
IPSJ SIG Technical Report

Design of concurrent B+Tree index for native KVS on
Non-Volatile-Memories

(Unrefereed Workshop Manuscript)

Mohamed Amin Jabri1 Osamu Tatebe2

Abstract: We present our preliminary results about our design of a highly concurrent B+Tree index for Key-Value
Stores (KVS) that are natively running on Non-Volatile-Memories (NVM). This work is beneficial in providing and
enabling range-search capabilities to KVS natively running on flash devices like Fusion-io’s NVMKV.

1. Introduction
In this work we present our preliminary results about our de-

sign of a highly concurrent B+Tree index for Key-Value Stores
(KVS) that are natively running on Non-Volatile-Memories
(NVM). This work is beneficial in providing and enabling range-
search capabilities to KVS natively running on flash devices like
Fusion-io’s NVMKV [1].

In the reminder of this paper, we present, first in section 2,
our design for a highly concurrent B+Tree index enabling range-
queries on hash-based KVS running natively on flash. Then, in
section 3, we provide an evaluation of our B+tree index design.

2. Design
In this section, we describe our design for a highly concurrent

B+Tree index, which enable range queries and prefix-search fea-
tures on hash-based key-value Store running natively on flash like
Fusionios NVMKV key-value store.

As depicted in Fig. 1, our B+Tree index leverages NVMKV
API [2] and use them as an underlying layer to do manage,
persist and retrieve data from the underlying flash device. Our
B+Tree could be thought as an in-memory tree-based KVS ex-
cept that each key after being inserted into the index is per-
sisted into the flash device through a transparent NVMKV calls.
Keys and the corresponding metadata about the key-value pair
are also stored in the leaf nodes of the B+Tree index. Each
node of the tree index, except the tree’s root node, contains a
number of entries ranging from a minimum threshold named
min-order, below which the corresponding tree node have to be
merged with a neighboring node located at the same height, and a
maximum threshold named branching-factor (generally equal to
2∗min−order), above which the tree node have to be split in two
different new node.

1 Center for Computational Sciences, University of Tsukuba
2 Faculty of Engineering, Information and Systems, University of Tsukuba

In general, key insertion will cause full (having a number of
entries greater or equal to the branching factor of the tree) leaf
nodes to be split, which in turn will lead to an additional entry in-
sertion in the parent node. This latter, in turn, will need to be split
if the additional entry insertion causes an overflow (entry number
is greater or equal to the branching factor of the tree). Thus key
insertion could trigger a node split operation, which could prop-
agate from the bottom of the tree up to the tree root. Similarly
key deletion will cause under-full nodes (entry count below the
min-order of the tree) to be merged with a neighboring node. As
in case of key insertion, tree nodes merging could also propagates
from the bottom of the tree where the actual key-value pair dele-
tion is performed through the intermediate internal nodes up to
the root of the tree.

Fig. 1 B+tree in-memory index atop native flash running KVS architecture

Given that such a balancing operations (split/merge) are very
costly, our design tries to minimize them by having at most one
split operation or merge operation per key insertion or deletion.
To achieve this goal, our B+Tree index uses a pro-active top-
down approach for keeping the tree structure balanced all the
time. Each time a key-value pair is inserted or deleted from the
index, as we traverse the tree is starting from its root node in
search for appropriate leaf node in which the key would be in-
serted into or from which the key entry is to be deleted, we check

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.25
2015/8/5



IPSJ SIG Technical Report

the encountered intermediate internal node on the traversed path
and proactively split or merge those nodes whose entry count is
close to the branching factor (for a split) or the min-order (for a
merge).

Search operations and range queries are not delayed when a
concurrent key-value pair insertion or deletion causes the tree to
perform a rebalancing operation (nodes split or merge). Only tree
structure modifying operations (insert or delete) are delayed when
the corresponding tree traversal accesses a node that is being split
or merged. Additionally, for each range query, the tree structure
is traversed only once. This is because all the leaf nodes in our
Tree index are chained together so as to form an ordered linked
list with all the keys entries.

Fig. 2 Asynchronous NVMKV calls design principle: turning synchronous
calls into asynchronous calls at the expense of occupying some
threads.

As NVMKV API calls are synchronous and blocking for the
calling thread, calls to our B+tree index needs also to block as
we transparently issue NVMKV calls for data persistence on the
underlying flash device. To maximize the concurrency of our
B+tree we design an asynchronous non-blocking equivalent calls
for NVMKV with respect to the calling thread.

Our design for the asynchronous equivalent of NVMKV calls,
leverage the new c++11/c++14 concurrency and asynchrony
tools: std::future, std::promise and std::async. A std::future
and std::promise constitute a communication channel in which
std::promise is used to set and write the result of a given func-
tion call whereas a std::future is the reading or retrieving end of
the communication channel. A std::async executes a given func-
tion call concurrently with a calling thread. The idea behind our
asynchronous NVMKV calls, as depicted in Fig. 2, stems from
the fact that we could turn any synchronous blocking call into an
asynchronous non blocking call at the cost of occupying a thread.
Our asynchronous equivalent calls for NVMKV wraps the block-
ing calls into a function object that will be put in a lock-free mes-
sage queue and returns a std::future immediately to the calling
thread. A set of background threads keeps popping any available
function objects from the message queue and executes them in the
background. When the result of the execution is ready, the back-
ground thread executing the function object uses the std::promise
corresponding to the std::future given to the calling thread when
the object was queued in the message queue, to write the result.
At this time only, the std:future becomes ready and the calling
thread could retrieve the result of the execution. This principle is

depicted in Fig. 2.

