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Abstract: Cloud computing offers high computational resources, scalability, as well as ease of access. Such
cloud environments provide users with virtually unlimited computational resources to run HPC applications
at larger scale than what in-house systems can provide. Since large scale data intensive applications typically
generate huge amounts of intermediate data and are shared by hundreds and thousands of compute nodes,
such applications require high I/O throughput to shared storage. However, current shared storage in cloud
environments cannot provide enough I/O throughput for these applications. The low I/O throughput becomes
a performance bottleneck and the prolonged execution time incurs more cost to users as most cloud providers
employ pay-as-you-go pricing models. Furthermore, the eventual consistency policy adopted by most cloud
storages causes multiple-node job failure due to the inconsistent read-after-write.
To solve these problems, we propose a cloud-based burst buffer system as a new tier in cloud storage systems.
The cloud-based burst buffer system uses computing nodes as burst buffer nodes, and buffers applications’
data in the burst buffer nodes. Because throughput between compute nodes is much higher and more
stable than shared storage throughput, we can accelerate I/O performance for data intensive applications.
Moreover, by maintaining data consistency among burst buffer nodes, we can avoid job failure caused by
eventual consistency issue. To explore the effectiveness of cloud-based burst buffers, we implement a prototype
and evaluate the system in Amazon EC2/S3. Our experiments reveal that our system can perfectly solve
the eventual consistency issue as well as improve performance of a real-world data intensive application by
up to 4.5 times as well as reduced monetary cost by 56.3%.
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1. Introduction

Cloud computing architecture has been gathering the

attention of application developers because of its elasticity.

With the elasticity, users can enjoy virtually unlimited

computational resources on the fly and pay a cost

depending on their usage. In addition, recent clouds also

provide computational resources for high performance

computing (HPC) [1–5]. For example, Amazon EC2

provides HPC instances with high bandwidth networks,

I/O subsystems with high performance SSDs, and

accelerators such as GPUs [6]. These characteristics make

cloud computing more attractive for large-scale scientific

applications.

Network and storage bandwidth are, however, still

insufficient for highly data intensive HPC applications such

as big data analysis and large scale visualization. For

example, Amazon Simple Storage Service (Amazon S3), a

cloud-based shared storage, provides only a few hundreds

MB/s of throughput, whereas parallel filesystems of

supercomputers can serve up to a Terabyte per second.

This is because instances in Amazon EC2 are connected to
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Amazon S3 via a slower IDC networks and it is shared

among many users. Due to growing demands for higher

I/O throughput, current cloud environments will not be

able to provide sufficient I/O performance for such HPC

applications. Furthermore, due to the eventual consistency

policy typically facilitated by common cloud storage

systems such as Amazon S3, multi-node workflow

applications may fail because of inconsistent reads [7, 8].

To solve these problems, we propose a cloud-based burst

buffer system. Burst buffers have been proposed as a new

tier of storage hierarchy in supercomputers, providing

higher I/O throughput for shared storage by absorbing

bursty I/O requests from applications [9]. Moreover,

because most HPC applications exhibit data access

locality, if we cache the data, which will be accessed in the

near future on the burst buffers, we can accelerate access

performance [10]. Our idea is to build on-demand burst

buffers in the cloud instead of statically allocated I/O

nodes used in supercomputers by taking advantage of the

cloud’s elasticity. In order to achieve high scalability as

well as monitor and balance the workload, we propose a

new hybrid Master/Client, Key/Value model for our

cloud-based burst buffer system. In addition, by

maintaining data consistency among burst buffer nodes, we

can avoid the eventual consistency problem. To explore the
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effectiveness of burst buffers in clouds, we implement our

proposed system and measure the I/O performance and

the execution time of two real scientific data intensive

applications, Montage [10] and Supernovae, on a public

cloud environment, Amazon EC2/S3. Our experimental

results using Amazon EC2/S3 show that we achieve 10.47

times improvement in read throughput and 16.8 times

improvement in write throughput with a burst buffer

system with 8 I/O nodes. Additionally, our system scales

well by increasing the number of masters, and achieves up

to 2.5 times performance improvement in meta data

operations compared to Amazon S3. The executions of

Montage and Supernovae show that we can improve the

performance of real data intensive applications by 4.5x as

well as save 2.29x monetary cost. Moreover, by using our

system we perfectly avoid the eventual consistency issue

which causes frequent job failures on Amazon S3. To the

best of our knowledge, this work is the first exploration of

applying burst buffer technologies to clouds, and delivering

quantitative evaluations.

Our contributions can be summarized as followings:

• A cloud-based burst buffer model as a new tier of

storage hierarchy in Clouds;

• A hybrid Master/Client, Key/Value model for scalable

burst buffers;

• An implementation of the proposed burst buffer

system;

• Evaluations on the proposed burst buffer system with

a real data intensive application, Montage, and

demonstration of significant speed up.

