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Abstract: In this paper, we propose an audio-visual speech recognition system for a person with an articulation disor-
der resulting from severe hearing loss. In the case of a person with this type of articulation disorder, the speech style is
quite different from with the result that of people without hearing loss that a speaker-independent model for unimpaired
persons is hardly useful for recognizing it. We investigate in this paper an audio-visual speech recognition system for
a person with severe hearing loss in noisy environments, where a robust feature extraction method using a convolutive
bottleneck network (CBN) is applied to audio-visual data. We confirmed the effectiveness of this approach through
word-recognition experiments in noisy environments, where the CBN-based feature extraction method outperformed
the conventional methods.
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1. Introduction

In recent years, a number of assistive technologies using in-
formation processing have been proposed; for example, sign lan-
guage recognition using image recognition technology [8], [16]
and text reading systems from natural scene images [4]. In this
study, we focused on a person with an articulation disorder re-
sulting from severe hearing loss.

In Japan alone, there are 360,000 people suffering from hearing
loss. Some people with hearing loss who have received speech
training or who lost their hearing after learning to speak can com-
municate using spoken language. However, in the case of au-
tomatic speech recognition (ASR), their speech style is so dif-
ferent from that of people without hearing loss that a speaker-
independent (audio-visual) ASR model for unimpaired persons is
hardly useful in recognizing such speech. Matsumasa et al. [9] re-
searched an ASR system for articulation disorders resulting from
cerebral palsy and revealed the same problem.

For people with hearing problems, lip reading is one com-
munication skill that can help them communicate better. In the
field of speech processing, audio-visual speech recognition has
been studied for robust speech recognition under noisy environ-
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ments [14], [18], [19]. In this paper, we propose an audio-visual
speech recognition for articulation disorders resulting from severe
hearing loss.

The main contribution of this paper is that we propose a bot-
tleneck feature extracted from audio-visual features. Convolutive
Bottleneck Network (CBN) [20], which stacks multiple layers of
various types (such as a convolution layer, a subsampling layer,
and a bottleneck layer) [6], [7] forming a deep network, is applied
to audio-visual data. The bottleneck layer reduces the number of
units for the adjacent layers, and, consequently, we can expect
that each unit in the bottleneck layer aggregates information and
behaves as a compact feature descriptor that represents an input
with a small number of bases.

Our experimental results confirmed that our bottleneck features
have robustness for small local fluctuations that are caused by the
utterances of those who have hearing loss. Moreover, our inte-
gration of audio and visual features acquired robustness in noisy
environments.

The rest of this paper is organized as follows: In Section 2, re-
lated works are introduced. In Section 3, the flow of our proposed
method is explained. In Section 4, the face alignment problem in
lip reading is described. In Section 5, our proposed bottleneck
feature is explained. In Section 6, the experimental data are eval-
uated, and the final section is devoted to our conclusions.

2. Related Works

As one of the techniques used for robust speech recogni-
tion under noisy environments, audio-visual speech recognition,
which uses lip dynamic visual information and audio information,
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Fig. 1 Flow of the feature extraction.

has been studied. In audio-visual speech recognition, there are
mainly three integration methods: early integration [14], which
connects the audio feature vector with the visual feature vector;
late integration [19], which weights the likelihood of the result
obtained by a separate process for audio and visual signals; and
synthetic integration [18], which calculates the product of output
probability in each state.

In audio-visual speech recognition, detecting face parts (for ex-
ample, eyes, mouth, nose, eyebrows, and outline of face) is an
important task. The detection of these points is referred to as
face alignment. The Active Appearance Model (AAM) [1] and
Active Shape Model (ASM) [17] are well-known face alignment
models. In this paper, we employed a Constrained Local Model
(CLM) [2], [15]. A CLM is a subject-independent model that is
trained from a large number of face images.

