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Abstract: In the era of ”Big Data”, the need for fast, scalable, and high-precision technique for
analysis of huge social networks is growing. The paper proposes a distributed implementation
scheme of a community structure identification technique known as the Louvain method [5]. Our
technique copes with the growing size of the social network by partitioning and distributing the
whole social network. It also employs a few approximation techniques and collective communi-
cation to increase parallelisms among the computing nodes. The performance is evaluated using
various social network data as well as synthesized data.
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1. Introduction
To the explosively increasing data, the need for ana-

lyzing these data in fast, scalable, and heigh-precision
way becomes critical. Community detection is one of
the most popular analysis pattern. Among the com-
munity detection approaches, there are some fast and
scalable methods. Louvain method [5] is one of the
fastest and scalable method that can process the graph
data up to 100M nodes and 1B edges.

However, even the Louvain method has limitation
in scalability, for instance, the Louvain method should
need about 377GB memory (It is simulated from the
data structure of Louvain method’s C++ version im-
plementation) to process a Facebook graph data made
up of 149M nodes and 31B edges [6], [7], which ob-
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viously can not fit a single computer memory.
In order to process such a large-scale graph, a

distributed version of community detection method
is necessary. To our knowledge there is only one
approach that proposed by Wickramaarachchi et al.
[21]. In that work, they adopted graph node partition
techineque as a preprocess to decrease the existence
probability of communities that span several comput-
ing nodes. Through this way, they made the informa-
tion need to exchange among computing nodes less
important and also controlled the number of it to min-
imum. As a result, they got a scalable method with-
out any noticeable loss in modularity (See detail in the
next section.).

In this work, we mainly focus on the memory lim-
itation. We hope to provide a distributed commu-
nity detection method that could deal large-scale data
which can not fit the memory of a single computing
node. In addition, we hope to make the most of each
computing node resource without losing modularity.

According to the previous work, we also gave a
simple distributed Louvain method that adopt node
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partition as a preprocess in order to minimum com-
munication cost among computing nodes.

However, from the previous work and our simple
distributed Louvain method, we find there exists load
imbalance problem that caused by graph node parti-
tion preprocess. From our preliminary experiment,
our dataset showed 11 ∼ 180 times differences in edge
size between the max and the minimum one.

The imbalance of edges should lead to the imbal-
ance of memory usage per computing node, and it
would influence the scalability. Because it is obvious
that the maximum memory usage among the comput-
ing nodes should be the bottleneck that limit the scal-
ability of the method. In addition, the imbalance of
edges should also cause the difference in computation
time per computing node since the computation cost
of each computing node should be O(m′), when m′

indicates the edge size per computing node.
In order to solve this problem, we propose to adopt

graph edge partition as a preprocess instead of graph
node partition, and evaluate the efficiency in several
way.

The main contribution of this paper is that by us-
ing edge partition as a preprocess, it takes the balance
both in memory usage and computation time that is re-
lated to the scalability and the total computation time.

The rest structure of the paper is as follows: Section
2 explains the detail of the original Louvain method
and our simple distributed Louvain method, while at
the end it represents the problem of the previous work
and our simple distributed Louvain detailedly; sec-
tion 3 gives related works on distributed Louvain and
load balancing in distributed graph processing sys-
tems; section 4 describes the detail of our proposal;
section 5 shows the result of several simple experi-
ments; and section 6 concludes our work while gives
some future work.

2. Louvain Method
The Louvain method for community detection is a

greedy modularity maximization approach [5]. Mod-
ularity [12] is a metric for evaluating the quality of the
community detection result and is defined as:

Q =

c∑
i=1

(ei,i − a2
i ) (1)

where C means the set of all detected communities.
ei, j represents the fraction of the edges between com-
munity i and community j. ai =

∑
j ei, j represents the

fraction of the edges that connect community i to oth-
ers.

Since in a graph, an edge falls between two nodes
without regarding for the communities that the two
nodes of the edge should belong to, we would have
ei, j = aia j. Then, we can know that a2

i is the expected
value of ei,i. If the detected community is close to
the real one, ei,i will greater than it’s expected value,
a2

i , otherwise it will less than a2
i . The closer the de-

tected community to the real one, the greater modu-
larity value will be given to the community, as a re-
sult the modularity of the whole graph will become
greater.