The rest of this paper is organized as follows. In Section

2, we describe the background and motivation. Then, we

describe the overview of our cloud-based burst buffer

system architecture in Section 3, and the details of its

implementation in Section 4. Next, in Section 5, we

present our experimental results of the cloud-based burst

buffer system. Finally, we describe related work in Section

6 and conclude in Section 7.

2. Background and Motivation

Executing data intensive HPC workloads in clouds may

result in unacceptable performance degradation due to low

and unstable I/O performance as well as inefficient file

metadata operations in cloud storages, moreover the

eventual consistency policy adopted in cloud storages may

cause job failure due to inconsistent read (Section 2.1).

Our analysis of data intensive workloads on HPC systems

also found that a number of applications have temporal

I/O locality (Section 2.2). These I/O workloads can be

executed correctly and accelerated even on clouds even if

performance of shared storage is low and unstable or

adopted eventual consistency policy (Section 2.3) by using

our cloud-based burst buffer system as an on-demand

remote cache space.
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Fig. 1 Read/write I/O throughput with a single shared file on
Amazon s3.

0 

100 

200 

300 

400 

500 

600 

1 2 3 4 5 6 7 8 

Th
ro

ug
hp

ut
 (M

B/
s)

 

# of nodes 

Read 

Write 

Fig. 2 Read/write I/O throughput with each nodes accessing its
own file on Amazon s3.

2.1 Problems in Cloud Storage

The computational power in clouds enables users to run

high performance scientific applications faster than ever,

which has been making cloud computing attractive to

large-scale scientific applications. However if we run

multiple-nodes data intensive workloads, which read and

write a huge amount of data, we are facing two major

challenges: first, the prolonged execution time can be

unacceptable because of the low and unstable I/O

throughput as well as low file meta-data operations in

cloud storage; second, the eventual consistency policy can

causes the job failure.

First, we measure the I/O performance on Amazon S3 to

illustrate the performance issues we mentioned previously.

Fig. 1 shows I/O throughput with N number of nodes

concurrently reading or writing to a single file on the

Amazon S3 cloud. In the best case, i.e., reading using 3

nodes, the maximum I/O throughput is only 150 MB/s. In

a different experiment with N compute nodes accessing to

its own individual file, we see improvements in I/O

throughput and scalability as shown in Fig. 2. However,

the improvements are still limited compared to state-of-the

art parallel file systems, especially where write

performance does not scale with the number of nodes.

From the figures, we also see that the I/O performance is

fairly unstable. Because typical data intensive applications

consist of processes with mutual dependencies, prolonged
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Fig. 3 The Process of Montage [10]

I/O operation due to this instability can propagate,

degrading the overall performance [10]. Also, not only I/O

throughput but also metadata operations, such as file

creation or get file status etc., can become bottlenecks of

I/O performance. Hence from these experiments, we find

that the I/O performance in cloud storages is insufficient

for data intensive HPC applications.

Furthermore, modern clouds provide NoSQL storage

substrates such as Amazon SimpleDB [11], HP Helion

Object Storage service [12] and Rackspace Cloud Files [13];

such storages typically sacrifice consistency in favor of

improved latency for performance, as well as availability,

using relaxed consistency protocols such as eventual

consistency [7]. Although they are fine for standard cloud

workloads, for workflows of data intensive HPC workloads,

where the result from the preceding nodes in the workflow

is passed onto the succeeding nodes under the assumption

that there is a high-performance and consistent filesystem

such as Lustre, execution in a cloud environment could

result in an error as stale data may be read [8], and so far

the solutions have been to employ stricter consistency

models which sacrifice performance.

These problems have been reported in various

studies [14–18]. As such, we need new methodologies for

achieving high performance in data intensive HPC

workflows in clouds, and our cloud burst buffer is designed

exactly to cope with the problem.

2.2 Temporal I/O Locality in data intensive

Workloads

Our analysis of data intensive workloads on HPC

systems shows that a number of applications have

temporal I/O locality. Fig. 3 shows the process of a real

scientific workflow application, Montage – a portable

software toolkit for constructing custom, science-grade

mosaics by composing multiple astronomical images [10].

We can see that the whole process can be divided into

several sub processes; each sub-process reads the output of

previous sub-processes and generates data for successive
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Fig. 4 Point-to-point communication throughput in Amazon
EC2

sub-processes. We found that such a process pattern

increases the temporal I/O locality of workflow

applications.

