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Abstract:
rCUDA is a remote CUDA execution middleware that creates virtual GPUs for a CUDA application. Code and data
being executed on the virtual GPUs are transparently transferred to actual GPUs on remote nodes and the results of
the execution are reported back to the application. With this capability, applications can use nodes that do not have
enough idle GPUs by using rCUDA to borrow idle GPUs from some other nodes. However, those applications may
suffer from the overhead of rCUDA; especially for applications that frequently call CUDA kernels or have to transfer
a lot of data, the overhead can be detrimentally large. We propose mrCUDA, a middleware for transparently migrating
rCUDA virtual GPUs to native GPUs at runtime and show that the overhead of mrCUDA is negligibly small compare
to the overhead of rCUDA. Hence, mrCUDA allows applications to run on nodes that does not have enough idle GPUs
(by using rCUDA) and later migrate the work back to native GPUs (thus, get rid of rCUDA overhead) when available.

1. Introduction
1.1 rCUDA: Remote CUDA Execution Middleware

rCUDA [1, 2, 3] is a CUDA-compatible GPU virtualization
middleware developed by the Universidad Politecnica de Valen-
cia, Spain. It composes of two main parts: rCUDA library and
rCUDA server. rCUDA library intercepts all CUDA-related calls
of an application and forwards the calls to rCUDA servers run-
ning on remote hosts. The rCUDA servers execute the calls on
the GPUs on their nodes and return the results of the execution
back to the rCUDA library, which in turn passes them back to
the application. Any applications that use native CUDA can use
rCUDA without any need to modify or recompile their source
code since the rCUDA library has the same application program-
ming interfaces (APIs) as libcudart.so, the CUDA API library.
More information regarding how rCUDA works and its perfor-
mance analysis can be found in [1, 2, 3, 4, 5, 6].

rCUDA has been proven useful in many situations. For exam-
ple, Duato et al. [3] showed that CUDA applications could be
run on a virtual machine by using rCUDA to redirect all of the
CUDA-related calls to the GPUs on the host machine. Pena et
al. [7] presented that one can reduce the number of GPUs in a
cluster by consolidating GPUs into several GPGPU nodes and let
CUDA applications running on other compute nodes, which do
not have any GPU, to use some GPUs on those GPGPU nodes
on demand by using rCUDA. They claimed that this method can
lead to more efficient in space, energy, acquisition, and mainte-
nance costs. Also in our previous work [8], we showed that we
could get rid of the idle-GPU scattering problem, which in turn
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increase the resource utilization, in multi-GPU resource-sharing
systems by using rCUDA to virtually consolidate idle GPUs scat-
tered on various nodes into one node.

1.2 Problem Statement
In our previous work [8], we presented a mathematical model

that expresses the overhead of the rCUDA. Since we are going
to use that model to discuss about the rCUDA’s overhead, we
present it here again with updated parameters’ values for the lat-
est rCUDA version (v5.0):

timercuda = (rcuda lat + net lat)(gpu call count) +

datasizeapp

bweff

overheadrcuda

(1)

where bweff is the bandwidth of the application; net bw is the total
bandwidth of the network; timercuda is the time per CUDA kernel
call when using rCUDA; net lat is the latency of the network;
gpu call count is the number of CUDA calls; datasizeapp is the
data transfer size of the call; rcuda lat = 50.62 µs is the addi-
tional latency when using rCUDA; and overheadrcuda = 1.03 is
the additional bandwidth overhead when uses rCUDA.

According to the model, we can easily see that the rCUDA’s
overhead can be detrimentally large for some applications; more
concretely, for applications that transfer a lot of GPU data or fre-
quently call CUDA-related functions. For example as shown in
Fig. 1, LAMMPS [9, 10], a molecular dynamics simulation appli-
cation, experiences increasingly huge slow down as the number
of simulation steps (minor x-axis) increase when using rCUDA.
This is because the number of CUDA-related calls and the total
amount of GPU data transfer increase as the number of simulation
steps increase.