Louvain method detects communities by inserting
each node to the best community that make the mod-
ularity of the whole graph maximum. Each node will
iteratively move from current community to the best
community leading the increase of modularity until
there is no nodes’ movement.

2.1 Sequential Louvain method
In this section, we will go into detail about Lou-

vain method and in order to distinguish it from dis-
tributed Louvain method, we call it sequential Lou-
vain method.

Sequential Louvain method mainly consists of two
phases - computation phase and contraction phase,
and it runs these two phases iteratively. In the com-
putation phase, it considers each node as a commu-
nity at initial time. Then, for each node i, the method
would compute ∆modularity between node i and its
neighbor communities. ∆modularity means the incre-
ment of modularity that would take place under the
assumption of node i’s movement from current com-
munity to neighbor community. Finally, node i moves
to the community with the largest ∆modularity. If
only minus ∆modularity achieved, the node stays in
its current community. The computation phase will be
repeated several times until there is no nodes’ move-
ment, and then it enters the contraction phase. We
call one computation phase as one pass, while call the
whole process from the start of computation until be-
fore it enters the contraction phase as one level.
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In the contraction phase, the method rebuilds the
graph by contracting each detected community into
one new graph node. An edge exists between two new
graph nodes when there are inter-community edges
between two corresponding detected communities,
and the weight of this edge is calculated by summing
up the weight of the inter-community edges. Each
new graph node holds self weight achieved from the
total weight of intra-community edges. Once the con-
traction phase is completed, the method would contin-
ually do computation and contraction phases with the
new graph. Like this, the method would switchover
between computation phase and contraction phase re-
peatedly until no modularity improvement take place
over the graph.

Although the sequential Louvain method makes
better performance both in modularity and speed than
others, there is only one approach about distributed
Louvain method as we know. In the next section we
give a simple distributed Louvain method, and point
out some problems existing both in our simple dis-
tributed Louvain method and the previous studies.

2.2 Distributed Louvain method
Simple distributed Louvain method In order to

detect communities in distributed way, we need to
carry out two basic steps, graph data divide and com-
munity detection. In the graph data divide step, we
need to divide a large-scale graph into several sub-
graphs with each subgraph size is smaller than com-
puter’s memory size. In the community detection
step, we read each subgraph per computing node, then
detect communities included in each subgraph by run-
ning the Sequential Louvain method.

When dividing a large-scale graph into subgraphs,
some edges that two ends of which fall in two dif-
ferent computing nodes should be cut (We call these
edges cross edges. See figure 1.). In order to compute
the ∆modularity value of the cross edge’s two ends
node-neighbor communities, it needs to exchange in-
formation through the cross edge by communication.
However, if we assume a graph data has m edges, and
one want to divide the graph into p subgraphs, then
one need to communicate about m

p nodes’ informa-
tion separately per computation step. It is obviously
consume too much time while community detection

Fig. 1 Suppose that a graph is divided into four subgraphs.
Cross edges (the red edges) should be occur between
computing nodes.

Fig. 2 Store the remote graph node’s information locally. For
example, store information of nodes {3, 7, 10 ,11} in
computing node 1 when the graph is divided as Fig-
ure 1, as the edges {(0, 3), (1,7), (2, 6), (4, 10), (5,7)}
become cross edges.

to each subgraph can run in O( m
p ) complexity.

In view of the problem mentioned above, we pro-
pose a simple distributed Louvain method (SDLou-
vain). In the method, for reducing communication
cost we store the remote node’s information locally
(We call these nodes as border nodes). For exam-
ple, store information of node 7 in computing node
1, since node 7 is belong to computing node 2 and
(1, 7) is a cross edge. Then using these locally
stored border nodes’ information approximately com-
pute ∆modularity related to cross edges. We call it ap-
proximation computation, because the locally stored
information is not updated as soon as the remote in-
formation updated.

Instead of exchanging information at each time
the remote information updated, the method just
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communicate information after a certain number of
∆modularity computation have been done. As shown
in the computation phase’s pseudocode of this method
(Algorithm 1), the communication should be needed
when aggregate neighbor communities information
(line 3) if there are cross edges. But in this method, it
just communicates all graph nodes are computed one
time. In this way, it reduces communicate time effi-
ciently, since it can exchange a set of remote nodes’
information in collective way rather than do it sepa-
rately. Additionally, it alleviates the modularity from
becoming bad.