To investigate the temporal I/O locality of data

intensive workloads, we developed MUSE [19] to trace all

I/O operations. We used MUSE to determine the I/O

locality of Montage with three different datasets. The

results of these experiments are shown in Table. 1. The

buffered I/O ratio, Rbuf , means the ratio of read and write

operations. The ratio can be formulated as:

Rbuf =
rb + wb

rt + wt
(1)

where rt and wt denote total read and write sizes,

respectively; and rb and wb denote size of reading and

writing from the buffer, respectively. As shown in the

table, we can see that the I/O pattern of Montage shows

high buffered I/O ratio, which is over 60% for all the

datasets. Because we assume a buffer of adequate size, all

written data can be buffered, i.e. wb = wt.

Large-scale HPC applications also have high temporal

I/O locality because these applications usually write

checkpoints for fault tolerance. In checkpoint/restart,

applications read the latest checkpoint when restarting.

The I/O pattern increases temporal I/O locality. Thus,

improving read and write performance in rb, wb can

accelerate these data intensive workloads.

2.3 Motivation of Burst Buffer in Clouds

As mentioned in Section 2.2, data intensive workloads

with high temporal I/O locality stand to benefit from their

I/O data being buffered. If we can install large, fast, and

shared buffer spaces, we can accelerate these data intensive

workloads. Motivated by this fact, we enhance the

performance of the storage hierarchy of cloud environments

though the use of a burst buffer technology. Burst buffer is

a new tier in current storage hierarchy for bursty I/O

operation in data intensive applications [9] and

checkpointing workloads [20]. By incorporating the new

tier of storage into clouds, the bursty I/O workloads can be

absorbed without a need of higher bandwidth storage.

Furthermore, our investigation on cloud network shows
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data set 0 data set 1 data set 2
Input data set size (MB) 25 182 1200
Output data set size (MB) 76.5 574.3 7100

Total I/O size (MB) 224.1 2132.4 30250.018
Total read size(MB) 147.6 1558.1 22667.261
Total write size(MB) 76.5 574.3 7582.757049

Temporal I/O locality size(MB) 139.14 2074.5 29609.493
Rbuf 62% 97.3% 97.882%

Single Thread Compute time (s) 4.7 18.7 311.82
Table 1 Montage Execution detail

Burst buffers 
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Fig. 5 Overview of cloud-based burst buffers

that the LAN networks inside clouds exhibit high and

stable performance. Fig. 4 shows point-to-point

communication throughput in Amazon EC2. In this

evaluation, we measure the network throughput between a

pair of m3.xlarge instances using Iperf [21], and increase

the number of the pairs. The specification of the instances

is in Table 3. As shown in the figure, we can see that the

network throughput between two nodes is high and

proportional to the increasing number of the pairs. Hence

we take advantage of the high and scalable network

throughput to burst I/O throughput. If we use the

combined memory space from a group of instances as burst

buffers, we can construct on-demand burst buffers with

high throughput and high scalability on the fly.

3. Architecture of Our Proposed

System

As we mentioned in Section 2, we have two major

challenges when executing HPC data intensive applications

on cloud: low and unstable I/O performance causes

reduction of application performance and eventual

consistency causes job failure. In order to solve these two

problems, we propose our cloud-based burst buffer system

(Section 3.1). We take advantage of high and stable

internal point to point connection to build local-system

burst buffer to accelerate and stabilize the I/O

performance and propose hybrid Master/Client and

Key/Value model to distribute the I/O workload to

achieve high scalability (Section 3.2 and 3.3). Then we

handle the eventual consistency issue by maintaining data

consistency among burst buffer nodes.

Fig. 6 Architecture of cloud-based burst buffers

Fig. 7 Structure of SCBB

3.1 Overview of Cloud-based Burst Buffers

In this section we introduce the overview of our

cloud-based burst buffer system. Fig. 5 shows the role of

our proposed system in cloud storage environment, In this

figure, Compute Nodes refer to the nodes on which

applications run. Burst buffers are provided by the same

instances as Compute Nodes. Unlike Compute Nodes, the

instances of the burst buffers provide memory buffers

remotely for caching data. When the applications read or

write data, the I/O operations are handled via burst

buffers. The shared cloud storage is a persistent shared

storage such as Amazon S3. The caching operation via

burst buffers is agnostic to the applications, therefore, the

applications can benefit from two-levels of storage

hierarchy without knowing the underlying

operations/architecture.

3.2 Our Proposal hybrid Master/Client and

Key/Value Architecture

As mentioned in Section 2.1, I/O throughput and file
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Master/Client Key/Value
pros: Easy to monitor

the entire system
performance ,load
balance

No central node, easy
to scale out.

cons: Master node can
easily become the
bottleneck of the
whole system

difficult to monitor
the whole system, and
balance the work load

Table 2 Advantage and Disadvantage of Existing Models

metadata operations can both greatly affect the

performance of data intensive applications. The

performance can be further impacted by possible

imbalance of workload and, therefore, it is imperative that

the I/O performance of the entire system be monitored.