In our previous work [8], we showed that it is possible to
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Fig. 1: Comparison of the execution time of LAMMPS on a re-
mote GPU using rCUDA and a local GPU

use rCUDA to reduce the wait time of GPU jobs in multi-GPU
resource-sharing system by consolidating idle GPUs from differ-
ent nodes. For example, a node that has three physical GPUs but
has only one unoccupied GPU cannot be used to serve a job re-
questing more than one GPU per node. We showed that if we
use rCUDA to “borrow” idle GPUs from other nodes, that node
could be used to serve the job given that other unoccupied re-
sources can satisfy the job. Doing so can magnificently reduce
the average wait time of GPU jobs while increases their execu-
tion time a bit. However, for jobs such as LAMMPS, the large
increasing in the execution time due to the rCUDA’s overhead
can easily overshadow the benefit for the wait-time reduction.

The need to use rCUDA to borrow an idle GPU from another
node is, in many cases, temporary but there is no way for GPU
applications that use rCUDA to stop using it at the runtime. The
main reason why we need to ask a job to use the rCUDA is be-
cause the idle GPUs are scattered throughout multiple nodes such
that there is not way to run that job, at that moment, using other
means. However, it is possible that more local GPUs will be avail-
able afterward as some jobs may finish and release their occupy-
ing resources. Hence, if we have a way to migrate the execution
on a remote GPU to a local GPU, we can enjoy the benefit of re-
duced wait time while keeping the extra execution time due to the
rCUDA’s overhead low.

2. mrCUDA’s Architecture
mrCUDA, stand for “migratable rCUDA”, is a middleware be-

tween an application and the rCUDA library that allows the appli-
cation to transparently migrate code and data running on a remote
GPU to a local GPU at runtime. It works by intercepting every
CUDA-related calls of the application and passing the calls to the
rCUDA library or the native CUDA library as well as having a
mechanism to migrate all data and execution from a remote GPU
to a local GPU. It also provides a socket that an external applica-
tion such as a scheduler can send a migration command in to start
a migration. The GPU application does not aware of the migra-
tion and it can continue using CUDA without having to handle
anything. The main concept of the migration is the synchroniza-
tion between two GPUs’ states and memory. We are going to
introduce each part of the mrCUDA in this section.

How the mrCUDA allows an application to transparently mi-
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Node%1
void%main(){%
%%%//%code%
%%%cudaMemcpy…%
%%%//%code%
%%%cudaKernelCall…%
%%%//%code%
}

rCUDA%lib

Node%2

rCUDA%server

GPU GPU GPU

Network

libcudart

GPU

sock

mrCUDA%lib

GPUGPU

Trig

Block

Migrate

(b) Migration mode

Node%1
void%main(){%
%%%//%code%
%%%cudaMemcpy…%
%%%//%code%
%%%cudaKernelCall…%
%%%//%code%
}

rCUDA%lib

Node%2

rCUDA%server

GPU GPU GPU

Network

Intercept

libcudart

GPU

sock

mrCUDA%lib

GPUGPU

(c) CUDA passthrough mode

Fig. 2: Overview of how mrCUDA allows migration from a re-
mote GPU to a local GPU

grate its GPU execution is shown in Fig. 2. The mrCUDA first
starts operating in the “rCUDA passthrough mode”. In this mode,
the mrCUDA intercepts all of the CUDA-related calls of the
application, “record” the order of some calls as well as active
GPU memory regions, and passes the calls to the rCUDA library.
Fig. 2a shows how it works. The next mode of operation is called
“migration mode” as shown in Fig. 2b. This mode is activated at
the time the mrCUDA receives a migration command via the pro-
vided socket. The command is in the form “migrate [virtual GPU
ID] [local GPU ID]”; for example, the migration command “mi-
grate 0 1” will ask the mrCUDA to migrate the virtual GPU ID 0
to the local GPU ID 1. At the start of this mode, all of the CUDA-
related calls that have not been passed to the rCUDA library are
put in a waiting queue. The mrCUDA then issues the cudaDe-
viceSynchronize call to the rCUDA library, which will not return
until all the calls running on the remote GPU finish. At this point,
the states and the memory of the remote GPU will not change
any further. The mrCUDA then “replay” the calls recorded dur-
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ing the rCUDA passthrough mode to the selected local GPU in
order; doing this ensures that the states of the local GPU will end
up the same as those of the remote GPU. After that, the mrCUDA
does “mem-sync” which is copying all the active memory regions
of the remote GPU to the same region on the local GPU. After it
finished the mem-sync process, the memory of the two GPUs are
ensured to be the same and the mrCUDA automatically enters the
last mode “CUDA passthrough mode” as shown in Fig. 2c. In this
mode, the mrCUDA first sends the calls in the waiting queue to
the native CUDA library and then does the same for any further
CUDA-related calls. All of these modes of operation allow the
application to transparently migrate the GPU execution.

