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Abstract: Nowadays, the design of the representation of images is one of the most crucial factors in the performance
of visual categorization. A common pipeline employed in most of recent researches for obtaining an image representa-
tion consists of two steps: the encoding step and the pooling step. In this paper, we introduce the Mahalanobis metric
to the two popular image patch encoding modules, Histogram Encoding and Fisher Encoding, that are used for Bag-
of-Visual-Word method and Fisher Vector method, respectively. Moreover, for the proposed Fisher Vector method, a
close-form approximation of Fisher Vector can be derived with the same assumption used in the original Fisher Vector,
and the codebook is built without resorting to time-consuming EM (Expectation-Maximization) steps. Experimental
evaluation of multi-class classification demonstrates the effectiveness of the proposed encoding methods.
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1. Introduction

Nowadays, the design of the representation of images is one
of the most crucial factors in the performance of visual cate-
gorization. A common pipeline employed in most recent re-
searches for obtaining an image representation consists of two
steps: the encoding step and the pooling step (e.g., Ref. [4]). This
two-step approach stems from the Bag-of-Visual-Words (BoVW)
method [4], which is the most popular representation in computer
vision. As of present, the central issue in visual categorization is
how to improve each step in the two-step approach.

For the last decades, many variants of the encoding modules
for the two-step pipeline framework have been developed. Lo-
cal image patches for the inputs of the encoding step are of-
ten extracted densely from the entire image [11], although some
methods still employ interest points as the positions of local
image patches[6]. Some well-known encoding modules in-
clude Histogram Encoding such as hard assignment [4], [9], [12]
and soft assignment [5], [16], Fisher Encoding [11] and its vari-
ant, VLAD [7], Super Vector Encoding [18], and Sparse Encod-
ing[1], [14], [17] such as Locality-constrained Linear Encod-
ing [14]. Popular pooling modules are Average Pooling and Max
Pooling. Max Pooling is mainly adopted together with Sparse En-
coding, and Average Pooling is usually employed with Histogram
Encoding and Fisher Encoding, nevertheless the pairings of the
encoding module and the pooling module are interchangeable [1].
Some methods also incorporate spatial information in the pooling
step[9], [17]. Chatfield et al.[2] conducted exhaustive experi-
mental comparisons of encoding modules on large benchmark-
ing datasets, and concluded that Fisher Vector (FV) is the most
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promising descriptors for visual categorization. From these facts,
we focus the discussion hereinafter on the most well-known de-
scriptor, BoVW, employing Histogram Encoding, and the most
promising descriptor, FV, using Fisher Encoding.

To the best of our knowledge, almost all of the existing meth-
ods encode image patches and build a codebook in the Euclidean
metric. The BoVW method minimizes the sum of the square
Euclidean deviations from the nearest visual words to build a
codebook. The codebook for FV method is built by maximum
likelihood estimation of the model parameters for a probabilistic
model defined in the Euclidean metric. However, so far no study
has investigated which metric is better for image patch encod-
ing, although there have been some works that incorporate non-
Euclidean metrics for pattern classification (e.g., Ref. [8], [15]).

In this paper, we introduce the Mahalanobis metric to two pop-
ular image patch encoding modules, Histogram Encoding and
Fisher Encoding, which are fundamental in the encoding step for
the BoVW method and the FV method, respectively. We con-
sider two approaches: global metric approach and local metric
approach. In the first approach, a single metric is introduced to
the entire local feature space, and the encoding of image patches
is done in the global common metric. In the second approach,
different visual words are allowed to use different local metrics to
compute the deviation and the gradient of the likelihood at each
image patch. In our implementation, the global metric is obtained
in an unsupervised fashion, and the local metrics are computed in
a class-wise manner.

Related Work. Preceding the encoding step, dimension re-
duction using principal component analysis (PCA) is often per-
formed [7], [11]. The pre-processing may yield a similar effect
of introducing the global Mahalanobis metric. PCA eliminates
the minor elements and whitens the major elements. Indeed, the
classification performance of the global Mahalanobis Fisher en-
coding did not differ largely from the approach of the PCA fol-
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lowed by Fisher encoding (called PCA FV) in our experiments
reported in Section 5. On the other hand, the use of local metrics
in FV yielded a significant improvement in the categorization per-
formance.

Tanaka et al.’s study[13] is relevant to the proposed local
Mahalanobis Fisher encoding. Fisher vectors are given by the
gradient of the log likelihood of the codebook expressed as a
probabilistic model. Tanaka et al. [13] employed the full covari-
ance Gaussian mixture as the probabilistic model, which may
give rise to an expectation that their method already has a po-
tential for the local Mahalanobis metrics. One noteworthy dif-
ference between their method and ours lies in the construction of
the codebook. Tanaka et al.’s method for codebook construction
is an expectation-maximization (EM) algorithm that contains a
computationally expensive process of matrix inversion at every
iteration for every visual word. In this study, an alternative faster
technique that still allows us to reuse the fast EM implementation
for classical diagonal covariance Gaussian mixture is developed.
Tanaka et al. also presented a solution to make the EM algorithm
faster, which is by replacing the covariance matrices with block-
diagonal matrices. We experimentally show that the proposed
formulation significantly outperforms both the full covariance FV
(FCFV) and the block diagonal covariance FV (BDFYV).