However, the existing distributed file system models, like

Master/Client and Key/Value, cannot simultaneously

achieve high I/O performance as well as monitor and

control the system as shown in Table 2. For this reason, we

propose a hybrid model of Master/Client and Key/Value

that combines the benefits of both models to overcome the

individual limitation of each.

Next, we describe how we apply our proposal hybrid

Master/Client and Key/Value in our burst buffer system.

Fig. 6 and Fig. 7 show the overview architecture of our

proposed burst buffer system. The system consists of

several Sub Cloud-based Burst Buffers (SCBBs) and each

SCBB consists of a single Master Node and several

IOnodes. In each SCBB, the Master Node is in charge of

controlling all IOnodes and managing file metadata,

whereas IOnodes are responsible for storing the actual

data and transferring data with Compute Nodes. The most

common problem of using a Master/Client architecture is

that the master can easily become the bottleneck of the

whole system. In order to avoid the problem, we split the

entire fileset into several sub filesets. Each SCBB is

responsible for one of the sub filesets and the hash of file’s

path is used to decide to which SCBB each file belongs to.

This allows us to distribute workload among several

SCBBs and make our system more scalable. Inside each

SCBB, Master Node can monitor the performance and

balance the workload of IOnodes. Furthermore, since it is

difficult to buffer all the I/O data in IOnodes, swap-out

and write-back operations are necessary. Master Node

monitors the system and controls these operations.

All Master Nodes should be set up at the beginning and

remain unchanged. The information of all Master Nodes

are stored in all Compute Nodes. Since all Master Nodes

remain unchanged, Compute Node can use following

formula to decide the corresponding Master Node:

master = masterList[hash(filePath) mod N ] (2)

here masterList is a list of all Master Nodes in the system

N is the number of Master Nodes.

3.3 Structure of SCBB

Here we introduce the structural details of each SCBB.

3.3.1 Master Node

Master Nodes are the supervisors of their SCBBs.

Master Nodes store file metadata of each buffered file

including file size, file access time etc. Each Master Node

also maintains a list of the IOnodes in the its SCBB and a

file-IOnode map, which shows the files that are buffered in

each IOnode.

Besides controlling the SCBB and IOnodes, Master

Nodes are also responsible for handling all the I/O

operations from Compute Nodes such as file open, flush,

close etc. Furthermore, in order to monitor and balance

the workload, control swap-out/write-back, I/O operations

like read and write go through Master Nodes. Compute

Node doesn’t cache file-IOnodes map and require the map

information from Master Nodes before each read/write

operations. This helps in maintaining file consistency

among all the clients. Master Nodes are, however, not

involved in the actual transfer of data. For data transfers,

Compute Nodes query the file-IOnodes maps and then

connect directly to the corresponding IOnodes directly for

sending and receiving data. This serves to reduce the

burden on Master Nodes.

3.3.2 IOnodes

IOnodes store the actual data under the control of its

Master Node and are also responsible for the actual data

transfer. In each SCBB there can be several IOnodes,

which can be set up to mitigate the system stress and

perform shutdown to reduce the monetary cost on

demands.

4. Implementation

In order to validate our proposal in real cloud system,

we implemented our cloud burst buffer system with FUSE

framework. In this section, we show the overview of the

implementation (Section 4.1), describe the optimizations

for performance (Section 4.2), and details of various file

operations on our system (Section 4.3).

4.1 Implementation Overview

As described in previous sections, there are three kinds

of nodes in our system: Master Nodes, IOnodes, Compute

Nodes. Our implementation is based on the TCP/IP

protocol and use sockets to communicate among Master

Nodes, Compute Nodes, and IOnodes. We implement

Master Node and IOnodes as servers and Compute Nodes

as clients. To avoid slow down caused by hard disks, we

buffer files in the main memory of each IOnode.

In order to intercept all the I/O operations from

applications, and let users access data as other local

directories, we implement Compute Nodes with FUSE [22].

It provides several hooks to intercept I/O operations under

mounted directories, such as open, read, write, flush etc.

We implement these hooks and redirect these I/O

operations to corresponding Master Nodes and Compute

Nodes.

Although FUSE supports multi-threaded operations, we
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only support single thread in the current implementation.

As mentioned in Section 5, although our proposed

architecture, Master Nodes can control and balance the

work load in each SCBB, in this paper, we focus on the

effectiveness of cloud-based burst buffer, so in current

implementation, we use simple round-robin policy to assign

file to IOnodes in each SCBB. In addition, we assume that

all the files can be buffered in IOnodes and we don’t

perform write back. We also don’t implement data

replication for fault tolerance and data reliability in the

current implementation. Although there are several ways

to maintain the data consistency among burst buffer nodes

when file data is replicated, currently the files are not

replicated hence there is no eventual consistency problem

described in Section 2.1 in our implementation. However

these we mentioned above are the subjects of our future

work to make our system more effective and robust.