3. Migration Algorithm
The main concept of transparently migrating a GPU is mak-

ing the states and the memory of the destination GPU the exact
same copy of the origin GPU. The “states” of a GPU in this con-
text include all of the GPU device’s flags, executable code regis-
tered to the GPU, and active memory’s virtual addresses; while
the “memory” means the data residing in the active memory re-
gions. Synchronizing the GPU device’s flags and the registered
executable code is quite simple since we can simply read the de-
vice’s flags of the remote GPU and configure those of the local
GPU with the same value and the registered executable code does
not change during the GPU execution. However, synchronizing
the active memory’s virtual addresses is not a simple task.

Making the virtual address space of an active memory region
on a local GPU the same as that on a remote GPU is not straight-
forward. For example, a virtual address returned from allocating
the same size of memory using cudaMalloc for the first time and
the second time even on the same GPU are almost always dif-
ferent. However, we need a way to recreate the exact same vir-
tual address spaces of the same allocation on the local GPU since
those virtual addresses could be stored anywhere in the program
(both in the host memory and the device memory) and may be
used later after the migration. A. Nukada. et al. [11] found that if
two programs execute CUDA driver API calls in the same order,
the virtual addresses returned from the memory allocation calls
are always the same. We tested this out on CUDA runtime API –
rCUDA supports CUDA runtime API not CUDA driver API – on
a remote GPU served by an rCUDA server and on a local GPU.
We found that with a little intervention we can make the virtual
address spaces of those two GPUs the same. However, this as-
sumption is true only if the remote GPU and the local GPU have
the same GPU model and both use the same CUDA driver and
runtime API versions.

The need to execute CUDA-related calls in the same order
leads to the implementation of the “replay method”. The replay
method was proposed by Nukada et al. [11] as a way to im-
plement checkpoint/restart for CUDA applications. Their library
records the CUDA driver API calls of a program from the start
until the latest checkpoint and replays them to get the same GPU
virtual address spaces when the program has to restart from a fail-
ure. We use the same idea but apply to the CUDA runtime API
calls instead. From our experiment, we found that the mrCUDA
needs to record only a small subset of CUDA runtime APIs shown

Table 1: CUDA runtime APIs that needed to be recorded and re-
played

CUDA API Special Intervention
cudaRegisterFatBinary Need to propagate the new fatCubin-

Handle’s address to some other recorded
APIs.

cudaRegisterFunction Need the new fatCubinHandle’s address
returned from cudaRegisterFatBinary.cudaRegisterTexture

cudaUnregisterFatBinary
cudaRegisterVar Need the new fatCubinHandle’s address

returned from cudaRegisterFatBinary
and the variable address has to be in-
cluded into the active memory region ta-
ble.

cudaMalloc* The allocated address has to be added to
the active memory region table.

cudaFree The freed address is removed from the ac-
tive memory region table.

cudaStreamCreate Two additional calls are needed after fin-
ish replaying all of the cuda*.

cudaBindTexture
-cudaHostAlloc

cudaSetDeviceFlags
cudaMalloc*: the API whose name starts with cudaMalloc such as
cudaMallocArray.

cuda*: the API whose name starts with cuda such as
cudaRegisterFunction.

in Table 1 to reproduce the same virtual address spaces on a local
GPU. Most of the CUDA runtime APIs can be directly recorded
and replayed as they are – the mrCUDA does not need to mod-
ify the order or any arguments passed to those calls – however
recording and replaying some APIs are not straightforward.

As shown in Table 1, most of the cuda* relies on
the fatCubinHandle variable, which is returned from calling

cudaRegisterFatBinary – the function for putting the GPU code
of an application to the GPU devices and thus it is the first CUDA
call for every application. However, unlike other CUDA run-
time APIs, the cudaRegisterFatBinary usually does not return
the same fatCubinHandle address. Since the fatCubinHandle
variable is needed in other functions, the mrCUDA replaces the
recorded fatCubinHandle parameters of every API calls with the
new value when the cudaRegisterBinary function is replayed on
the local GPU.

cudaRegisterVar, cudaMalloc*, and cudaFree affect the allo-
cated memory regions of the GPU. Since the mrCUDA does not
have to synchronize the data of non-active memory regions, the
mrCUDA keeps a list of active memory regions in a table; the
addresses returned from cudaRegisterVar and cudaMalloc* are
put in that table while the addresses passed to cudaFree are re-
moved from the table. By using this technique, the mrCUDA can
reduce the amount of data it has to copy from a remote GPU to a
local GPU.