In recent years, an ASR system has been applied as assistive
technology for people with articulation disorders. During the last
decades, we have researched an ASR system for a person with
cerebral palsy. In Ref. [9], we proposed robust feature extrac-
tion based on principal component analysis (PCA) with more sta-
ble utterance data instead of discrete cosine transform (DCT). In
Ref. [10], we used multiple acoustic frames (MAF) as an acoustic
dynamic feature to improve the recognition rate of a person with
an articulation disorder, especially in speech recognition using
dynamic features only.

Deep learning has had recent successes for acoustic model-
ing [5]. Deep Neural Networks (DNNs) contain many layers of
nonlinear hidden units. The key idea is to use greedy layer-wise
training with Restricted Boltzmann Machines (RBMs) followed
by fine-tuning. Ngiam et al. [13] proposed multimodal DNNs that
learn features over audio and visual modalities.

In this paper, we employ a Convolutional Neural Network
(CNN) [6], [7]-based approach to extract robust features from au-
dio and visual features. The CNN is regarded as a successful
tool and has been widely used in recent years for various tasks,
such as image analysis [3] and spoken language [11]. In Ref. [12],
CNN is employed as robust feature extraction for the fluctuation
of the speech uttered by a person with cerebral palsy. Experimen-
tal results in Ref. [12] revealed that the convolution and pooling
operations in CNN have a robustness to the small local fluctua-
tion which is caused by motor paralysis resulting from athetoid

cerebral palsy.

3. Flow of the Proposed Method

Figure 1 shows the flow of our proposed feature extraction.
First, we prepare the input features for training a CBN from au-
dio and visual signals. For the audio signals, after calculating
short-term mel spectra from the signal, we obtain mel-maps by
dividing the mel spectra into segments with several frames, al-
lowing overlaps.

The visual signals of the eyes, mouth, nose, eyebrows, and
outline of the face are aligned using a Constrained Local Model
(CLM) and a lip image is extracted. The details of lip image ex-
traction are explained in the following section. The extracted lip
image is interpolated to fill the sampling rate gap between audio
features.

For the output units of the CBN, we use phoneme labels that
correspond to the input mel-map and lip images. Audio and vi-
sual CBN are separately trained. The input mel-map and lip im-
ages are converted to the bottleneck feature by using each CBN.
Extracted features are used as the input feature of Hidden Markov
Models (HMM).

4. Lip Image Extraction Using CLM

Face alignment of this paper is conducted by using the Point
Distribution Model (PDM) and its model parameter is estimated
by CLM. CLM consists of two steps. The first step is the face
point detection and the second step is parameter estimation.

4.1 PDM
We model a facial image of a large number of people by using

the PDM which models a facial image by 2-dimensional shape
vectors. The position vector which corresponds to the point of
the PDM is defined as follows:

X = (XT
1 , . . . ,X

T
M)T (1)

where Xi = (xi, yi)T and M denote the i-th point of PDM and the
number of points of PDM, respectively. The position vector is
represented as follows:

X = X +Φq (2)

where Φ, q and X denote the principal vectors extracted by Prin-
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cipal Component Analysis (PCA), the parameter vector and the
mean vector of the shape vector, respectively. By using PDM, the
i-th point on the image, Xi(p), is represented as follows:

Xi(p) = sR[Xi +Φiq] + t (3)

where p = {s,R, t, q} denotes the parameter set. s denotes a scale
and R denotes a rotation which consists of pitch α, yaw β, roll γ.
t, q and Φi denote the shift vector, the parameter vector and the
i-th principal vector, respectively.

4.2 CLM
The parameter of PDM is estimated by using CLM. First, fea-

ture points are detected by Support Vector Machine (SVM) which
is trained by a large number of facial images.

Then, the model parameter p is estimated from the i-th detected
feature point X̂i by minimizing the following equation:

Q(p) =
M∑

i=1

‖X̂i − Xi(p)‖2 + R(p) (4)

where R(p) is a regularization term to avoid over fitting. In this
paper, we defined R(p) as normal distribution of N(0,Λ).