4.2 Optimizations for Performance

FUSE makes it easy to intercept I/O operations and

implement a userspace filesystem, nonetheless, targeted

optimizations are required to achieve high performance. In

this section, we introduce these optimizations in our

implementation.

Firstly, we reduce I/O latency by reusing sockets. In

TCP/IP protocol, creating a new socket needs three way

handshakes and causes slow start. When each IOnodes

starts up, it first registers itself to its Master, and when

Compute Nodes start up they register themselves to all of

the Master Nodes. They keep the sockets alive and reuse

them for subsequent communications. Compute Nodes

also register themselves to IOnodes at the first time they

communicate to each other, not at the start up, so that

IOnodes can be increased and decreased on demand.

When Compute Nodes and IOnodes are removed, they

unregister themselves from Master Node and Compute

Nodes also unregister themselves from all the registered

IOnodes.

Secondly, we split files into multiple fixed-size chunks to

handle a large number of files and reduce unnecessary data

transfer unlike s3fs, which requires a file to be read/written

in its entirety. This optimization enables IOnodes to store

only necessary chunks of files so they can increase the

number of files they can buffer. In addition, this

optimization also reduces unnecessary data transfer

between s3 and compute nodes when only a small portion

of file is read or updated. We adopt a lazy data allocation

policy, which means we allocate data chunk and read data

from remote shared storage only when necessary.

Additionally, we introduce dirty flags for each data chunk,

which works like dirty flags in conventional memory

management techniques. The flag is set to CLEAN when a

chunk is first read from the remote shared storage,

signifying that the buffered chunk is up to date. When the

data chunk is updated, the flag changes to DIRTY and

only DIRTY chunks need to be written back during the

write-back phase; this reduces the data transferred for

write operations. Although distributing chunks of a single

file over multiple IOnodes can achieve further performance

and scalability, deciding the best chunk placement is

difficult. In the current implementation, thus, we buffer all

chunks of a single file are buffered in a single IOnode.

Thirdly, we introduce an additional tier of buffers, local

I/O buffers, to reduce the number of read/write

sub-requests in the FUSE framework. In FUSE version

2.9.3, it divides read/write requests into sub-requests and

each sub-request handles one memory page, which is

typically 4KB in common Unix systems. This increases the

read/write latency and requests to a huge file lead to a

huge number of sub-requests and Master Nodes possibly

become bottleneck because Compute Nodes need to

communicate with Master Nodes and IOnodes before

actual data transfer on every request thus all the I/O

operations go through Master Nodes, although we use

hybrid Master/Client and Key/Value architecture to

distribute workload and Master Nodes are not involved in

actual data transfer. We introduce local I/O buffer, like

buffered I/O in common Unix systems, such as fread and

fwrite. A local I/O buffer is allocated for each opened file

on Compute Nodes and read/write operations within the

buffer range can complete locally in the Compute Node.

We also use dirty flags to local I/O buffers like flags for file

chunks. A local I/O buffer is written back to the IOnode

only when the flag is DIRTY. Actual data transfer between

IOnodes and Compute Nodes happen in the following

situations:

• Read, write or seek out of local buffer buffer range.

• FUSE framework calls flush on file with DIRTY dirty

flag.

• FUSE framework calls close on file with DIRTY dirty

flag.

Finally, when using FUSE, besides read/write, other file

operations are also called frequently, such as getattr, which

means get the file status. Since all of the Master Nodes,

IOnodes and Compute Nodes are not multithreaded in

current implementation, it will causes high latency and

slow down other file operations if all these file meta-data

operations all go through Master Nodes. To prevent this

circumstance, we create local buffers to cache file meta

data to accelerate these file-meta operations. However, we

cannot buffer all the file-meta data in order to keep

consistency among all the Compute Nodes, because the

cached meta data will be out of date when other nodes

update that file. Hence in our implementation, only the

meta data of opened files are buffered. When a user opens

a file, Compute Node retrieves file-meta data from

corresponding Master Node, and buffers it for subsequent

file-meta operations, and when user application updates

meta data, the operations will be performed on these meta

data buffer and the buffer is marked as DIRTY. When

flush operation is called for the file whose buffer is marked

as DIRTY, Compute Node will first update Master Nodes’
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meta data with locally buffered meta data, and then

transfer data to IOnodes.

