN RESP and END RESP.
Instead of simulating every clock cycle, the simulator is trig-
gered only at the BEGIN (<) and END (>) phase events. Using
the JEDEC standards [2], [3], [5] we have defined additional ap-
plication specific phases for the different DRAM commands by
means of TLM2’s DECLARE EXTENDED PHASE() macro. These
phases are calibrated to the cycle accurate behaviour of JEDEC’s
DRAM standards.

Figure 3 shows an example of a typical trace with DRAM spe-
cific TLM phases, which are depicted per bank. The first line
shows the input of the standard TLM2.0 target socket of the chan-
nel controller and the following lines the output to the DRAM de-
vice. Due to an implemented input buffer (queue) the controller
of this example is able to handle a new request every clock cycle.
It has a configurable input buffer size, which leads to stalling in
case the buffer is full.

The figure shows examples for the timing dependencies, e.g.,
the ACT in Bank7 needs to be shifted by one clock cycle because
of a command bus conflict with the scheduled RD command in
Bank0 (*). The second RD command in Bank0 can start already
after the burst length (tBL) of the first RD (page hit). The third
RD command on Bank0 has to access another row. Therefore a
precharge- (PRE) and an activate-command (ACT) are issued in
advance (page miss). The dependencies of consecutive RD and
WR commands are shown at the end of the trace example.

Fig. 4 Speed-up comparison TLM vs. CA SystemC.

Fig. 5 Speed-up comparison TLM vs. RTL simulation.

We compared the TLM model of the framework with a cycle
accurate (CA) SystemC implementation (Fig. 4) using the medi-
abench benchmark [25]. The benchmark traces are generated by
means of the Simplescalar simulator with a 16 KB L1 D-cache,
16 KB L1 I-cache, 128 KB shared L2 cache and 32-byte cache
line configuration. We filtered out the L2 cache misses for in-
structions and data, and obtained a trace of the transactions meant
for the DRAM. The TLM model is very fast with respect to run-
time. For instance the mediabench mpeg2encode runs 1 h 41 m
with the CA model compared to 42 s with the TLM model, giving
a speedup of 145 x. Similarly with the mediabench h263decode
we achieved a speedup of 377 x compared to the CA implemen-
tation.

Furthermore, we quantify the speedup of the TLM model
against RTL simulations with the image processing application
shown in Section 4.1. Figure 5 shows the simulation time re-
sults of our TLM model vs. RTL simulators from three differ-

c© 2015 Information Processing Society of Japan 65



IPSJ Transactions on System LSI Design Methodology Vol.8 63–74 (Aug. 2015)

ent vendors. We see an expected speedup ranging from 75 x to
600 x. In both comparisons (CA SystemC and RTL) the temporal
accuracy of the cycle accurate simulations is maintained by the
TLM model. Thus, the DRAM-AT protocol provides, together
with the other components of the framework, a perfectly balanced
accuracy-speed trade-off.

2.2 DRAM Power Model
Since DRAMs contribute significantly to the power consump-

tion of today’s systems, there is a need for accurate power mod-
elling. One of the most common ways in research and industry is
using Micron’s power calculator [26], which estimates the power
from data sheet and workload specifications. However, this model
is not accurate enough, as it assumes certain workload character-
istics. To overcome this limitation, we focus on an improved ver-
sion, called DRAMPower [27], [28], which uses the actual tim-
ings instead of the minimal timings from datasheets. We modified
DRAMPower that it can be used as a library, which can be eas-
ily integrated in a C++ based simulator like our TLM2.0 based
model to calculate the power consumption online during the sim-
ulation.

2.3 3D-DRAM Thermal Model
3D packaging of systems like WIDE I/O DRAM starts to break

down the memory and bandwidth walls. However, this comes at
the price of increased power density and less horizontal heat re-
moval capability of the thinned dies. The thermal issues of 3D ICs
cannot be solved by tweaking the technology and circuits alone.
It is crucial to analyse the behaviour of the whole system. There-
fore, thermal simulators like 3D-ICE [29] or DOCEA Power [30]
can be connected to DRAMSys for closed-loop simulations [31],
as shown in Fig. 2. These closed-loop simulations are necessary
to quantify the effects on the DRAM (refresh period adoption)
and processor throttling analysis through a sophisticated power
and thermal management or task migration. In this scope all
power contributors which influence the thermal profile are con-
sidered, as well the resulting performance impact. In Section 4.3
we show an example where we used the closed-loop simulation
to develop a new refresh strategy for 3D-DRAMs.