cudaStreamCreate affects the memory addresses returned from
calling cudaMalloc*. From our experiment, subsequent calls to
cudaMalloc functions after calling a cudaStreamCreate return
different memory addresses compare with calling the same se-
quence of cudaMalloc without cudaStreamCreate. Moreover, the
rCUDA server seems to call cudaStreamCreate two times right
after finishing all of the initializing cuda* function calls even
though there is no cudaStreamCreate call in the application code.
Hence, the mrCUDA has to add two additional cudaStreamCreate
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Fig. 4: Record algorithm of mrCUDA

calls to the recorded CUDA-call list right after the first sequence
of cuda* calls, as shown in Fig. 3 for example.

The mrCUDA uses the discussed knowledge in the “record”,
“replay”, and “mem-sync” processes. The overview of the record
process is shown in Fig. 4. Basically, the mrCUDA takes a look
at each intercepted CUDA-related call and decides whether it has
to record the call. If it has to record the call, it puts that call in
the recorded list as well as handles the special intervention men-
tioned in Table 1. For the replay process, the mrCUDA first adds
two cudaStreamCreate to the appropriate position in the recorded
list and executes each recorded call in order as well as handles
the special intervention. After finish the replay process, the mr-
CUDA starts the mem-sync process; the mrCUDA takes a look
at the active memory region table and copies the data on those
regions from the remote GPU to the local GPU. Finishing the
mem-sync process marks the end of the migration.

4. Multi-GPU Migration

Table 2: Output of executing the simple cudaMalloc program on
each configuration shown in Fig. 5

Configuration a (GPU ID 0) b (GPU ID 1)
First configuration 0x702e20000 0x705d40000
Second configuration 0x702e20000 0x702e20000
Third configuration 0x702e20000 0x705c40000

Handling multi-GPU migration is quite complex compare to
the single-GPU migration. The main problem is that most of the

(a) First configuration: Local GPUs

(b) Second configuration: Remote GPU 0 of Node 1 and
Remote GPU 0 of Node 2

(c) Third configuration: Remote GPU 0 of Node 1 and
Remote GPU 1 of Node 2

Fig. 5: Three different configurations of how we can execute a
multi-GPU application

time the replay method cannot recreate the exact same GPU vir-
tual address spaces on other local GPUs after the first migration.
Consider executing a very simple multi-GPU cudaMalloc pro-
gram using each configuration shown in Fig. 5 on three nodes that
have two NVIDIA Tesla C2050 GPUs. The program calls cud-
aMalloc two times – the first time on GPU ID 0 and the second
time on GPU ID 1 – and saves the returned addresses on the vari-
ables a and b respectively; the GPU ID 0 and the GPU ID 1 are the
GPU IDs seen by the program, which eventually mapped to the
red line and the green line, respectively, on each configuration.
The result of the execution is as shown in Table 2. Looking at the
result, one can clearly see that the second GPU’ virtual address
spaces depends on the configurations. The returned addresses on
the first configuration, shows that the values of the variable a and
b are different. This happens because the CUDA library implic-
itly switches between two default contexts when the program uses
two GPUs. In contrast, on the second configuration, the values of
both variables are the same. The reason is the allocation is done
on the same GPU on the different rCUDA servers; hence, both
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rCUDA servers virtually use the “same” context and thus return
the same virtual addresses. The strange thing happens when an
rCUDA server does not use the GPU ID 0 as in the third configu-
ration. In this case, the rCUDA server that uses a GPU other than
GPU 0 creates a new context before executing any CUDA-related
calls sent from the rCUDA library. This in turn causes the ad-
dress space to shift; thus, the address space does not correspond
to the previous two configurations. These problems prohibit us to
directly use the replay method to migrate the GPU execution.

We propose “one-process-one-GPU” execution method and
“mhelper” process to help the mrCUDA handling multi-GPU mi-
gration. The core concept of the one-process-one-GPU execution
method is one process handles only one GPU. With this method,
the virtual address spaces of different GPUs can be overlapped
(the problem of the second configuration). Moreover, this method
allows us to manage the virtual address spaces of different GPUs
separately (the problem of the third configuration). The mrCUDA
realizes the one-process-one-GPU execution method by creating
a mhelper process, which acts like a local rCUDA server, for each
GPU migration excepts for the first migration; the mrCUDA uses
the application process to handle the first GPU migration.