In communication part of computation phase (line
13), the method mainly exchange the information of
neighbor communities that belong to remote comput-
ing node. However, an additional communication
should be needed when a community spans several
computing nodes. In this case, before exchanging the
information of remote community, it is need to
• gather the information of the same commmuni-

ties into one computing node,
• aggregate the information,
• scatter the updated information to each comput-

ing node that the communitiy belongs to.
In consideration of communication cost, this addi-

tional communication steps (aggregation step in com-
munication part) are also not done each time the com-
munity information updated, but just be done at the
first of the communication part. The computing node
that would gather and aggregate the information of
communities should be decided by the communities’
id. When a graph data has n nodes and is dealed by
P computing nodes, the information of community i,
i ∈ [pi ∗

n
|p| , (pi + 1) ∗ n

|p| ), pi ∈ P should be gathered
and aggregated in computing node pi.

Discussion In the above method, it mainly focused
on the computation phase of the community detec-
tion step, and through approximation technique and
collective communication, it efficiently reduced the
number of communicate times. However, as we men-
tioned, the communication volume of each computing
node is up to O( m

p ) in one computation phase, which
is the same as computation phase itself. It is obvious
that the communication cost should become a bottle-
neck of the whole community detection time. In order
to reduce the communication volume, graph partition

methods are considerable, since they can help to di-
vide a graph data into subgraphs with minimum cross
edges between them.

Algorithm 1 Computation Phase
Require: G = {V,E}

1: do
2: for ∀v ∈ V do
3: C′ ⇐getNeighborCommunity(v);
4: for Ci ∈ C

′ do
5: ∆Mod ⇐getDeltaMod(v,Ci);
6: if ∆Mod > ∆Modmax then
7: ∆Modmax ⇐ ∆Mod;
8: bestComm⇐ Ci;
9: end if

10: end for
11: insert(v,bestComm);
12: end for
13: communicateRemoteInfo(V′ ∈ V);
14: while modularityImprovement

Wickramaarachchi et al.[ [21]] did some studies by
using a node graph partition method PMETIS[ [14]],
though their purpose is different somewhat from this
paper. They supposed that the probability of cross
communities’ existence should become lower if one
divide graph data by PMETIS. Since there are little
cross communities, each computing nodes can detect
local communities successfully without exchange in-
formation. Their results showed that their program
could achieve almost the same modularity value as
sequential Louvain method, even though it ignored
communications between computing nodes.

From the previous work, we can know that
PMETIS is efficient enough to reduce the probabil-
ity of cross communities’ existence, but in order to
verify the efficiency of node graph partition method
(ex.PMETIS) more, we did another preliminary ex-
periment. We implemented the SDLouvain method
with dividing graph data by PMETIS in graph divide
step, and compared the size of subgraphs.

As a result, we find there are big differences in edge
size among achieved subgraphs. For example, with
our dataset (See section 5.3 for details), it showed
11 ∼ 180 times differences in edge size between the
max and the minimum one, which should lead to 2
∼ 7 times differences in memory when dividing the
graph into 8 subgraphs. (The difference of memory is
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Fig. 3 This figure shows the relationship between the num-
ber of edges and computation time. From it, we can
see a linear correlation. It uses YouTube graph data
(#Nodes=1,134,892, #Links=5,995,248), which shows
friendship among the YoutTube users.

simulated from the data structure used in the sequen-
tial Louvain method implementation.) It means that
PMETIS causes memory imbalance, while it is unde-
sirable since the max memory consumption of com-
puting nodes should be a bottleneck.

On the other hand, because the Louvain method
needs to iterate each edges in computation phase, the
difference in edges should also lead to the difference
in computation time. In this case, the computing node
that completed computation phase quicker have to
wait others, since the SDLouvain needs to exchange
information at the end of computation phase (See al-
gorithm 1, figure 3).

From the preliminary experiment result, we can
sum up that there exists edge imbalance problem
among subgraphs, which should lead to the imbalance
of compute times and memory consumption. In this
work, we mainly focus on this problem.