4.3 File Operations

In describe how we implement the system and

optimizations in detail, and how our system handle each

I/O operations. In this section, we give more details about

the file operations in our implementation: open, create,

flush, close, read, write and other operations in FUSE.

4.3.1 open and create

When an application opens a file, the FUSE framework

calls our open function, and pass the relative file path from

the mount point, and other information like file access

mode. We first apply formula 2 against the file relative

path to select the corresponding Master Node, and record

this information in local data structure, then send the file

path and file open flag to that Master Node, when Master

Node receives the path, it first searches whether the file

has been buffered already, If the file is already buffered,

Master Node replies to the client with a unique id which

will be used in the subsequent file operations. If the file

hasn’t been buffered, Master Node will first pick up a new

file id, and select several IOnodes in the same SCBB, and

send open request with the file relative path to these

IOnodes, subsequently, Master Node returns the file id to

Compute Node. Compute Node stores the file id in FUSE

file meta-data and uses it for the following operations.

File creation is quite similar with file open, when

Compute Node connects to Master Node, beside the file

relative path and open flag, we also send the file mode,

which denotes the permission in common Unix system. In

order to accelerate file creation, Master Node creates a

new file with the file mode, assigns some IOnodes, and

return the file id. In our implementation Master Node

don’t actually create a new file in remote shared storage,

rather, Master Node marks the new created file with a not

existing flag, and create file in remote shared storage when

write back.

4.3.2 read and write

When an application issues a read request, the FUSE

framework calls our read function with file id, data buffer

pointer, read size and offset. We first get the corresponding

Master Node from local record, and then send the read

request with read size and offset. As mentioned in

section 4.2, files are split into several fixed-size data

chunks, after receiving these information, Master Node

responds to the Compute Node with a map of file

chunk-Onodes, provides Compute Node with the

information about which IOnode is responsible for each file

chunk. After receiving the map, Compute Node connect to

the corresponding IOnode directly, and sends the read

request with size and offset. If the file is buffered in the

IOnode, the IOnode will send Compute Node with the

requested data, otherwise, the IOnode will first read from

remote shared storage, can then send the data.

Write operation is treated similarly to the read

operation. In addition to the read case, we also have to

consider the case that data is written beyond the current

end of file. Since files are split into several fixed-size data

chunks, data chunk needs to be additionally allocated in

this case. When Master Node finds that data chunk

allocation is required to fulfill write request by a Compute

Node, Master Node will send the allocation request to the

same IOnode which buffers the existing data chunks of the

same file, as one file will be buffered in only one IOnode in

current implementation. Subsequently Master Node

appends this new chunk-IOnode pair into its

chunk-IOnode map, and responds to the Compute Node

with the new chunk-IOnode map.

4.3.3 flush and close

As mentioned in section 4.2, in order to reduce the

read/write operations between Compute Nodes and

masters, IOnodes as well as the unnecessary write back

data transfer, we introduce the local I/O buffer, and dirty

flag. Hence when flush is called, Compute Node first

checks the dirty flag of local I/O buffer. If it is set to

DIRTY, Compute Nodes will call write on local I/O buffer,

and set the dirty flag to CLEAN.

When user closes the file, the flush operation will be

invoked by FUSE framework first, and then the close

request will be sent to Master Node to perform actual file

close.

4.3.4 other file operations

In FUSE framework, other than the abovementioned

operations, there are also several file meta data operations

available such as getattr, which means get file status. We

also implemented this and other file meta data operations

in order to make our system behave correctly.

5. Evaluation

To validate the effectiveness of cloud-based burst buffers,

we conduct several evaluations in the Amazon EC2 public

cloud. For the Clients, IOnodes and Masters we use

Amazon EC2 instances shown in Table 3. All the Clients,

IOnodes and Masters node connects with interconnection

network inside Amazon EC2 in the same region.

System Amazon EC2
Region Tokyo

Instance Type m3.xlarge
vCPUs 4
ECUs 13

Memory 15GiB
Instance Storage 2*40GB(SSD)

Network Performance High
Cost $0.405 per Hour

AMI Type Amazon Linux AMI (HVM)
Table 3 Evaluation Environment

Here, vCPUs means the number of virtual CPUs in the

instance, and a single ECU (Amazon EC2 Compute Unit)

provides the equivalent CPU capacity of a 1.0-1.2GHz 2007

Opteron or 2007 Xeon processor [1]. For the shared cloud

storage, we use Amazon S3 and mount it onto all IOnodes
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Fig. 8 Sequential I/O Performance

Fig. 9 Random I/O Performance

and Masters using s3fs [23]. We set the data chunk size in

IOnodes and local I/O buffer size to 100MB.