Fig. 6: Pre-replay algorithm for handling multi-GPU migration

The method the mrCUDA uses to migrate multiple GPUs is
the same as what we discussed in Section 3 with additional phase
before beginning the replay process; we call it “pre-replay” phase
and the algorithm for this additional phase is as shown in Fig. 6.
The pre-replay algorithm is quite easy to understand. Before en-
tering the replay process of any GPU migration, the mrCUDA
checks whether this migration is the first migration. If it is not,
the mrCUDA spawns an mhelper process and change the default
handler of this GPU from the rCUDA library to the spawned pro-
cess; this means that all further calls to this GPU will be for-
warded to the mhelper process. After that regardless the first mi-
gration, the mrCUDA checks the remote GPU ID – the remote
GPU ID is known to the mrCUDA since the application has been
started because it is passed to the rCUDA library as an environ-
ment variable. If the remote GPU ID is not zero, this means that
a context is created on the remote GPU. The mrCUDA issues a

cuCtxCreate to the default handler (native CUDA library or an
mhelper process) of the local GPU to mimic the context creation
of the remote GPU. This concludes the pre-replay phase. One
remark regarding why we cannot use an rCUDA server in place
of an mhelper process is that the rCUDA server does not support
CUDA driver API (cuCtxCreate is a CUDA driver API).

Fig. 7: Example of multi-GPU migration

Figure 7 shows an example of how the mrCUDA handles
multi-GPU migration. In the figure, the application uses three
GPUs; two remote GPUs from the Node 1 and one remote GPU
from the Node 2 – as an rCUDA server uses one process to han-
dle one virtual GPU, it can be viewed as if there are two rCUDA
servers on the Node 1. The first migration is the migration from
the GPU 2 of the Node 1 to the local GPU 1 of the Node 0. For
this migration, the mrCUDA does not spawn an mhelper process
since this is the first migration. However, the mrCUDA issues a
cuCtxCreate to the native CUDA library to create a context on
the local GPU 1 because the remote GPU ID is two (not zero).
The second migration happens from the remote GPU 0 of the
Node 1 to the local GPU 2 of the Node 0. For this migration,
the mrCUDA has to spawn an mhelper process but does not have
to create a context on the local GPU. The last migration is from
the remote GPU 2 of the Node 2 to the local GPU 0. For this
migration, the mrCUDA has to spawn an mhelper process and
issues a cuCtxCreate call. One remark regarding the multi-GPU
migration is that there is no need for every migration to happen at
the same time; this means that an application can used both local
GPUs and remote GPUs concurrently.

5. mrCUDA’s Overhead
There are four types of overhead associated with the mr-

CUDA: record overhead, replay overhead, mem-sync overhead,
and mhelper overhead. The record overhead is the additional time
for recording CUDA-related calls. It takes effect as long as the
mrCUDA operates in the rCUDA passthrough mode. The replay
overhead and mem-sync overhead, on the other hand, only take
effect during the migration mode as they associate with the replay
process and the mem-sync process respectively. The mhelper
overhead is only applied for multi-GPU migration. It takes effect
in both the migration mode and the CUDA passthrough mode as
the mrCUDA needs to communicate with mhelper processes for
any GPU-related calls. We begin this section by explaining and
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giving a mathematical model for each type of overhead.
The record overhead is always greater than zero regardless the

GPU migration occurs. This is because the mrCUDA begins in
the rCUDA passthrough mode. In this mode, a small subset of
the CUDA-related calls has to be recorded in order to properly
replay in the migration mode. Recording these calls take time;
even though the time spending on recording a call is very little, a
large number of recorded calls might take considerable amount of
time. We first give the record overhead model for calculating the
time spending on the record process. The record overhead model
is as shown in Equation 2.

timerecord = (recordcoef)(num record) + recordconst (2)

where timerecord is the additional time spending on the record
process; recordcoef is the coefficient of the record overhead;
num record is the total number of recorded calls; and recordconst

is the constant of the record overhead.
The mhelper overhead is the additional time spending on the

communication between the mrCUDA and an mhelper process.
In the current implementation of the mhelper, we use two UNIX
pipes for passing messages between the main process and the
mhelper process and we also use share memory to copy dynamic-
length data between the two processes. These make the commu-
nication time of the first migrated GPU and the rest difference.
The Equation 3 shows the mhelper overhead model that explains
the additional time spending on the communication.