3. Related work
Distributed Louvain As we mentioned in sec-

tion 2.2, there is only one approach about distributed
Louvain method proposed by Wickramaarachchi et
al [21]. The work succeed in reducing the number of
communities that span several computing nodes when
dividing the graph data by taking advantage of the

graph partitioning method. To the divided subgraphs
with little cross communities, it runs the sequential
Louvain method without any communication. It just
detects communities in distributed way for the first
level, because most of the time is spent in the first
level.

After the first level, it contracts the subgraph of
each computing node into new subgraph separately
and send the new subgraph to master computing node
for merging them and running in sequential way af-
ter the first level. Computing in distributed way just
for the first level is also one of the reasons that the
method can complete the detection without any no-
ticeable loss in final modularity, since the levels after
the first one can play a part in replenishing the modu-
larity value that lost in the first level.

In this work, we also apply the same strategy be-
cause of the significant reduction of graph size af-
ter the first level (in our dataset the graph after the
first level reduced to 10% ∼ 50% in node size and
5% ∼ 24% in edge size), which means the contracted
new graph may be smaller than the computer memory,
even though the original graph exceeds the memory.

Load balancing in distributed graph processing
Dividing a large-scale graph into k subgraphs is the
first step for distributed graph processing. In general,
for minimizes the total solution time, some strate-
gies need to be adopted in this step. The goal of
these strategies should be balance the divided sub-
graph size and minimize the number of cross edges
between them.

Many distributed graph processing systems utilize
graph partition method to pursue the above goal. Gi-
raph [1] uses hash- or range-based graph partitioning
methods, while GraphLab [18] and GoldenOrb [2] use
multilevel k-way graph partition method [15].

In addition, approaches about distributed graph
partition are also proposed widely. ParMETIS [16]
and PT-SCOTCH [9] provide a distributed multilevel
graph partition method by using multilevel schemes,
while the approach of Kirmani et al. [17] divide the
graph data in distributed way using geometric mesh
partitioning schemes [11].

Most of the graph partition methods provided un-
til now equipartition the graph nodes, while there are
also some needs on dividing a graph into subgraphs
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Fig. 4 Assuming that there is a graph with 7 nodes and 10
edges. Edge partition divides this graph into two sub-
graphs with 5 edges per subgraph. In this case, we call
node 2 ,4 in computing node 1 as master nodes, while
those in computing node 2 as replicas.

with equal edges in practical computation, such as
Louvain method.

Moreover, it is observed by Gonzalez et al. [13]
that some existing graph node partition method should
perform poorly when a graph data has scale-free
property. Motivated by this problem, they provided
a graph edge partition method (PowerGraph, PG),
while Bourse et al. [8] extended PG that can achieve
subgraphs balanced both in nodes and edges (the least
incremental cost assignment, IC).

In this work we want to adopt the work of Bourse
et al. because the problem we find in section 2.2 are
mainly related to the subgraph edges’ imbalance.

4. Proposal
Preprocess In this work, we propose to use bal-

anced edge partition method as preprocess for diving
a large-scale graph into k subgraphs, since, as we see
in the above, it can achieve balance both in nodes and
edges, which is benefit to improve total time and bal-
ance memory consumption.

Edge partition divides graph edges into equal size,
therefore each edge should be counted only one time
and belong to a unique computing node. It leads
to multiple existence of one node among computing
nodes (Such as node 2, 4 in figure 4 exist both in
computing node 1 and 2). In that case, we call one
of the nodes as master node, while others as replicas.
Thus, in figure 4, node 2 has one master node and one
replica.

ΔQmax,4,2ΔQmax,4,1

ΔQmax,2,1

ΔQmax,2,2

Fig. 5 In ICLouvain method, the communication

Communications should occur among master node
and it’s replicas, while it occurs between two ends of
a cross edge in node partition. In the work of Bourse
et al. [8], it is proved that the communication cost of
node partition should be greater than edge partition
when assigning nodes or edges one of k partitions
independently and uniformly at random. However,
when it comes to use PMETIS and IC, we find that IC
shows greater communication cost than PMETIS (up
to 4.5 times in our dataset) when the graph has low
scaling exponent (≈ 1.4. See detail in section 5.3). In
contrast, with the graph holding high scaling exponent
value (1.7∼2.4), PMETIS shows greater communica-
tion cost that is up to 9 times in our dataset.