Contributions. The main contributions of this study can be
summarized as follows.

e We explore how to introduce both the global Mahalanobis
metric and the local Mahalanobis metrics to BoVW method
and FV method.

o We show that a close-form approximation of FV can be de-
rived with the same assumption used in the original FV.

e We develop a method to build a codebook of FV method
for both the global Mahalanobis metric and the lo-
cal Mahalanobis metric, without resorting to very time-
consuming steps.

e Experimental evaluation of multi-class classification demon-
strates the significantly superior performance of the pro-
posed local Mahalanobis FV, not only in classical image rep-
resentations, but also in state-of-the-art encoding methods
including PCA FV, FCFV, and BDFV.

2. Fisher Vector Revisited

In this section, we review the FV method as a preliminary to
our formulations.

FV method is based on the Fisher kernel that exploits a prob-
S Or]T,
to define an inner product of data X. FV of a set of local features

abilistic model p(X|6) with model parameter 6 = [6,, ..

X = [x1,...,x7] € R™T extracted from an image is defined as a
normalized gradient vector

Vi, log p(X16)

SX) = | JEi, og pco ] L)

where Ex(-) is the expectation operator with respect to X. The
probabilistic model p(-|#6) is an alternative to a codebook of the
BoVW method. FV allows us to choose an arbitrary probabilistic
model as p(-10) [3], [13], although Gaussian mixture with diag-
onal covariance has been adopted in most researches[11]. The
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(a) EucFV

(c) LMahaFV

(b) GMahaFV

Fig. 1 Visual words on different metric spaces. In this example, six visual
words are in the codebook with different metrics. (a) EucFV uses vi-
sual words on the Euclidean metric. (b) GMahaFV method replaces
the Euclidean metric to a single Mahalanobis metric. (c) LMahaFV
method divides the image patch space softly into two subsets each
of which is on a different metric, and three visual words are given to
each of the two subsets.

probabilistic densities with K mixture components are expressed

as

T

K
peuc(X|0) = 1_l Zﬂ'kN(xt s Mk, D(zr,\)

t=1 k=1

where 6 is the (2d + 1)K-dimensional parameter vector
T
T T T T
0= [m,...,nk,y] s Mg, Oy ,...,O'K] s

. are the model coefficients such that 3, 7, = 1, and py., o € R?
are the mean and the variance parameters, respectively, and the
notation D, is used to denote a diagonal matrix whose diagonal
entries are x.

The sub-vector of FV in the first K dimensions, associated with
7, ..., g, becomes the soft assignment of Histogram Encoding
in some setting, but these K dimensions are often discarded and
only the remaining 2dK-dimensional sub-vector is used [11].

From the nature of diagonal Gaussian, one might think that
the use of FV with the diagonal Gaussian mixture adjusts the
metric by changing the variance parameters, although the direc-
tions of rescaling the metric are still limited to the original axes
(Fig. 1 (a)).

3. Mahalanobis Encodings

This study introduces the Mahalanobis metric [8], [15] to
BoVW and FV frameworks to enhance classification perfor-
mance. The Mahalanobis metric is a distance metric among vec-
tors. The distance metric is parameterized with a positive definite
matrix A referred to as a Mahalanobis matrix. The distance be-
tween x, x’ € R? is defined as

D(x,x";A) == \J(x —x)TA(x — x').

Mahalanobis BoVW. We propose adopting the Mahalanobis
metric in the encoding step of BoVW method. Namely, when
each image patch is assigned to a visual word, the Mahalanobis
distance from the image patch to all the visual words are com-
puted to find the nearest visual words. We refer to the encoding
module based on the Mahalanobis metric as Mahalanobis encod-
ing, whereas a new term, Euclidean encoding, is also used in this
paper to distinguish the classical encoding from the proposed en-
coding.