timemhelper = (mhelpercoefd)(data size) +

(mhelpercoefc)(num calls) + mhelperconst
(3)

where timemhelper is the additional time spending on the mhelper
process communication; mhelpercoefd is the coefficient of the
overhead for data transfer; data size is the total data transfer size
between the main memory and the GPU memory such as when
the application calls cudaMemcpy; mhelpercoefc is the coefficient
of the overhead for CUDA-related calls; num calls is the total
number of CUDA-related calls that go through the mhelper pro-
cesses; and mhelperconst is the constant of the mhelper overhead.

The replay overhead is the additional time spending on replay-
ing the recorded calls. This overhead only applies to the pro-
cess that migrates a GPU. Since we include the entire mhelper
communication overhead in the mhelper overhead, we ignore the
mhelper communication in this model. The replay overhead is as
shown in Equation 4.

timereplay = (replaycoef)(num record) + replayconst (4)

where timereplay is the additional time spending on the replay
process; replaycoef is the coefficient of the replay overhead;
num record is the total number of recorded calls; and replayconst

is the constant of the replay overhead.
The last type of the mrCUDA overhead is the mem-sync over-

head. It is the additional time spending on copying data from
the active memory regions on remote GPUs to local GPUs. This
overhead only applies for the processes that do migration. Also,
since the mhelper communication overhead has been already in-
cluded in the mhelper overhead model, we ignore it in this model.

The mem-sync overhead model is as shown in Equation 5.

timememsync = timercuda +

num active region∑
i

(
data sizei

bw[data sizei]
+

(memsynccoef × data sizei) + memsyncconst

)
(5)

bw[data sizei] = min(data sizei × bwcoef , bwmax) (6)

where timememsync is the additional time spending on the mem-
sync process; timercuda is the time spending on copying data from
the rCUDA, which is defined in Equation 1; num active region is
the total number of active memory regions; data sizei is the size
of the data on the active region i. memsynccoef is the coefficient of
the mem-sync overhead; memsyncconst is the constant value of the
mem-sync overhead; bw[data sizei], defined in Equation 6 is the
host-to-device memory copy bandwidth, which grows linearly to
the data size; bwcoef is the coefficient of the memory copy band-
width; and bwmax is the maximum host-to-device memory copy
bandwidth.

The mem-sync overhead model is not as complicated as its
look. According to the mem-sync process explained in Section
3, one can expect that the mem-sync Overhead will depend on
the number and the size of active memory regions as well as the
overhead of the rCUDA. The part that people who are not familiar
with CUDA might not notice is that the size of the data transfer
affects the cudaMemcpy’s bandwidth; this bandwidth increases
linearly as the data size grows and reaches a maximum limit at
one point. This knowledge is required for understanding why
LAMMPS has low but visible mem-sync overhead, which we are
going to discuss in Section 7.

6. Evaluation and Discussion
We conducted an experiment to see the record overhead and

the replay overhead of the mrCUDA on LAMMPS. We used two
compute nodes of our small testbed; each node had one 6-core
Intel i7-3930K, one NVIDIA Tesla K20c connected via PCI-E
Gen3 8x, and 48 GB memory; the nodes were connected via
FDR InfiniBand. For the LAMMPS configurations, we used the
in.friction, in.melt, in.flow.pois, in.lj, and in.flow.couette inputs
provided by LAMMPS in its example folder. For each input, we
varied the number of simulation steps (run variable) and tested
the migration in four steps: at 25%, 50%, and 75% of the to-
tal number of steps, and when there is no migration at all – the
mrCUDA is always in the rCUDA passthrough mode. We then
timed the record and the replay processes, using the linear regres-
sion to find the parameters’ values of the corresponding models,
and compared each model with its respective results.

Figure 8 shows the result of the experiment. For the
record process, the overhead increases linearly as the number of
recorded calls increases. Using the linear regression, we find
that recordcoef = 2.825 × 10−7 s and recordconst = 0.3437 ms
for the record overhead model . The fitness of the model (R2)
is 0.987. One remark regarding the number of recorded calls
of the LAMMPS is that it is quite small, around 2%, com-
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Fig. 8: Measured and predicted record and replay overhead of the
mrCUDA when running with LAMMPS

pares to the total number of CUDA-related calls. For the re-
play process, the result abides the linear increment as the re-
play overhead model predicts. Using the linear regression, we
get replaycoef = 1.031 × 10−6 s and replayconst = 1.243 s. The
fitness of the model (R2) is 0.823. The reason why the replayconst

is a few magnitudes greater than recordconst is that the mrCUDA
needs to wait for any calls that have been issued to the remote
GPU to finish. Also, replaycoef is about one order of magnitude
greater than recordcoef ; this is because the mrCUDA needs to call
real functions on a local GPU in the replay process while it just
needs to record what the calls are in the record process.