2.4 DRAM Error Model
DRAM cells use capacitors as volatile and leaky bit storage

elements. The time spent without refreshing them is called reten-
tion time. It is well known that the retention time depends inverse
exponentially on the temperature. In 3D stacking, the challenges
of high power densities and thermal dissipation are exacerbated
and have a much stronger impact on the retention time of 3D-
stacked WIDE I/O DRAMs that are placed on top of an MPSoC.

Consequently, a retention error aware DRAM model is key to
analyse, for instance, the impact of lower refresh rates or dis-
abling refresh completely on the executed application. Especially
for error resilient applications this can be exploited, to save en-
ergy [32]. We measured the retention times of WIDE I/O and
DDR3 DRAM devices using different data pattern reaching from
simple 0xFF, 0x55, 0xAA to random pattern (RND). We observed
data pattern dependencies (compare Fig. 6) and variable retention

Fig. 6 Measurement results with fixed refresh periods.

Fig. 7 Comparison of simulation and measurements for a refresh period of
202 ms and a temperature of 90 ◦C.

times. These data are used to create a DRAM retention time error
model [33].

Figure 7 shows the comparison of the averaged results of 30 x
repeated model simulations and real measurements of the WIDE
I/O DRAM. We see that our error model implements the cor-
rect trend for the data pattern dependency and has bit error rates
near to the measured values. The overhead of the retention-aware
DRAM bit error model with respect to the simulation execution
time of DRAMSys is in average only 30%. Thus, our proposed
model can be used for Monte-Carlo-Simulations and is suitable
for the early investigations on the temperature vs. retention time
trade-off in future 3D-stacked MPSoCs with 3D-DRAMs.

3. Analysis

Based on the described models of the framework a system de-
signer is able to analyse the behaviour of the DRAM subsystem.
To understand the key parameters and limiting issues of the sub-
system the DRAMSys framework provides several analysis tools
that are required to approach the optimisation goals defined by
the system level designers, shown in Fig. 1.

DRAMSys allows to record all phases of the DRAM-AT pro-
tocol in a trace SQLite [34] database. The Trace Analyser is a
comfortable tool for the evaluation of these recorded traces. It
illustrates the different requests and DRAM commands and the
utilisation on the different banks as shown in Fig. 18. Exploiting
the power of SQL, the data aggregation in the mass of data hap-
pens quickly and the tool provides a user friendly handling, that
offers a quick navigation through the whole trace with millions of
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Fig. 8 Address mapping analysis: Standard vs. Custom vs. XOR mapping.

DRAM commands.
An evaluation of the traces can be performed with the powerful

Python [35] interface of the Trace Analyser. The different metrics
are described as SQL statements and formulas in Python and can
be customised and extended without recompiling the tool. Typi-
cal metrics are for instance: the memory utilisation (bandwidth),
the average response latency or the percentage of time spent in
power-down.

The same Python interface is also used to run testing scripts
on the recorded traces. Those scripts check if the traces fulfil all
constraints defined by the respective JEDEC standards. If a test
does not hold, the conflicting transaction is indicated. This fea-
ture is really useful if new controller architectures and ideas are
evaluated, to validate the JEDEC compliance.

Furthermore, the framework provides several scripts that anal-
yse the access patterns of an application with respect to the ad-
dresses and stride accesses, as described in Section 4.1.

4. Optimisation

In this section, we demonstrate the capabilities and advantages
of our design space exploration framework by means of several
examples. These use cases show how we accomplished the dif-
ferent optimisation targets, such as higher bandwidth or energy
efficiency. These are achieved by the creation of a customised
memory controller (using a clever address mapping), the imple-
mentation of efficient power-down policies (staggered and bank-
wise power-down) and improved refresh management techniques
(bankwise refresh and refresh aware scheduling). To master these
intended optimisation goals we deploy the advanced models and
analysis tools of our framework, as shown in Fig. 1.

4.1 Address Mapping
The DRAM address mapping defines, which bits of the ad-

dress are mapped to the DRAM channels, ranks, banks, rows and
columns. Usually this mapping is done in a ROW-BANK-COL
fashion, as depicted in Fig. 8 (Standard).