The codebook used for Mahalanobis encoding consists of
not only a set of visual words, vy,...,vk, but also of several
Mabhalanobis matrices, Ay, ..., Ay, where K and M denote the
number of visual words and number of Mahalanobis matrices,
respectively. Moreover, M < K is assumed. Each visual word
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v; € RY is associated with one of M Mahalanobis matrices, A, .
An input image patch x € R is assigned into a single visual word
vi, such that

k. € argmin D(x,vi; A, ). (1)

Letting A,, = U,A,U,, be the spectral decomposition of A,,,
the whitening matrix W, := A ZU,; offers another equiva-
lent form to Eq. (1) for finding the nearest visual word: k, €

argmin |[W,, x — W, vl|.
kefl,...K)
When M = 1, the deviations from visual words are com-

puted with a common single metric everywhere in the entire
d-dimensional space of local descriptors. Some studies (e.g.,
Refs. [8], [15]) employ multiple local metrics to adjust the met-
rics in each local region, which motivated us to also employ
multiple metrics. We refer to the BoVW method with a single
Mahalanobis metric as the global Mahalanobis BoVW (GMaha-
BoVW), whereas the BoVW method with multiple Mahalanobis
metrics is called the local Mahalanobis BoVW (LMahaBoVW).

Mahalanobis FV. We now present another proposed method,
Mahalanobis FV, that incorporates the effects of the Mahalanobis
metrics in the FV framework. The Mahalanobis FV employs a
probabilistic model of an image patch set representing the densi-
ties of whitened local features as

pmaha(X |9)

s @)

= el det(W )IN (W X, i, D).

=1 k=1
This becomes the standard diagonal covariance Gaussian mixture
provided that Ym, A,, = I. This formulation gives rise to a soft
division of the image patch space into M regions, and the encod-
ing to each visual word is performed on the metric specific to its
region (Fig. 1 (c)).

The classical diagonal covariance FV method assumes almost
hard assignments to visual words and that the number of image
patches on an image is fixed, to express the normalized gradient
vector in a simple form. A simple form of our formulation (2) can
be derived under the same assumption as the classical FV. Let us
partition the 2dK-dimensional FV into 2K sub-vectors as

SX)
=X LT X T

to give the approximations

1 _
X)) ~ mvai Yy,
3)
1 _
fm(X) S mDaf (Yk oY, — ldl;)’yk,
k
for k = 1,...,K, where © denotes the entrywise product, and

Y, := W, X — i 17 has been defined.
The vector y; € R stores the responsibilities to k-th mixture
component, where the 7-th entry in y; is expressed as

7l det (W, )IN (W, x, 3 i, D)
Zk' Tt |det(kar )|N(ka/ X5 Mk s D(zrk,) .
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The FV method with a single metric (i.e., M = 1) and the FV
method with multiple metrics (i.e., M > 1) are referred to as the
global Mahalanobis FV (GMahaFV) and the local Mahalanobis
FV (LMahaFV), respectively.

4. Construction of Codebooks

To apply the aforementioned methods based on the
Mahalanobis encoding to visual categorization, the Mahalanobis
matrices Aj,..., Ay, need to be given in the codebook in
advance. Additionally, for Mahalanobis FV methods, the values
of the parameter @ of the probabilistic model (2) need to be
determined. In this section, we discuss how to determine the
Mahalanobis matrices and the parameters 6.

Codebook for GMahaBoVW. GMahaBoVW method re-
quires a single Mahalanobis matrix A;. In this study, the co-
variance matrix of image patches in a training dataset is com-
puted and the inverse of the covariance matrix is chosen as the
Mahalanobis matrix. To ensure the existence of the inverse of
the covariance matrix, a small positive number is added to the
diagonal entries of the covariance matrix. In our experiments,
we set this small constant as 0.05 times the largest eigenvalue of
the covariance matrix. K visual words are determined using a K-
means-like algorithm so that the distortion function based on the
Mabhalanobis metric D(:,-; Ay) is minimized.

Codebook for LMahaBoVW. This study aims at multi-class
classification scenario as the application of Mahalanobis encod-
ings. Letting n. be the number of classes, LMahaBoVW method
use (n. + 1) Mahalanobis matrices (i.e., M = n. + 1). For the
first n, Mahalanobis matrices, A, is associated with class ¢, and
is determined as the inverse of the covariance matrix of the image
patches from class ¢, while the inverse of the covariance matrix
of the entire set of image patches is set to the last Mahalanobis
matrix A, _+1. The K visual words are divided in two halves. The
first half is evenly divided into n. groups, each of which has a
one-to-one correspondence to one of . classes. Visual words as-
sociated with each class are determined using the image patches
from the corresponding class. The last half of K visual words is
determined in an unsupervised fashion.

Codebook for GMahaFV. The Mahalanobis matrix A; used
in the GMahaFV method is obtained in the same manner as in
the GMahaBoVW method. The model parameter 6 is determined
by maximum likelihood estimation from the entire training data.
Advantageously, our probabilistic model supports the reuse of the
publicly available very fast implementation of the EM algorithm
for diagonal Gaussian mixture provided, for example, in VLFeat
0.9.20.