5. Feature Extraction Using CBN

5.1 Convolutive Bottleneck Network
A CBN consists of an input layer, a pair of a convolution

layer and a pooling layer, fully-connected Multi-Layer Percep-
trons (MLPs) with a bottleneck structure, and an output layer as
shown in Fig. 2. C, S , and M denote convolutional layer, sub-
sumpling layer, and MLPs, respectively. The MLP shown in
Fig. 2 stacks three layers (M1, M2, M3), and the number of units
in the middle layer (M2) is reduced as “bottleneck features.” The
number of units in each layer is discussed in the experimental sec-
tion. Since the bottleneck layer has reduced the number of units
for the adjacent layers, we can expect that each unit in the bot-
tleneck layer aggregates information and behaves as a compact
feature descriptor that represents an input with a small number of
bases, similar to other feature descriptors, such as MFCC, Linear
Discriminant Analysis (LDA) or PCA. In this paper, audio and
visual features are input to each CBN and extracted bottleneck
features are used for multimodal speech recognition.

5.2 Bottleneck Feature Extraction
First, we train audio and visual CBN. We prepare the input fea-

tures for training a CBN from an image and speech signal uttered
by person with hearing loss. For the audio feature, we obtain
mel-maps by dividing the mel spectra into segments with several
frames, allowing overlaps. For the output units of the CBN, we

Fig. 2 Convolutional bottleneck network.

use phoneme labels that correspond to the input mel-map. For ex-
ample, when we have a mel-map with the label /i/, only the unit
corresponding to the label /i/ is set to 1, and the others are set to 0
in the output layer. The label data is obtained by forced alignment
using HMMs from the speech data.

For the visual features, because its sampling rate is smaller than
the audio signal, spline interpolation is adopted to the images in
order to fill the sampling rate gap. The output units of the CBN
are the same as that of the audio features.

The parameters of the CBN are trained by back-propagation
with stochastic gradient descent, starting from random values.
The bottleneck (BN) features in the trained CBN are then used
in the training of an HMM for speech recognition. In the test
stage, we extract features using the CBN, which tries to produce
the appropriate phoneme labels in the output layer. Again, note
that we do not use the output (estimated) labels for the following
procedure, but we use the BN features in the middle layer, where
it is considered that information in the input data is aggregated.
Finally, extracted bottleneck audio and visual features are used as
the input features of audio or visual HMMs and the recognition
results are integrated. Details about this integration are discussed
in Section 6.3.

6. Experiment

6.1 Experimental Conditions
Our proposed method was evaluated on word recognition tasks

for one male person with hearing loss. We recorded 216 words
included in the ATR Japanese speech database B-set which are
used as test data and 2,620 words included in the ATR Japanese
speech database A-set which are used as training data. The ut-
terance signal was sampled at 16 kHz and windowed with a 25-
msec Hamming window every 10 msec. For the acoustic model,
we used the monophone-HMMs (54 phonemes) with 5 states and
6 mixtures of Gaussians. For the visual model, we used the
monophone-HMMs (54 phonemes) with the same states and mix-
tures of Gaussians to the acoustic model. The number of units
of bottleneck features is 30. Therefore, input features of HMM
are 30-dimensional acoustic features and 30-dimensional visual
features. We compare our bottleneck feature with conventional
MFCC+ΔMFCC (30-dimensions). Furthermore, we evaluated
our method in noisy environments. We added white noise to au-
dio signals and its SNR is set to 20 dB, 10 dB, and 5 dB. Audio
CBN and HMMs are trained by using the clean audio feature.

6.2 Architecture of CBN
As shown in Fig. 2, we use deep networks which consist of

a convolution layer, a pooling layer and fully-connected MLPs.
For the input layer of audio CBN, we use a mel-map of 39-
dimensional-melspectrum × 13, and the frame shift is 1. For
the input layer of visual CBN, frontal face videos are recorded
at 60 fps. Luminance images are extracted from the image by us-
ing CLM and resized to 12 × 24 pixels. Finally, the images are
up-sampled by spline interpolation and input to the CBN.