Therefore, we consider that IC is fit for the graph
divide step, since edge load imbalance mainly occurs
in the scale-free graphs.

Computation phase The mechanism of computa-
tion phase should be different from SDLouvain, since
the information that stored in each computing node is
different. For instance, in the figure 4, when the graph
is divided into two subgraphs, computing node 1 only
holds parts of graph node 2’s neighbor information,
since node 2’s neighbor node 5 belongs to computing
node 2. Thus, when the compute phase comes to node
2, it can’t compute Δmodularity between node 2 and
the community that node 5 belongs to. It means node
2 can’t move to the community with max Δmodularity
value. In order to alleviate this problem, we consider
to do as follows:
• Store Δmodularity value of each master node

and it’s replicas per computing node. In figure
5, computing node 1 stores max Δmodularity of
master node 2 and 4 (ΔQmax,2,1, ΔQmax,4,1), while
the max Δmodularity values of replica 2 and 4
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(∆Qmax,2,2, ∆Qmax,4,2) are stored in computing
node 2.

• Gather the stored values in one computing
node that the corresponding graph nodes’ master
nodes belong to. Since the master node 2 and 4
are in computing node 1, computing node 1 will
gather the values (∆Qmax,2,1, ∆Qmax,2,2, ∆Qmax,4,1,
∆Qmax,4,2).

• Each master node selects the max of the max
∆modularity values that gathered from each
computing node and updates their information
according to it. In figure 5, master node 2 selects
a max value form the set {∆Qmax,2,1, ∆Qmax,2,2},
and updates the community information of it.

• Scatter the updated master nodes’ community in-
formation to each replicas. In figure 5, comput-
ing node 1 scatters updated community informa-
tion of master node 2 and 4 to each replicas.

Above four steps should be done per one pass com-
putation completed, and then it enters into the next
pass computation or contraction phase.

5. Experiments
In this section, we show the result of preliminary

experiment and compare PMETISSDLouvain (divide
graph nodes by PMETIS) and ICLouvain on compu-
tation time and memory consumption per computing
node to evaluate the efficiency of edge partition.

All of the programs are implemented by X10 [3], a
parallel distributed programming language provided
by IBM. The experiment would be done on Tokyo-
tech Supercomputer and UBiquitously Accessible
Mass-storage Environment (TSUBAME) cluster. We
used two THIN computing nodes of TSUBAME,
while there are heterogeneous computing nodes on
it. Each THIN computing node consists of 54GB
RAM and two six-core Intel Xeon X5670 2.93GHZ
processors. Each program was executed 5 times and
we show the average of all results in this work. The
experiments of all rounds presented stable results per
graph data.

Twelve real graph data were used in the experi-
ments. All of the datasets used here are downloaded
from Stanford University’s Dataset Collection home-
page. (https://snap.stanford.edu/data/)

Table 1 Real Graph Datasets

#Nodes #Edges Description
Wiki-Talk 2,394,385 9,319,130 Web graphs

Pockec 1,632,803 44,603,928 Social
YouTube 1,134,892 5,995,248 Social

Web-Google 875,713 10,210,078 Web graphs
Amazon 334,864 1,851,748 Co-purchasing

DBLP 317,080 2,099,732 Co-authorship
Web-

NotreDame 325,729 2,966,813 Web graphs
Loc-

gowalla 196,591 3,801,308 Social
BrightKite 58,228 428,156 Social

Email-Enron 36,692 367,662 Communication
ca-AstroPh 18,772 396,100 Co-authorship

Wiki-Vote 7,115 207,378
Adminship

Election

5.1 Efficiency of edge partition
We observed the load balance and communication

cost of IC in preliminary experiment. Here, the com-
munication cost indicates the number of graph nodes
that need to exchange information.

Edge / Node balance First of all, we compared
the subgraphs’ edge size in three cases (Random,
METIS, IC partition). In table 2, we present the ratio
between maximum and minimum edge size of sub-
graphs, when dividing a graph into 8 subgraphs. It
shows that the METIS is not efficiency in edge bal-
ance, which is sometimes even worse than random
partition. However, when using IC, the ratio becomes
nearly to 1.