5.1 I/O Performance of Cloud-based Burst

Buffer

First, To illustrate how our system solves the

performance issue we mentioned in Section 2, we show how

much our system can improve and stabilize I/O

performance with different I/O patterns. We evaluate the

performance of two basic I/O patterns: sequential and

random I/O, on our system. Since the applications’ I/O

patterns are the combination of these two basic patterns, if

we can improve the performance of these two basic

patterns, we can improve the applications’ I/O

performance. We measure the sequential and random I/O

performance with different number of IOnodes in a single

SCBB. Data is sent from burst buffers to compute nodes

when we read data from burst buffers, and vice versa when

we write. Thus, both performances are identical and shown

in the single bars in the Fig. 8 and 9. Each client accesses

data of size 100MB in sequential access case and accesses

one byte for 10,000 times from random offsets of a 100MB

file in random access case. In order to achieve high random

access, both s3fs and our system provide local I/O buffers.

The sequential I/O performance is shown in the Fig. 8,

Fig. 10 File Creation Performance

we can see that the performance of our system increases as

the number of IOnode/Client pair increases. When the

number of clients is smaller than the number of IOnodes,

the performance scales out as the number of clients

increases, however, when the number of clients is larger

than the number of IOnodes, the performance cannot

improve any further. This is because the maximum I/O

throughput is limited by the total bandwidth of IOnodes.

With 8 clients and 8 IOnodes, we can achieve the

aggregated throughput up to 2,500 MB/s. On the other

hand, without our cloud-based burst buffers, we see that

applications can only achieve 330 MB/s for read and 250

MB/s for write using 8 nodes. Next, we show the random

I/O performance in Fig. 9. Thank to local buffer, we can

see that both our system and s3fs performances scale well

and get stable performance. We get similar results as

sequential I/O cases. Our system again provides higher

performance than s3fs.

From these two experiments we show that our system

scales significantly as the number of IOnode/Client pair

increases and can remarkably increase the two basic I/O

performances, sequential and random I/O compared to

s3fs.

5.2 Scalability of SCBB

As we mentioned in Section 2, besides the I/O

throughput, other meta data operations can become

bottleneck of I/O performance. Furthermore since the

main drawback of Master/Client model is scalability,

because Master can easily become bottleneck of entire

system, hence we propose our hybrid model to alleviate

such bottleneck in Section 3. In order to validate the

effectiveness of our hybrid model, we evaluate the file

creation performance to show the scalability of our system.

We chose file creation performance since it is typical

meta-data operation and has been widely used to evaluate

meta-data performance and scalability of filesystems. We

evaluate the file creation performance of creating 1,000 files

totally with different number of SCBBs. Since Master

Nodes and Compute Nodes both operate in single thread,
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Fig. 11 Execution time of Montage on Multiple Nodes

Fig. 12 Cost for Execution of Montage

in this experiment, we set the number of Compute Nodes

equals to the number of Master Nodes. Since we use hash

of file path to select corresponding Master Node, we

randomly change the file path for each measurement.

As we can see from Fig. 10, by increasing the number of

Master Nodes, our system can scale out significantly. Since

we use hash of a random file path to select a Master Node,

achieving a perfectly balanced workload every time is

difficult, but we can expect a statistically balanced

workload when the number of files increases. We can

achieve 2.5 times performance improvement by using our

system compared to S3. From this experiment we show

that our system can greatly improve the meta data

performance compared to S3 and our proposal hybrid

model can alleviate the bottleneck caused by common

Master/Client model.

5.3 Accelerate Real Application

In previous sections, we present how our system can

accelerate all basic I/O patterns as well as meta data

operations compared to Amazon S3. In order to illustrate

how such improvement in I/O performance affects real

applications, we evaluate two real world HPC applications

on our system in this section, Montage and Supernovae. In

Fig. 13 Execution time of Supernovae on Multiple Nodes

Fig. 14 Cost for Execution of Supernovae

this experiment, we use GXP [24] to distribute workflow on

multiple nodes and compare the performance between our

system and s3fs. Since Amazon S3 adopts eventual

consistency as we mentioned previously, we observed

frequent job failures due to the inconsistent read, hence in

this experiment we slow down the execution by disabling

the local file status cache in s3fs to ensure consistent read.

On the other hand, there is no consistency issue when

using our system. In Montage experiments we evaluate the

performance using different number of IOnodes to present

how different number of IOnodes affects data intensive

applications’ performance. However in Supernovae cases,

since supernovae doesn’t have as heavy as I/O burden like

Montage, we set the Master and only one IOnode process

on the same node to reduce the cost. The data set we used

is data set 0 in Table 1.