We conducted another experiment to see the mem-sync over-
head of the mrCUDA. We performed the experiment on the same
compute nodes as the previous experiment but used a very simple
program we created instead in order to eliminate the effect of the
other overhead. The program we created received the number and
the size of cudaMalloc. It then used those parameters to create the
number of equal-size active memory regions by calling cudaMal-
loc and waited for a migration to happen. We created a hook in
our mrCUDA and recorded the time spending on the mem-sync
process. By using the linear regression, we got the parameter for
Equation 5 and Equation 6.

Fig. 9: Measured and predicted host-to-device cudaMemcpy’s
bandwidth from local cache to a local GPU in the mem-sync pro-
cess

Figure 9 shows the measured and predicted (Equation 6) val-
ues of the host-to-device cudaMemcpy’s bandwidth from local

cache to the local GPU in the mem-sync process. The graph
shows that the bandwidth increases proportionally to the size
per region and hits the maximum limit around 217 bytes per re-
gion. By using the linear regression on the bandwidth data of
the small regions and the average on the rest, we got bwcoef =

4.721 × 104 s−1 and bwmax = 4.779 GB/s. The R2 is 0.974.

Fig. 10: Measured and predicted mem-sync overhead excluding
the rCUDA’s overhead of the mrCUDA for various number and
size of active regions

Figure 10 shows the measured and predicted (Equation 5) val-
ues of the mem-sync overhead without the rCUDA’s overhead
for various number of and size of active memory regions. The
reasons why we got rid of the rCUDA’s overhead are because
we wanted to see the overhead of our implemented portion (not
the rCUDA) and get the values of the unknown parameters in
Equation 5. In the graph, the dots represent the measured values
while the lines represent the predicted values; each color rep-
resents each number of active regions starting from 20 to 210.
From the graph, we can see that the number of active regions can
significantly increase the overhead while only the large-size re-
gions influence the additional time. This tells us that transferring
large but small number of active regions is better than transfer-
ring small but large number of active regions. Also, by using the
linear regression, we got memsynccoef = 5.686 × 10−11 s/B while
memsyncconst is almost zero. The R2 is 0.976.

The last type of the mrCUDA’s overheads we measured is the
mhelper overhead. For benchmarking this overhead, we cre-
ated a program that calls a null kernel (an empty CUDA user-
defined kernel) several times and copies various-size data from
a host’s memory to a GPU’s memory several times. This pro-
gram used two GPUs and before we began timing, we forced
the mrCUDA to migrate all of the remote GPU execution. Also,
those calls were executed on the second-migrated GPU; hence,
they went though an mhelper process. Since this program needed
two GPUs, we used another three nodes in our testbed; those
nodes had the same components and configurations as the nodes
we used in the previous experiments expect that each had two
NVIDIA Tesla C2050 GPUs. We chose one node to run our pro-
gram and the other nodes to host rCUDA servers. We also used
Equation 3 to predict the outcome of the experiment.

Figures 11 and 12 show the result of the benchmark and pre-
dicted values on the null-kernel calling section and the cudaMem-
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Fig. 11: Measured and predicted mhelper overhead when calling
a null kernel for various times
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Fig. 12: Measured and predicted mhelper overhead when copy-
ing various sizes of data from the host’s memory to the second-
migrated GPU’s memory for 1,000 times

cpy section respectively. In the null-kernel calling section, the
data size parameter in Equation 3 is 0. Hence, by using the
linear regression, we got mhelpercoefc = 9.983 × 10−6 s and
mhelperconst = 2.934 × 10−3 s. The graph in Fig. 11 shows the
linear increment of the overhead as predicted by the model. In
the cudaMemcpy section, we varied the data size per call but fixed
the number of cudaMemcpy calls to 1,000 calls. Again, by using
the linear regression, we got mhelpercoefd = 6.871 × 10−10 s/B.
Fig. 12 shows that the increasing pattern of the overhead is as
predicted. The fitness of the model (R2) of both figures is 0.999.