Table 2 |Edge Size|max/|Edge Size|in in subgraphs

#Random #METIS
Wiki-Talk 15.3 5.5

Pockec 21 1.2
YouTube 10.9 10.9

Web-Google 1.2 2.1
Amazon 1.0 1.2

DBLP 3.2 1.6
Web-

NotreDame 3.2 3.4
Loc-

gowalla 10.6 15.5
BrightKite 16.4 11.5

Email-Enron 17.9 17.8
ca-AstroPh 1.1 9.5
Wiki-Vote 3.3 23.8

Communication cost Since it is obviously consid-
erable that edge imbalance of subgraphs might oc-
cur when there are hubs in the graph data, we fitted
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power-law distribution to all of the data according to
the method of Clauset, Shalizi and Newman [10]. The
result shows the power law is a plausible hypothesis
for the data, and with the result in mind, we compared
the communication cost.

Table 3 Communication cost per graph partition method.

α Random METIS IC
Wiki-Talk 2 2,191,822 1,270,747 147,230

Pockec 2.4 6,244,429 3,132,701 3,482,163
YouTube 1.7 1,594,982 535,394 401,805

Web-Google 1.4 3,154,762 107,640 620,131
Amazon 1.3 1,040,006 57,789 235,225

DBLP 1.4 661,924 141,304 215,119
Web-

NotreDame 1.7 386,576 39,514 136,349
Loc-

gowalla 1.4 412,292 172,965 172,511
BrightKite 1.8 107,654 57,354 40,344

Email-Enron 1.7 50,535 31,086 24,582
ca-AstroPh 1.9 85,423 29,494 28,995
Wiki-Vote 2.1 16,827 15,363 9,296

Table table 3 shows the communication cost when
the graph is divided into 8 subgraphs. In the table,
α in table means the scaling exponent of power law
distribution. From it, we find that IC makes the same
or less communication cost when the data has high
scaling exponent. It means that if we adopt IC as pre-
process, the communication time should also be ben-
efited.

5.2 Memory consumption

In order to observe memory consumption and time
consumption of each computing node, we ran the
PMETISLouvain and ICLouvain method with the top
two data from table 1, since they have highest scaling
exponent values and largest scale. We used 16 pro-
cessers since the data Pockec has no imbalance in 8
partitions.

Both in PMETISLouvain and ICLouvain, the mem-
ory consumed through the whole community detec-
tion can divide into three parts. The first part is used
to store graph information such as degrees, edges and
the weights of edges. The second part is used to store
border / replica nodes that need to exchange informa-
tion, while the last part consumes memory as commu-
nication buffers. The memory usage of the first two
parts would be constant, since the subgraphs read by

Fig. 6 Memory consumption of Pokec preprocessed by
METIS.

Fig. 7 Memory consumption of Pokec preprocessed by IC.

Fig. 8 Memory consumption of Wiki-Talk preprocessed by
METIS.

each computing node would never change and also
the number of cross edges or replicas would never
change. However, the third part would use memory
dynamically. Because in the aggregation step of com-
munication part, the number of communities fall in
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Fig. 9 Memory consumption of Wiki-Talk preprocessed by
IC.

the range [pi ∗ n
|P| , (pi + 1) ∗ n

|P| ) should dynamically
change and imbalance.

According to the above, we represented the mem-
ory consumption in stacked bar chat. Figure 8 and
9 show the result of Pokec. The three parts in one
bar means the memory usage of graph data initial-
ization, borders / replicas and communication from
left to right. From the figures, we can see that the
edge size of subgraphs get balanced along with the
node size, and the maximum memory consumption
per computing node is controlled to 71% of the one
used in PMETISLouvain. In addition, the number of
borders / replicas is also get balanced, which means
the wait time of exchanging borders / replicas infor-
mation part should also be controlled to the minimum.

However, the imbalance of memory consumption
in communication part can be seen both in PMETIS-
Louvain and ICLouvain. It should be our future work
since this imbalance is the bottleneck at the current
stage.

Almost the same result can be seen from the result
of Wiki-Talk (Figure 8 and 9).

5.3 Comparison of Time

In this part, we observe the time structure of one
pass in order to know whether the computation time
imbalance is alleviated by edge partition. Commu-
nication time is also be compared between PMETIS-
Louvain and ICLouvain.