Codebook for LMahaFV. Similar to the LMahaBoVW
method, half of the K mixture components is evenly divided
to n. classes so that each class has a smaller Gaussian mixture
model, and the mixture components in the class-specific Gaussian
mixture has a single whitening matrix computed from the class-
specific covariance matrix. The model parameters of the class-
specific Gaussian mixture is determined by the EM algorithm.
The n. Gaussian mixtures are fused again and, furthermore, a
Gaussian mixture fitted to the entire training data is added to ob-
tain the final Gaussian mixture (2). Notice that this approach
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Table 1 Classification accuracies on FMD and LSP15.

EucBoVW  GMahaBoVW  LMahaBoVW  EucFV ~ GMahaFV ~ LMahaFV | PCAFV  FCFV  BDFV
FMD 0.423 0.428 0.428 0.485 0.507 0.525 0.508 0.492 0.488
LSP15 0.768 0.757 0.736 0.768 0.781 0.796 0.785 0.767 0.773
again allows reuse of the resource for the fast EM implementa- 0.83
tion for diagonal covariance Gaussian mixture in order to deter- 0.82 |
mine the model parameters of our model.
0.81} 1
5. Experimental Results E 080
We experimentally study the categorization performance of % 070l |
Mahalanobis encoding by comparing the following six meth- f ' EucFV
ods: EucBoVW, GMahaBoVW, LMahaBoVW, EucFV, GMaha- § 0.78¢ »+— GMahaFV |
FV, and LMahaFV, where EucBoVW and EucFV are the classical 077l v—v LMahaFV | |
Euclidean BoVW and FV methods, respectively. e-e PCAFV
Experimental Settings. In all experiments, 128-dimensional .76 4 : : gg?\? 1
SIFT features are extracted densely from a grid with 3x3 spacing. 0.75 N . . ; ;
10 20 30 40 50

The size of the codebook is fixed to K = 1,024 for BoVW method
and K = 256 for FV method. After the encoding step and the
pooling step, the obtained feature vectors are transformed by the
combination of signed square rooting [10] and ¢,-normalization.
One-vs-rest SVM is employed for multi-class classification. The
six encoding methods are first examined on two datasets, Flickr
Material Database (FMD) and LSP15. From each class, 30 train-
ing images and 10 testing images are picked randomly. This pro-
cedure is repeated 20 times and the average accuracies are re-
ported. One-sample t-test is performed to detect the difference
between two accuracies.

Table 1 summarizes
Although the
Mahalanobis encodings do not necessarily improve the classifi-

Comparisons of Different Methods.
the average accuracies of the six methods.

cation performance of the BoVW method, FV method achieves
some performance improvement by Mahalanobis encodings. In
particular, the local Mahalanobis encoding in FV outperforms the
other methods. Table 1 also shows the comparisons with the other
three state-of-the-art methods: PCA FV, FCFV and BDFV. The
results suggest that the local Mahalanobis FV has an advantage
over all the other methods on the two datasets. The difference
of LMahaFV to the best method among the three state-of-the-art
methods is statistically tested, and the P-values are 3.52 x 1073
and 2.22 x 107, respectively, on FMD and LSP15.

Effects on Number of Classes. We conducted visual cate-
gorization experiments on Caltech-101 as well as on FMD and
LSP15. To investigate the performances on different numbers of
classes, five subsets, Set A, Set B, Set C, Set D, and Set E, are
made from the 101-class problem in Caltech-101. From the 101
ordered classes, the first 10 classes are picked to construct Set
A. Similarly, Set B, Set C, Set D, and Set E are the subsets of
Caltech-101 containing the first 20, 30, 40, and 50 classes, re-
spectively. Therefore, the number of classes in the five sets are
n. = 10,20, 30, 40, 50, respectively. Top-N accuracies are used to
evaluate the categorization performance, where N is set to n./10.
The other settings are same as those for FMD and LSP15.

Figure 2 plots the average of top-N accuracies over 20 dif-
ferent training/testing sets. It can be observed that the local
Mahalanobis metric performs better especially when the number
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Number of classes

Fig. 2 Accuracies with different numbers of classes.

of classes is small. When n, = 10 and n. = 20, the difference
of the top-N accuracies between LMahaFV and the best of the
other methods are statistically detected with P = 3.79 x 1073
and P = 3.24 x 107, respectively. On the other hand, the per-
formances of GMahaFV and LMahaFV are comparable in cases
where n. = 30,40, 50.

6. Conclusions

In this paper, we focused on two popular encoding modules,
Histogram Encoding and Fisher Encoding, and introduced the
Mahalanobis metric to the two encoding modules. Aside from
these two modules, many extensions of the encoding-pooling ap-
proach for image classification are discussed, as in Section 1.
Combinations of these extensions with the Mahalanobis metric
open possibilities of further improvement of each method, and
thereby the concept of Mahalanobis metric has a potential of be-
ing a new axis of the computer vision community.
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