Table 1 shows the size of each feature map. The numbers of
units in each layer of MLPs are set to 108, 30, 54. Those numbers
are the same to audio CBN and visual CBN.
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Fig. 3 Word recognition accuracy using HMMs.

Table 1 Size of each feature map. (k, i × j) indicates that the layer has k
maps of size i × j.

Input C1 S1

Audio CBN 1, 39 × 13 13, 36 × 12 13, 12 × 4
Visual CBN 1, 12 × 24 13, 8 × 20 13, 4 × 10

6.3 Experimental Results
Compared input features for the HMMs are listed as follows:
• MFCC+ΔMFCC
• Audio Bottleneck features (BN Audio)
• Discrete Cosine Transformation (DCT)
• Visual Bottleneck features (BN Visual)
• Early integration of BN Audio and BN Visual
• Late integration of BN Audio and BN Visual
In early integration, an audio feature and a visual feature are

combined into a single frame and this frame used as an input fea-
ture for the HMMs. In late integration, an audio feature and a
visual feature are input to each audio and visual HMM, and the
output likelihood is integrated as follows:

LA+V = αLV + (1 − α)LA , 0 ≤ α ≤ 1 (5)

where LA+V , LA, LV and α denote integrated likelihood, likelihood
of an audio feature, likelihood of a visual feature, and weights of
likelihood, respectively.

The left side of Fig. 3 shows the word recognition accuracies
in noisy environments. The bottleneck audio feature shows the
best results compared to conventional MFCC at the clean envi-
ronment and SNR of 20 dB. This is due to the robustness of the
CBN features to small local fluctuations in a time-mel-frequency
map, caused by the articulation disordered speech.

The word recognition rate of lip reading using the bottleneck
visual feature is 50.9%. At the SNR of 10 dB, the early integra-
tion between audio and visual bottleneck features improved 4.1%
from our baseline. Moreover at the SNR of 5 dB, the early in-
tegration between audio and visual bottleneck features improved
18.1% from our baseline. t can be seen from these results that
multimodal features are shown to be effective in noisy environ-
ments.

The right side of Fig. 3 shows the word recognition accuracies
in the evaluation set as a function of the weight of the likelihood
(α in Eq. (5)). α = 0.0 in Fig. 3 shows the result of ASR using

audio features only and α = 1.0 in Fig. 3 shows the result of lip
reading. This figure shows the best value for α under each con-
dition. At the SNR of 10 dB and SNR 5 dB, the graph is convex,
and these results show the effectiveness of multimodal features in
noisy environments.

7. Conclusions

We proposed multimodal bottleneck features using CBN for
articulation disorders resulting from severe hearing loss. Com-
pared with conventional MFCC, our proposed audio bottleneck
feature shows the better results. We assume that is because our
bottleneck features are robust to small local fluctuations, which
are caused by hearing loss. In noisy environments, our proposed
method using multimodal bottleneck features shows its effective-
ness in comparison to the other methods. Since the tendency of
the fluctuations in articulation disordered speech depend on the
speaker, we would like to apply and investigate our method to a
variety of speakers with speech disorders in the future.

References

[1] Cootes, T.F.: Active Appearance Models, Proc. European Conf. Com-
puter Vision, Vol.2, pp.484–498 (1998).

[2] Cristinacce, D. and Cootes, T.F.: Feature Detection and Tracking with
Constrained Local Models, Proc. British Machine Vision Conf., Vol.2,
No.5, pp.929–938 (2006).

[3] Delakis, M. and Garcia, C.: Text detection with Convolutional Neural
Networks, Proc. Int. Conf. Computer Vision Theory and Applications,
pp.290–294 (2008).

[4] Ezaki, N., Bulacu, M. and Schomaker, L.: Text Detection from Nat-
ural Scene Images: Towards a System for Visually Impaired Persons,
Proc. Int. Conf. Pattern Recognition, pp.683–686 (2004).