Time balance Figure 10, 11, 12, 13 show the time
consumption in the first pass per computing node in
PMETISLouvain and ICLouvain.

Fig. 10 Time consumption of the first pass in PMETISLou-
vain with Pokec.

Fig. 11 Time consumption of the first pass in ICLouvain with
Pokec.

Fig. 12 Time consumption of the first pass in PMETISLou-
vain with Wiki-Talk.

The time of one pass consists of two parts, compu-
tation part and communication part, and between the
two part, some wait time occur due to all computing
nodes need to synchronize information after compu-
tation part, while the computation time is different per
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Fig. 13 Time consumption of the first pass in ICLouvain with
Wiki-Talk.

Fig. 14 The distribution of communities in the first aggrega-
tion step with Wiki-Talk.

computing node. The tree parts in the figure indicates
computation time, wait time and communication time
in order from left to right.

In the figure, the total time of each computing node
is equal because the communication part would run
while doing barrier synchronization in each commu-
nication step.

The figures show that the computation time per
computing node is balanced well, and the total time
conserved 16% in Pokec, 55% in Wiki-Talk.

However, from the total time structure, we can see
that the proportion of communication time is up to 43
% in Pokec and 66% in Wiki-Talk.

Additively, when we observe the detail of commu-
nication part, the aggregation step consumes 51% of
communication time in Pokec, while it up to 82%
in Wiki-Talk. The balance of aggregation step also
shows imbalance (See figure 14, 15), though would
be different by each data. Thus, balancing the number

Fig. 15 The distribution of communities in the first aggrega-
tion step with Pokec.

of communities per computing node in aggregation
step should cut down the communication time. As the
memory imbalance of aggregation step, this is one of
our future work.

6. Conclusions and future work

6.1 Conclusion

There are several approaches [4], [19], [20] about
parallel Louvain method that mainly focus on com-
putation time without noticeable loss in modularity.
In contrast, there is only one approach [21] on dis-
tributed Louvain method. In that work, they pro-
posed to adopt node partition technique as a prepocess
to reduce the communication cost among computing
nodes.

In this work, we forcused on providing a distributed
community detection method that could deal large-
scale data which can not fit the memory of single com-
puting node. It is obvious that the maximum memory
usage among the computing nodes should be the bot-
tleneck that limit the scalability of the method. Thus,
in this case, node partition is not suitable because
node parititon only take the graph node balance and
it would lead to edge imbalance if there are hubs in
the graph data.

In our work, we adopted edge partition as prepro-
cess, which can take balance both in nodes and edges.
Furthermore, the balance of computation time per
computing node is also considerable due to the Lou-
vain method is a iterative algorithm that the compu-
tation of each iteration per computing node should be
done in O(m′). Here, m′ means edge size of the sub-
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graph that falls into each comuting node. Also, some
approximation techniques and collective communica-
tion are used to reduce the communication cost.

The results of our experiment show some efficiency
of edge partition method in memory consumption,
computation time and communication time. However,
it is still far away from our goal. We just proposed the
basic distributed model at the current stage, and kinds
of future work are considerable.

6.2 Future work
First of all, we hope to know what kinds of data are

suitable to process by ICLouvain. Though we gave
roughly tendency in table 3, but it is not correct in
many data. Such as, Web-NotreDame data has more
communication cost in IC, while it has high scal-
ing exponent. Amazon data never shows imbalance,
while Web-Google and DBLP with the near scaling
exponent show imbalance in data partition. There are
also some data (e.g. Pockec) show imbalance over a
fixed number of processor number.

In addition, some sensible polilcy is needed to bal-
ance the memory consumption of aggregation step.
We consider to decide the range of community id that
one computing need to process as [pi∗

|C|
|p| , (pi +1)∗ |C|

|P| )
instead of [pi ∗

n
|p| , (pi + 1) ∗ n

|P| ), when C indicates the
set of communities over the whole graph data. In or-
der to know C size just one reduction communication
is needed.

Some strategies such as only exchange changed
community information or just gather and aggregate
cross communities information are also need to be
done.

The interval of communications is also worth to
consider, since if it can take larger interval than one
pass, the shortening of the total time is available.

Finally, the study about the difference in the num-
ber of detected communities and its structures is also
necessary for evaluating the detection result in more
detail.
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