In many applications that have a regular or fixed memory
access pattern, a memory controller with advanced scheduling
mechanisms is an overbuilt. Especially for FPGA based appli-
cations e.g. image processing, an optimised DRAM address map-

ping can supersede the best scheduler because it can maximise the
number of row buffer hits and exploit the bank level parallelism
of the DRAM device. An application specific memory controller
(ASMC) is lean and energy efficient while it provides exactly the
required bandwidth for a specific application. Our framework
supports the creation of such memory controllers with the help of
our analysis and optimisation tools.

DRAMSys provides a script that analyses a recorded DRAM
access trace regarding the toggling rates of each address bit. An
example for this analysis is shown for an image processing task
on an FPGA in Fig. 8. The framework automatically suggests a
new custom address mapping function, which is derived accord-
ing to following rules:
• Map the bits with the highest activity to the columns. This

helps to increase the number of row hits.
• Map the bits with the lowest activity to the rows. This re-

duces the number of row misses.
• The remaining bits are mapped to the banks.
Figure 8 shows this custom address mapping. Instead of a

scheduling component in the frontend of a DRAM controller a
small hardware component, called address scrambler, that imple-
ments the mapping function by rewiring the address lines is au-
tomatically generated from DRAMSys as Verilog code. The ad-
vantage of this automatic address scrambler generation is that the
system developer gets an improved data placement in the DRAM.

However, for this application the custom mapping in Fig. 8
shows an imbalance of the bank parallelism for reads and writes,
since the read requests have more bank bits available than the
writes. This issue can be solved by using a technique for CPU
based architectures from Refs. [36] and [37], where the bank bits
are XORed with selected row bits. In our example we XOR the
bank bits with the row bits that have the highest write activity to
maintain the required balance and therefore improve the memory
bandwidth.

State of the art FPGA memory controllers support only lim-
ited possibilities to change the address mapping. For instance,
the Xilinx MIG memory [38] controller supports only a ROW-
BANK-COLUMN and BANK-ROW-COLUMN address map-
ping scheme. With our framework we generated the proposed
address scrambler and used it as a frontend for the MIG memory
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Fig. 9 Results of different address mappings.

Fig. 10 The three different DRAM power-down modes.

controller. DRAMSys also assists to configure the address map-
ping of memory controllers that target ASIC implementations,
such as Refs. [39], [40], [41].

Figure 9 shows the results of the simulation of the 3 differ-
ent address mappings: Standard, Custom and XOR with DRAM-
Sys that is configured to model the Xilinx MIG, as well as the
archieved bandwidth on the real hardware (XOR HDL). We see
that the XOR mapping can archieve a 30% higher bandwidth
compared to the standard mapping. Furthermore we see that the
simulation with the framework deviates from the real hardware
measurement only by 1%.

4.2 Staggered Power-Down
Besides the normal active mode operations (activate, read,

write, precharge, refresh), a DRAM is capable to enter power-
down modes to save energy (set the clock-enable signal cke to
low). The different DRAM powermodes (shown in Fig. 10) can
be described as follows:
Active (ACTIVE): At minimum one bank is active (in ACT

state), no power-down (cke=1), no internal refresh, the
DRAM controller has to schedule refresh commands.

Precharge (PRECHARGE): All banks are closed and precharged,
no power-down (cke=1), no internal refresh. The DRAM
changes the state from ACTIVE to PRECHARGE by issuing a
precharge command (PRE).

Precharge Power-Down (PDNP): All banks are closed and
precharged (in PRECHARGE state, cke=0) and no internal re-
fresh.

Active Power-Down (PDNA): At minimum one bank is active
(in ACTIVE state, cke=0) and no internal refresh.

Self-Refresh (SREF): All banks are precharged and closed, the
DRAM internal self-timed refresh is triggered (cke=0).

A non-optimised highly opportunistic self-refresh entry policy
results in an increased average power, which should be avoided.

Fig. 11 Staggered power-down sequence.

This higher power consumption can be explained by the fact that
each self-refresh entry provokes at the beginning a normal refresh
command (see Fig. 10). The increase in DRAM energy consump-
tion was already measured and investigated in Ref. [42]. It pre-
sented the overestimation of power savings in the Micron’s power
calculator [26], when using the DRAM self-refresh mode inten-
sively. However, it was not analysed how to mitigate that issue,
nor which power-down mode strategy could be implemented in
order to achieve higher energy efficiency in a general way.