3. Evaluation
In this section, we will provide an evaluation to both: our

preliminary design for in-memory concurrent B+tree index
which would enable range-queries and prefix search features on
NVMKV key-value store, and our wrapper around NVMKV syn-
chronous and blocking calls providing an asynchronous and non-
blocking interface for the calling thread.

Our benchmark consists of a stress test in which we execute
10000 key-value pair insertions followed by 10000 random key-
value retrieval. The Key size is fixed in our experiment to 40
bytes, which is the secure hash (sha-1) of integers ranging from 1
to 10000. The corresponding value is equal to the 40-bytes with
a padding to make the values size multiple of a sector size (512
bytes). In our experiment, we measure the latency for each of the
individual 10000 calls.

In a first experiment, we compare key-value pair insertion and
retrievable with respect to size of the value varying from 1 sector
up to 1024 sectors using NVMKV calls only (without our B+Tree
index) as a baseline and then using our in-memory B+Tree index
on top of NVMKV. In this setting, our tree index has minimum
order of 128. Fig. 3 depicts the overage latencies over a10000 op-
erations with respect to the value size, whereas in Fig. 5 we take
a closer look on how the latency evolve with respect to each in-
dividual iterations. From those two graphs, we could say that our
B+tree index introduces a very little overhead on top of NVMKV
calls.

Fig. 3 Average key-value pair Insertion/retrieval overhead with respect to
the value size in number of sectors: using our B+tree index versus
the baseline NVMKV calls.

Fig. 4 Asynchronous NVMKV calls (AsyncPut/AsynGet) and synchronous
NVMKV calls (Put/Get) overhead with respect to the value size in
number of sectors.

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.25
2015/8/5



IPSJ SIG Technical Report

Fig. 5 Detailed timing for 10000 key-value pair insertion and retrieval: using our B+tree versus the
baseline NVMKV calls.

In a second experiment, we try to compare our asynchronous
wrapper interface around NVMKV to their synchronous and
blocking equivalents. For the asynchronous calls, first, we issue
10000 asynchronous call and measure their latency (time needed
for the call to return an std::future), and then at an immediately
following stage we measure the time needed for each of the 10000
std::future to become ready and get their result. Fig. 4 shows the
average total latency, which includes the latency for the asyn-
chronous calls to return an std::future and the waiting time re-
quired for the latter to become ready and deliver its result, with
respect to the used value size.

As shown in Fig. 4, our asynchronous wrapper around
NVMKV calls outperforms their synchronous equivalent for all
the different value sizes. Fig. 6 compares the individual laten-
cies needed for each of the returned 10000 std::future to become
ready with the baseline NVMKV synchronous calls, when the
key-value pair’s value size is two sectors long.

In a last experiment, we compare the overhead of our B+Tree
index when using our asynchronous wrapper for NVMKV calls
on one hand and our B+Tree index when using the synchronous
and blocking NVMKV calls on the other hand.

Fig. 7 and Fig. 8 depict the detailed timing, when the
value size is fixed to two sectors long, for a 10000 Key-value

References
[1] Mármol, L., Sundararaman, S., Talagala, N., Rangaswami, R., Deven-

drappa, S., Ramsundar, B. and Ganesan, S.: NVMKV: a scalable and
pair insertion and retrieval for both cases: the case where
we use our B+Tree index with our asynchronous NVMKV
(AsyncPut/AsyncGet) calls in the underlying layer and the case
where we use the synchronous and blocking (Put/Get) calls in the
underlying layer.

4. Conclusion
In this paper, we presented our design for a highly concur-

rent in-memory B+Tree index that will be used as an interme-
diate layer on top of hash-based key-value stores running na-
tively on flash, like fusionio’s ioMemory devices, to enable prefix
search and range-queries. Also, we presented our wrapper around
NVMKV API calls, which turn them into asynchronous call for
the calling thread. Additionally, we provided an evaluation of
our in-memory B+tree index and our asynchronous non-blocking
wrapper around NVMKV calls.

lightweight flash aware key-value store.
[2] NVMKV: NVM key-value store API library, Fusionio (online), avail-

able from 〈https://github.com/opennvm/nvmkv〉 (accessed 2015-06-
27).

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.25
2015/8/5



IPSJ SIG Technical Report

Fig. 6 Detailed timing for 10000 key-value pair insertion and retrieval using our asynchronous NVMKV
calls versus the baseline synchronous NVMKV calls.

Fig. 7 Detailed timing for 10000 key-value pair insertion using our B+tree. AsyncPut uses our NVMKV
asynchronous calls whereas Put uses only the synchronous NVMKV calls.

Fig. 8 Detailed timing for 10000 key-value pair retrieval using our B+tree. AsyncGet uses our NVMKV
asynchronous calls whereas Gett uses only the synchronous NVMKV calls.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.25
2015/8/5


