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Abstract: The aerial 3D laser scanner is needed for scanning the areas that cannot be observed from the ground. Since
the laser scanning takes time, the obtained range data is distorted due to the sensor motion while scanning. This paper
presents a rectification method for the distorted range data by aligning each scan line to the 3D data obtained from
the ground. To avoid the instability and ambiguity of the line-based alignment, the parameters to be optimized are
selected alternately, and the smoothness constraint is introduced by assuming that the sensor motion is smooth. The
experimental results show that the proposed method has the good accuracy simulation and actual data.
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1. Introduction

Recently, many large-scale cultural heritage assets have been
urgently desired to be preserved because the deterioration states
have become getting worse and worse by natural and man-made
breaks. 3D laser scanning is able to play an important role in
the preservation of the cultural heritage assets [1], the large struc-
tures over a hundred meters can be digitized in the accuracy of
a few millimeters with the widely available laser range sensors.
The digital 3D models obtained in this way can be used for the
analysis and restoration of the structures.

The scanning only from the ground is not enough due to the
large-scale structure of the target objects such as large buildings.
It often happens that the surface on the top of the building cannot
be observed from any location. Figure 1 (a) shows an example
of the range data taken from the ground, where the data missing
appears on the top of the tower.

To obtain the complete 3D model of such a large structure, the
aerial laser scanning system is required. The aerial laser scanning
systems with inertial sensors or video cameras or both have been
previously proposed. Generally, the aerial scans are distorted due
to the sensor movement in the air (See Fig. 1 (b)). The sensors
are used to rectify the distortion of the range data by estimating
the motion of the sensor. However, there are limitations on the
motion estimation accuracy by such sensors and cameras.

On the other hand, there must be the scans from the ground
overlapped with the scans from the aerial scanning system. Fig-
ure 1 (b) shows an aerial scan that overlaps with the ground scan
shown in Fig. 1 (a). We do not need to take inertial sensors into
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Fig. 1 Combination of the 3D data from the ground and aerial range data.
(a) 3D data from the ground. Missing surfaces exist. (b) Distorted
aerial range data. (c) rectified aerial range data. (d) 3D data from
the ground and rectified aerial range data. Rectified aerial range data
complement the missing surfaces in the data from the ground.

account to estimate the motions. Thus, we face the challenge of
eliminating the distortion of the aerial scan by using the undis-
torted scans taken from the ground. Figure 1 (c) shows the recti-
fied range data of Fig. 1 (b). Figure 1 (d) shows the merged result
of (c) to (a), where the missing areas are filled with the aerial data.

In this paper, we propose a method that rectifies the distorted
range data based on a line-based alignment algorithm. We assume
that range data consists of 3D scan lines obtained sequentially by
the laser scanner. The proposed method aims to estimate the mo-
tion of each scan line by aligning it with 3D scans taken from the
ground. To avoid the instability and ambiguity of the line-based
alignment, the motion parameters are estimated based on a non-
linear alternative optimization. The smoothness constraint is also
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Fig. 2 Method overview. Inputs are aerial data and ground data. First, the initial position of aerial data
is given by rigid alignment. Second, aerial data is processed to line based registration method and
finally we obtain rectified result.

introduced by the assumption that the sensor motion is smooth
because the sensor is mounted on the balloon. The experimental
results show that the proposed method has good accuracy.

2. Related Work

Our work is related to four research streams in the literature.
Structure from Motion (SfM). To recover the sensor motion,
SfM-based methods using 2D cameras are popular to use, since
the relative pose and position of each frame can be calculated out
by using 2D image features [2]. For example, a famous and ro-
bust implementation is proposed in Ref. [4]. However, in the case
of digital archive, the absolute scale of the range data, which is
not easy to get for SfM, is required.
SLAM++. SLAM++ [7] is proposed to robustly estimate the
sensor motions using depth sensor, suppose 3D priors are ob-
served online and used to improve the localization. This method
is very useful for robotics or AR applications. However, our
method focuses on the high-accuracy 3D line reconstruction. It
faces more challenging problem as how to match a 3D line to a
3D prior.
Non-rigid registration. Many methods (e.g., Refs. [3], [6], [10],
[11], [12]) have been proposed in the field of non-rigid registra-
tion, which geometrically solve the matching problem between
the deformed models. However, in this paper, we take the tem-
poral information into account of the deformation (rectified from
sensor motion) which is more reasonable in laser scanner case.
Another notable work is proposed in Ref. [9] which registers 2D
curves to a 3D shape encoded by an implicit polynomial and
shows efficiency for medical image processing.
Aerial Laser Scanning. The method most related to our work is
the method proposed by Banno et al. [5], which combines video
cameras and range sensor into the scanning system and SfM tech-
niques are used in the motion estimation algorithm. In this pa-
per, we only consider the information obtained from range sensor.
Thus our method is independent to any other third-party sensors
for saving hardware cost, and also it avoids the calibration prob-
lems which often happened in sensor fusion systems.