We see the power saving potential depends on the duration of
each mode. Also the prolongation of execution times of certain
applications must be considered when using power-down modes
heavily. This is due to non-zero power-down exit times, espe-
cially the self-refresh exit time can be several clock cycles (DDR3
= 512, WIDE I/O = 20). State-of-the-art DRAM controllers use
either a combination of PDNP and PDNA or SREF and they issue
the power-down commands after configurable timeouts.

Our proposed optimised power-down policy [43] considers all
three different power-down modes in order to achieve the max-
imum saving in energy and the minimum in slow-down on the
execution of applications. This policy is based on a staggered

approach.
Figure 11 shows this strategy with open-page policy. After a

read or write access the DRAM stays in active mode (at least one
bank active) and if no new transaction is scheduled, the controller
immediately sets cke to "0" and the DRAM is entering active
power-down mode (PDNA). If after a certain time a refresh is is-
sued to the DRAM, the controller switches to precharge power-
down mode (PDNP), because all banks have to be precharged be-
fore refreshing the DRAM. If there is still no new read or write
request and the next refresh should be triggered, the controller
performs instead of a normal refresh command a self-refresh en-
try. This consists of a refresh command and additionally the clock
enable is de-asserted (cke=0).

This basic sequence is the key to the additional savings
with our proposed staggered power-down policy, as the con-
troller uses the DRAM state changes from the refresh command
(PDNA→PDNP→SREF) to minimise the energy consumption of the
DRAM. With this method, unnecessary SREF entries will be
avoided, and the hardware timeout counters, as used in state-of-
the-art controllers, are not required anymore.

In close-page policy, where after each write or read the respec-
tive bank is closed immediately (with auto-precharge), the active
power-down mode (PDNA) is not needed. However, we achieved

c© 2015 Information Processing Society of Japan 68



IPSJ Transactions on System LSI Design Methodology Vol.8 63–74 (Aug. 2015)

Fig. 12 Comparison of energy savings normalised to completely disabled
power-down. The numbers 15, 100 and 500 represent the timeout
in clock cycles.

in close-page policy energy savings as well. This is due to the fact
that the DRAM controller waits until a refresh occurs and then
enters self-refresh without an energy penalty. The performance
impact for WIDE I/O DRAMs is low (20 clock cycles ≈ refresh
cycle time (tRFC) + 10 ns) [5], as there is no DLL (Delay Locked
Loop), which needs to lock after self-refresh exit. Consequently,
WIDE I/O DRAMs are ideal candidates to show the advantage of
the staggered power-down policy. The TLM model of DRAMSys
implements the traditional time-out based policy as well the stag-
gered approach. Figure 12 depicts the energy savings in percent.
It shows that our staggered power-down mode policy is superior
to any other methods. We see up to 10% energy savings in ac-
tive benchmark execution and up to 13% in the idle phase with
short activity bursts. The savings compared to the other power-
down methods diminish with increased density of the executed
benchmarks [44], [45], [46], such as 0xBench. Due to the high
locality of all traces the close-page policy causes additional en-
ergy overhead (increased number of ACTs). In traces with longer
idle periods SREF and our staggered approach converge, because
there are only a few interruptions of the self-refresh periods.

4.3 Bankwise Refresh
In Ref. [31] we performed a statistical analysis on the temper-

ature profile in a 3D MPSoC with 8 CPU cores and WIDE I/O
DRAM. For this task we used the closed loop thermal simula-
tion shown in Section 2.3. We measured lateral and vertical tem-
perature variations in the 3D structure as shown in Fig. 13. For
instance, with AndEBench [44], when all eight CPU cores are
running at 1.4 GHz, an averaged vertical temperature variation of
5.6◦C can be seen across four DRAM dies. In the first DRAM
die, the averaged lateral temperature difference between two ad-
jacent DRAM banks of the same channel is 3.3◦C. When the av-
eraged DRAM die temperature is > 85◦C, the mentioned lateral
and vertical temperature variations cause significant differences
in the required refresh rate of each DRAM bank (< 64 ms).

Due to these observations, we implemented the following key
idea: instead of defining the refresh rate based on the maxi-
mum temperature seen across the entire channel and refreshing
all DRAM banks at the same rate, we select the refresh rate of
each bank separately based on its own maximum temperature.
Figure 14 shows different refresh periods on several banks, for

Fig. 13 Thermal simulation of an MPSoC with WIDE I/O DRAM*1.

Fig. 14 Various refresh periods on different DRAM banks.