First we show the Montage results. Fig. 11 shows the

results of the execution of Montage. As we can see, our

system can improve the performance greatly (over 4.58

times on the single node cases). In multiple node cases, the

performance improved by increasing the clients seems

comparatively small. This is because the workflow

applications like Montage have dependencies in process (

Fig. 1), and in our test case, it cannot run perfectly

parallel. For the same reason, increasing the number of

IOnodes can provide a limited performance improvement.
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Although the data set used in our experiment is small, as

we discussed in Section 2.2, further improvement can be

expected when using larger data set such as data size 1 or

2 in Table 1. Next, Fig. 13 shows the results of

Supernovae. As we can see, we get similar results as

Montage cases, we can accelerate the execution by using

our system. Moreover we can see that the performance

improves greatly as the number of clients increases, it is

because Supernovae also has heavy computation, hence the

performance improves as the computational resources

increased. We also observed the performances of both s3fs

and our system are more stable compared to Montage

cases, since Supernovae has less I/O than Montage, hence

the performance bears less influence from the I/O

performance fluctuation.

In addition, we found that although we use additional

nodes in our system, the overall monetary cost can still

improved due to the reduction of execution time. Fig. 12

and 14 shows the comparison of monetary cost for the

Montage and Supernovae execution respectively. As shown

in the figures, in both cases we observed cost reduction by

using our system. Moreover, in Montage, the data

intensive application cases, due to the huge reduction in

execution time, we can achieve up to 56.3% reduction of

the monetary cost in addition to the I/O performance.

Although, the environments with cloud-based burst buffers

use more Amazon EC2 instances, i.e. additional IOnodes

and Master Node, the execution is cost effective because

the execution time can be greatly reduced by using our

cloud-based burst buffers.

In some cases, the cost increases because of low

contribution of increasing IOnodes. In such cases, if we can

dynamically change the number of burst buffers during

execution according to I/O time and the computation

time, we can increase the I/O throughput while minimizing

the monetary cost. In addition, if we dynamically change

I/O destinations between cloud-based burst buffers and S3,

we can optimize both I/O throughput and the monetary

cost depending on the types of applications. We can

analyze the I/O patterns based on MUSE and then use the

results to optimize the workloads. We will consider the I/O

tuning in future work.

6. Related Work

Burst buffer has been used in several research as a new

design in storage system to fill the performance gap

between node’s local storage throughput and parallel file

system throughput. Liu et al. [9] proposed burst buffers for

high performance systems to absorb bursty I/O request

from applications. They analyzed the I/O patterns of

several applications and the workload of the whole system

with their proposed burst buffer and delivered its

effectiveness. Sato et al. [25] explored effectiveness of burst

buffers in checkpointing and proposed checkpoint strategy

for burst buffers.

The emergence of a cloud computing technology brings a

new solution to large scale high performance computing

with low initial costs, high accessibility, and flexibility.

There are already several research using public clouds for

large scale computation. Garcia et al. [26] deployed

Hadoop on Amazon EC2 for querying large web public

datasets. Wittek et al. [27] combined an

implementation-independent workflow designer with cloud

computing to support small institution in ad-hoc peak

computing needs. Anthony et al. [28] discussed the

applicability of cloud computing to large-scale satellite

ground systems. However, these work only focus on how to

run these large scale application on clouds, and do not

consider the problem of increased I/O throughput to

shared cloud storage.

I/O throughput problem is a critical part in cloud

computing and many works have been focusing on this

problem. Hovestadt et al. [29] considered another way to

improve the I/O performance, they proposed a new

adaptive compression scheme for virtualized environments

and improved the I/O performance by compressing the I/O

data. Hongtao Du et al. [30] focused on the performance of

meta-data server in cloud environments. They proposed a

high throughput system for cloud storage by building

meta-data server on the high performance mainframe.

Meanwhile, we extend and apply the state-of-the-art burst

buffer technology for clouds to accelerate I/O performance.

To the best our knowledge, this work is the first

explorations of innovating burst buffer technologies in

order to solve low I/O throughput problems in clouds.

7. Conclusion and Future Work

A cloud-based burst buffer system has been introduced

in order to accelerate I/O performance of data intensive

HPC applications running in the cloud. We implemented

our proposal using a hybrid of Master/Client and

Key/Value models, capable of simultaneously achieving

both scalability and good load balancing.

Our benchmarks have shown that our system accelerates

and stabilizes read throughput, write throughput, and

meta data operations by up to 10.47, 16.8, and 2.5 times,

respectively, on Amazon EC2/S3. Moreover, our system

can perfectly solve the eventual consistency issue in

Amazon S3, which causes frequent job failures. The

executions of Montage and Supernovae show that we can

improve performance of a real world data intensive

application by up to 4.5 times as well as save 56.3%

monetary cost.

As future work, we will extend the system to be able to

dynamically change the number of burst buffer nodes

depending on the I/O workload, thereby further increasing

I/O throughput and minimizing costs.
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