3. Method

3.1 Overview
The proposed method is based on three assumptions: 1) dis-

Fig. 3 Mosion model of scan line.

tortion of one scan line can be ignored because one line scanning
time is short (approximate 0.05 sec); 2) 3D data measured from
on the ground is given in advance. This assumption is reasonable
because the purpose of this research is to complement the part of
data that cannot be measured from the ground; 3) sensor motion
is smooth. On these assumptions, position parameters are set to
each scan lines and registration is processed. To avoid the in-
stability and ambiguity of the line-based alignment, smoothness
constraint is imposed on between scan lines.

Figure 2 shows the overview of our method. Aerial scan range
data and 3D data from the ground are inputs. First, the initial po-
sition of aerial data is given by rigid alignment [8]. Second, aerial
data is processed to line based registration method and finally we
obtain rectified result.

3.2 Line based registration
3.2.1 Initial alignment

Distorted range data is aligned to 3D data from the ground for
obtaining initial position. This phase is rigid registration. We
used fast alignment method presented in Ref. [8] in this phase.
This method is fast because of searching closest point along to
the view direction.
3.2.2 Motion Model of Scan Line

Figure 3 shows a motion model of scan line. Each line is lo-
cated on the local coordinates of the range sensor at first. The
sensor motion is not taken into consideration about raw data,
therefore each line is deviating each other as moving amount of
sensor. Each line is given 6 parameters indicating sensor posi-
tion, translation parameters T = (x, y, z) and rotation parameters
r = (θ, ψ, φ) (x, y ,z axis rotation). The i-th line is firstly trans-

c© 2015 Information Processing Society of Japan 90



IPSJ Transactions on Computer Vision and Applications Vol.7 89–93 (July 2015)

Fig. 4 Estimated motion of the sensor. First row: Error visualization images. Second row: Histogram of
error. Our method 1: Optimizing 6 parameters. Our method 2: Optimizing selected 3 parameters
alternately.

formed by rotation matrix Ri and translation vector ti calculated
from 6 parameters of i-th line, (xi, yi, zi) and (φi, θi, ψi), and
second, is transformed by R, t obtained by initial alignment.

3.3 Optimization
3.3.1 Cost Function

Our cost function consists of 2 terms: 1) the distance error term
and 2) the smoothness constraint term. The distance error term is
based on ICP algorithm. The distance error of i-th line Edi is as
follow

Edi =
∑

j

a2ρ
( s j

a2

)
, (1)

where ρ(x) = log(1+ x) is the loss function and a is a scale value,

s j = |p′ij − (R(Ripij + ti) + t)|2. (2)

Here, pij is j-th point of i-th line, and p′ij is closest point of
transformed point of pij by R, t, Ri, ti in the data from the ground.

The smoothness constraint term Esmooth is defined as follow,

Esmooth =

∫ (
λ1|d

2T
dt2
|2 + λ2|d

2r
dt2
|2
)

dt, (3)

This equation is based on the assumption that sensor’s accelera-
tion fluctuates smoothly.

Consequently, Global cost function is

E =
1
N

⎛⎜⎜⎜⎜⎜⎝
∑

i

Edi

⎞⎟⎟⎟⎟⎟⎠ + wEsmooth, (4)

where N is the number of point, w is a coefficient determined
experimentally.
3.3.2 Decremental Smoothness Constraint

Smoothness constraint is introduced for reducing instability
and ambiguity. However, Eq. (3) indicates that the ideal is that
variation of sensor’s acceleration is 0. Practical variation of sen-
sor’s acceleration is not 0 and a paradox exists between practical
sensor movement and Eq. (3). Therefore coefficient w in Eq. (4)
is gradually decreased.
3.3.3 Parameters Selection

Variables to be optimized are 6 parameters of each line posi-
tion. However, in some phases, only 3 parameters are optimized
simultaneously and parameters to be optimized are selected alter-
natively because the lower the stability and the ambiguity of the

line-based alignment. (x, y, φ) are initially selected as parameters
to be optimized because these parameters are tend to vary wider
than other 3 parameters. This tendency proceeds from balloon
movement.

Therefore it is reasonable that 3 × number of lines parameters
are optimized globally and simulteniously at once to minimize the
cost function, and parameters to be optimized are selected alter-
nately. This scheme is especially effective in case that ambiguity
of scan line is large.

As a non-linear least square solution of this optimization prob-
lem, Levenberg-Marquardt Method is selected.