[5] Hinton, G., Li, D., Dong, Y., Dahl, G., Mohamed, A., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N. and Kingsbury,
B.: Deep Neural Networks for Acoustic Modeling in Speech Recog-
nition: The Shared Views of Four Research Groups, IEEE Signal Pro-
cessing Magazine, Vol.29, No.6, pp.82–97 (2012).

[6] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P.: Gradient-Based
Learning Applied to Document Recognition, Proc. IEEE, Vol.86,
No.11, pp.2278–2324 (1998).

[7] Lee, H., Largman, Y., Pham, P. and Ng, A.Y.: Unsupervised Fea-
ture Learning for Audio Classification using Convolutional Deep Be-
lief Networks, Proc. Neural Information Processing Systems, Vol.22,
pp.1096–1104 (2009).

[8] Lin, J., Ying, W. and Huang, T.S.: Capturing human hand motion
in image sequences, Proc. IEEE Motion and Video Computing Work-
shop, pp.99–104 (2002).

[9] Matsumasa, H., Takiguchi, T., Ariki, Y., Li, I. and Nakabayashi, T.:
Integration of Metamodel and Acoustic Model for Dysarthric Speech

c© 2015 Information Processing Society of Japan 67



IPSJ Transactions on Computer Vision and Applications Vol.7 64–68 (July 2015)

Recognition., Journal of Multimedia, Vol.4, No.4, pp.254–261 (2009).
[10] Miyamoto, C., Komai, Y., Takiguchi, T., Ariki, Y. and Li., I.: Mul-

timodal Speech Recognition of a Person with Articulation Disorders
Using AAM and MAF., Proc. IEEE Int. Workshop on Multimedia Sig-
nal Processing, pp.517–520 (2010).

[11] Montavon, G.: Deep learning for spoken language identification, Proc.
Workshop on Deep Learning for NIPS (2009).

[12] Nakashika, T., Yoshioka, T., Takiguchi, T., Ariki, Y., Duffner, S.
and Garcia, C.: Convolutive Bottleneck Network with Dropout for
Dysarthric Speech Recognition, Trans. Machine Learning and Artifi-
cial Intelligence, Vol.2, No.2, pp.46–60 (2014).

[13] Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H. and Ng., A.: Mul-
timodal deep learning, Proc. International Conference on Machine
Learning (2011).

[14] Potamianos, G. and Graf, H.P.: Discriminative Training of HMM
Stream Exponents for Audio-Visual Speech Recognition, Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing, pp.3733–3736
(1998).

[15] Saragih, J.M., Lucey, S. and Cohn, J.F.: Deformable model fitting
by regularized landmark mean-shift, Int. Journal of Computer Vision,
Vol.91, No.2, pp.200–215 (2011).

[16] Starner, T., Weaver, J. and Pentland, A.: Real-Time American
Sign Language Recognition Using Desk and Wearable Computer
Based Video, IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol.20, No.12, pp.1371–1375 (1998).

[17] Sum, K., Lau, W., Leung, S., Liew, A.W.C. and Tse, K.W.: A new
optimization procedure for extracting the point-based lip contour us-
ing active shape model, Proc. IEEE Int. Conf. Acoustics, Speech and
Signal Processing, pp.1485–1488 (2001).

[18] Tomlinson, M.J., Russell, M.J. and Brooke, N.M.: Integrating au-
dio and visual information to provide highly robust speech recogni-
tion, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing,
pp.821–824 (1996).

[19] Verma, A., Faruquie, T., Neti, C., Basu, S. and Senior, A.: Late
Integration In Audio-Visual Continuous Speech Recognition, Proc.
IEEE Workshop on Automatic Speech Recognition and Understand-
ing (1999).

[20] Vesely, K., Karafiat, M. and Grezl, F.: Convolutive Bottleneck Net-
work features for LVCSR, Proc. IEEE Workshop on Automatic Speech
Recognition and Understanding, pp.42–47 (2011).

(Communicated by Atsushi Nakazawa)

c© 2015 Information Processing Society of Japan 68