Fig. 15 Normal vs. Bankwise refresh power consumption.

instance, bank 0 and bank 1 have a refresh period of 8 ms, which
results in a refresh command issue every ≈ 980ns to refresh all
8192 rows of the bank. We have extended DRAMSys to sup-
port handling of separate per bank refresh commands. This in-
creases the overall refresh period (makes refreshes happen less
frequently) and improves the power consumption, as shown in
Fig. 15.

4.4 Bankwise Staggered Power-Down
The previously presented techniques staggered power-down

and bankwise refresh seem to be contradicting. The bankwise
refresh strategy tries to reduce the number of refreshes per bank,
but the staggered power-down needs a non-bankwise refresh on
all banks as trigger for switching the power-down states. How-

*1 A video of the simulation can be found on YouTube:
http://www.youtube.com/watch?v=Eacsq71hHtY
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Fig. 17 Refresh aware scheduling.

Fig. 16 Power-down usage for different power-down strategies.

Table 1 Staggered bankwise powerdown.

No Power-Down Staggered Bankwise Staggered
Avg. Power 69.76 mW 65.00 mW 60.53 mW
Avg. Latency 29.80 ns 50.90 ns 46.30 ns

ever, both techniques can be combined when the DRAM is able
to power down the banks independently.

We run a representative trace (chstone-mips) in three differ-
ent modes (no power-down, staggered, bankwise staggered) to
quantify the impacts for the staggered bankwise power-down ap-
proach. Figure 16 shows the power-down usage of the different
strategies. We see that the active periods over all banks are largely
reduced (down to 14%) while using bankwise staggered power-
down. Contrary, the time the DRAM banks are in SREF increases
to 63%.

While a DRAM bank is in SREF another bank can operate on
the interface (ACTIVE). Due to this behaviour, the expected power
savings are limited, since the I/O part of the DRAM device con-
tributes significantly to the overall power consumption. In Ta-
ble 1 the average power and request latency of the three modes
are shown. We see for the bankwise staggered power-down an
improvement in average power of 13.4% and 7.9% compared to
no power-down and staggered, respectively. Additionally, the av-
erage request latency is recovered by 9.1% compared to the stag-
gered policy.

4.5 Refresh Aware Scheduling
As mentioned before, there is a trend of increasing refresh rates

in DRAM due to higher densities [13] and higher temperatures for
3D-integrated devices [31]. Higher refresh rates impact largely
the decissions made by the DRAM scheduler. Current DRAM
schedulers are based on the First Ready First Come First Served

(FR-FCFS) algorithm [21] and are not aware of the point in time
when the refresh happens. This can lead to a large unfairness with
respect to different threads.

Table 2 Policy violations experiment with DDR4.

Benchmarks
Refresh Interval

64 ms 32 ms 16 ms 8 ms
chstone-aes and chstone-motion 30% 23% 30% 27%
chstone-jpeg and chstone-motion 5% 13% 5% 14%
chstone-motion and mb-adpcm-dec 11% 18% 17% 10%
chstone-aes and mb-h236-dec 1% 1% 3% 8%

The FR-FCFS scheduler places incoming requests into a queue
in such a way that they are placed next to requests that target the
same row. By using this strategy, groups of row hits are formed
(row-hit-first policy). If there are no row hits in the queue of
the scheduler, the oldest request in the scheduler will be issued
(oldest-first policy).

Whenever a refresh command (REF) is executed, the banks of
the DRAM are precharged (closed row buffer) because of the
precharge all command (PREA) that must be executed before each
refresh. However, the scheduler is not aware of the point in time
when the next refresh happens. Although the row is closed, the
same row is re-opened (ACT) to finish a group of row hits sched-
uled before the refresh happened, even if there are requests in
the scheduler that arrived earlier. In this situation the scheduler
violates the oldest-first policy.

An example for such a violation can be seen in Fig. 17. There
are two threads (blue and red) accessing the DRAM controller.
The blue and the red threads are always accessing row 0 and
row 1, respectively. In the scenario Un-Fair it can be observed
that after the refresh, the requests of the blue thread are still pri-
oritised over the requests of the red thread, since the scheduler
was not aware of the refresh and followed the row-hit-first pol-
icy. Table 2 shows the relative number of policy violations after
a refresh for several examples.