4. Experimental Results

In this experiment, we process 2 methods; 1) Optimizing 6 pa-
rameters simultaneously and 2) Optimizing selected 3 parameters
alternately. In each method, the following steps are processed and
each step finishes when cost function is convergence or iteration
times reached the specified value. Optimizing 6 parameters of
each lines simultaneously: 1. w is 3.64. 2. w is 0.0364. 3. w is
0.000364. 4. no smoothness constraint. Optimizing selected 3
parameters alternately: 1. (x, y, φ) are optimized, w is 3.64. 2.
(z, θ, ψ) are optimized, w is 3.64. 3. (x, y, φ) are optimized, w is
0.0364. 4. (z, θ, ψ) are optimized, w is 0.0364. 5. (x, y, φ) are op-
timized, w is 0.000364. 6. (x, y, φ) are optimized, no smoothness
constraint.

4.1 Simulation Data
In this experiment, we use two range data from the ground:

one is used as a reference data and another is used as a distorted
data. The distorted data is made by transforming each scan line
with preliminary determined parameters. These parameters are
manually set to imitate balloon motion. Therefore we can evalu-
ate rectified data by comparing the estimated parameters and the
preliminary determined parameters as true values.

Results are showed in Fig. 7 and Fig. 8. Graphs in the first col-
umn show true values of line positions and graphs in the second
and third columns show error of the estimated motion defined as
(True value) − (Estimated value). Therefore these graph indicate
that the closer to 0 error is, the more acculate estimated parameter
is.

From Fig. 8, it is possible to say that our methods succeed in es-
timating true positions for the most part. Comparing our method
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Fig. 5 Estimated motion of the sensor.

Fig. 6 Other results of rectification. From left to right, ground data, distorted data, rectified data, error
visualization.

Fig. 7 3D image of simulation data. (a) reference data, (b) distorted data, (c) our method 1, (d) our
method 2.

1 and our method 2, there is no large tendency that where lines
which have large error is located. The results of method 1 are
seemingly more accurate, however processing time of method 2
tend to be shorter because the number of parameter to be opti-
mized simultaneously is half as large as the method 2, therefore
optimization of selected 3 parameters alternately has the room for
practical use.

4.2 Actual Aerial Data
As evaluation methods in this section, error visualized 3D im-

ages and histogram of errors are selected. The error is defined by
Euclidean distance between a point in aerial data and its closest
point in 3D data from the ground.

Figure 4 shows comparison results. In the error visualiza-
tion image, each point is colored depending on its error (See a
color bar at the top left of error visualization image). Blue point
has small error and white point is large error point because of
wrong estimation or missing ground data. Our method achieved
the aerial data rectification with less error than without smooth-
ness constraint. Bottom row of Fig. 5 shows the position of line.
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Fig. 8 Estimated position of the line.

Each line is scanned in time order, therefore this graphs indicate
estimated crude sensor motions. From Fig. 5, in case of impos-
ing smoothness constraint, estimated result is more smooth than
without constraint.

Comparing to results by method 1 (optimizing 6 position pa-
rameters simultaneously) and method 2 (selected 3 parameters
alternatively), we will see that the method 2 succeed to estimate
position of lines which method 1 cannot rectified. (In red circle in
Fig. 4). However, the result of method 1 has more points whose
error is small than the result of method 2 (See the histograms in
Fig. 4). Therefore, it may be possible to achieve more acculate
result by finding appropriate combination of steps.

Figure 6 shows results of other data. The results in first 3 rows
are successful cases. The result in the bottom row is comparable
failure case. In this case, z axis rotation movement of sensor is
comparably drastic and some points in aerial range data, in par-
ticular far points from sensor, are located on far coordinates from
correct place initially.

5. Conclusion

With smoothness constraint considering time domain, our line-
based alignment method was dramatically improved and achieved
well-rectified results nevertheless only geometrical information is
used.

Accuracy of rectified results is depends on 2 elements: one is
shape characteristic and another is a magnitude of the distortion.

Shape characteristic is important information to reduce ambi-
guity and to determine position of line. Therefore uneven object,
like Angkor-Wat, is compatible with our method compared to flat
object.

A magnitude of the distortion is intensity of sensor motion dur-
ing measurement and it depends on the intensity of the wind.
Therefore it is of course ideal to do measurement under weak
wind conditions. However, a lot of measurements are needed to
archive a large cultural structure, hence it is difficult to always
obtain data measured under the ideal conditions from a cost and
schedule perspective. Thus it is needed to rectify even range data
with large distortion measured under the strong wind conditions.

Our method shows good performance to an aerial data mea-
sured under the calm wind conditions. However when distortion
of aerial data is drastic, our method cannot shows good perfor-
mance.

For obtaining more accurate results,We are thinking of imple-
menting another scheme involving sensor motion, or use other

data, such as reflectance information.
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