Such violations can have a large impact on overall system per-
formance. When an application keeps generating row hits, re-
quest from other applications will have to wait because of the
row-hit-first policy. The applications will not be able to make
progress at that point and system throughput decreases. How-
ever, after a refresh, older requests should be serviced, thereby
allowing their threads to continue. The refreshes can actually be
exploited to re-establish fairness between the threads.

The requirement for a refresh aware scheduler is that the time
of a refresh event must be propagated from the controller back-
end to the frontend (a priori information), so that the scheduler is
informed about refreshes and can use them to service outstanding
requests from older threads, as shown in Fig. 17 in the scenario
Fair. This refresh aware policy can also be applied to more recent
DRAM schedulers like Refs. [22] and [23] and can also be used
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Fig. 18 DRAMSys trace analyser.
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in combination with the previously presented bank-wise refresh.

5. Related Work

When it comes to high-level simulations of DRAM subsys-
tems (DRAM and controller) one of the most cited DRAM sys-
tem analysis tool is DRAMSim, available as DRAMSim2 [47].
DRAMSim2 is a cycle accurate model written in C++ of a
DRAM memory controller, the DRAM modules, which comprise
system storage, and the buses (channels) by which they commu-
nicate. DRAMSim2’s goal is to be small, portable and accurate
with a simple interface. However, this simplicity has a negative
impact on the DRAM controller behaviour, which is not compa-
rable to state-of-the-art controllers, such as Cadence’s DDR con-
troller [40] or others. Additionally, DRAMSim2 is a cycle accu-
rate simulator that slows down event-driven full-system simula-
tions. Moreover, DRAMSim2 misses an implementation of a read
reorder buffer (ROB) and has currently no support for WIDE I/O
and DDR4 DRAMs.

Another simulator is USIMM from the University of Utah and
Intel Corp. [48], which is a simulation infrastructure that models
the memory system and interfaces it with a trace-based processor
model and a memory scheduling algorithm. Its focus is mainly
memory scheduling not modelling of DRAM subsystem archi-
tectures. Both DRAMsim2 and USIMM have as far as we know
neither error models nor thermal management possibilities inte-
grated.

Gem5 [18], a full-system simulator has recently integrated a
complete DRAM controller model [49]. This is very similar to
the one implemented in DRAMsys as it uses events to trigger the
simulation submodules and to execute the active tasks. Gem5
uses DRAMpower [28] as pre-compiled library and is capable to
playback traces as well. However, in the current releases of Gem5
neither DRAM power-down modes nor error modelling are im-
plemented. Thermal management capabilities are in the planning
phase for Gem5. Moreover, Gem5 is not implemented in Sys-
temC TLM, thus it cannot be easy attached to commercial tools
such as Synopsys Platform Architect [20] or Cadence VSP [50].

A TLM based DRAM model is available from OCP-IP [51]. In
contrast to our implementation it uses a clock based calculation
of state and delay of DRAM and controller, which leads to an
increase in simulation time. The commercial DesignWare TLM
Library [52] from Synopsys and Sonics’ MemMax Memory Sub-
system [53] include AT DDR3 memory controller models that are
not changeable and they do not disclose any details.

In contrast to these simulators and tools, the holistic DRAM-
Sys design space exploration framework offers advanced analysis
and debugging capabilities. These and the extensible infrastruc-
ture permit the exploration and development of new DRAM sub-
system architectures and integration of emerging memory tech-
nologies.

6. Conclusion

In this paper, we presented DRAMSys, a design exploration
framework that considers various design key parameters and as-
pects ranging from functional, over power and error modelling,
to thermal closed-loop simulations. Only this holistic and modu-

lar approach embedded into our framework permits the thorough
evaluation and characterisation of DRAM subsystems. Moreover,
it enables the exploration and implementation of future memory
systems and allows integrating new emerging memory technolo-
gies as well. We demonstrated in several examples the advantages
of our proposed framework. These examples show in different
use cases how the modelling, the analysis tools and the optimisa-
tion steps interact together to provide improved results.

New memory types, such as emerging resistive RAMs, will
play an important role in future memory systems. 3D-integration
allows merging all these memories into a single heterogeneous
memory cube. However, new challenges arise, such as the mod-
elling of these memory systems, the efficient control to achieve
the maximum bandwidth and energy efficiency for a given ap-
plication and thermal issues due to the limited heat removal. In
the future we will couple our framework with gem5 and integrate
different types of memories by using the presented TLM method-
ology.
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