7. Case Study: Using mrCUDA to Reduce
rCUDA’s Overhead at Runtime

As discussed in Section 1.2, some applications may suffer a
great deal from the rCUDA’s overhead. However, with the help
from the mrCUDA, those applications do not necessary have to
use rCUDA throughout their execution time if local GPUs are
available at some points afterward. We show the benefit of using
the mrCUDA with concrete result in this section by showing that
the execution time of LAMMPS can be reduced using migration.

We conducted an experiment to see the total execution time of
LAMMPS with mrCUDA. We used the same two compute nodes,
each had one GPU, and the same LAMMPS configurations as
discussed in Section 6. We fixed the run variable of each input
to 105; the reason why we chose this run number is because the
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Fig. 13: Execution time with mrCUDA’s overhead breakdown of
LAMMPS migrated at various simulation steps

rCUDA’s overhead is large and thus we can easily see the benefit
of the mrCUDA.

Figure 13 shows the execution time of LAMMPS for each in-
put when using the native CUDA, using the mrCUDA with mi-
gration, and using the mrCUDA without migration respectively.
The major x-axis shows the input names; the minor x-axis shows
the tests for native CUDA case (N), migrating at 25%, 50%, and
75% of the total steps (number), and no migration at all (R), re-
spectively. Each of the mrCUDA’s overheads is also shown with
different color on the same bar of each test. According to the fig-
ure, we can clearly see that the total execution time for migration
cases grows linearly to the total number of iterations executed
before migration. For the mrCUDA’s overhead, the record over-
head and the replay overhead are negligibly small. However, the
mem-sync overhead is noticeable and increases proportional to
the migration point; this is because the number of active memory
regions slowly increases, which then translated to more overhead.

8. Related Work
S. Xiao. et al. [12] proposed a remote GPU migration tech-

nique on the VOCL [13], a remote GPU execution middleware
for OpenCL. The main concept is to first make the memory image
of the remote GPU that is the source of the migration stable by
blocking further commands to be executed on that remote GPU
and waiting for the commands being executed to finish. Then,
the middleware copies the entire memory of that remote GPU to
another remote GPU to synchronize the data. Lastly, the mid-
dleware changes the destination of commands to the new remote
GPU. This enables OpenCL applications that use the VOCL to
live migrate a remote GPU without having to modify the source
code. Even though this is a very good work, it only works with
OpenCL applications.

A. Nukada. et al. [11] proposed NVCR, a transparent check-
point/restart library for NVIDIA CUDA. The NVCR library in-
tercepts all of CUDA driver API called by an application and
records the essential sequences of execution on a file. Also at
a checkpoint, it transfers all of the GPU memory to the file. This,
combine with a normal checkpoint/restart library such as Berke-
ley Lab Checkpoint/Restart [14], allows CUDA applications to
restart their computation at a checkpoint on the same or different
nodes. Even though the NVCR library is designed for check-
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point/restart, we apply the same technique for GPU migration.
CheCUDA [15] is a checkpoint/restart library for CUDA ap-

plications. Its main concept is almost the same as the NVCR
but applications need to call the provided functions to check-
point/restart. Actually, the NVCR’s authors were inspired by
the CheCUDA and made the CheCUDA’s checkpoint/restart au-
tomatic and transparent.

9. Conclusion and Future Work
mrCUDA is a middleware we developed that allows appli-

cations to migrate CUDA execution from remote GPUs to lo-
cal GPUs at runtime without having to modify the applications’
source code. Its main concept is making the states and active
memory data of the local GPUs the same as those of the re-
mote GPUs. The migration overhead is quite small compare to
the rCUDA’s overhead. This allows applications to enjoy using
rCUDA to borrow idle GPUs from remote nodes when there are
not enough unoccupied local GPUs, and to reduce the rCUDA’s
overhead by migrating the remote GPU execution to local GPUs
when available with very low cost. Our case study on LAMMPS
shows the proportional decreasing of the execution time in re-
gards with the migration point.

Even though the mrCUDA has very low overhead compare to
the rCUDA’s overhead, it is still noticeable. In order to lower
the overhead, the overhead models we provided suggest that we
should avoid copying a large number of small active memory re-
gions in the mem-sync process as well as finding a way to reduce
the mhelper communication overhead. We plan to solve these
by aggregating small active memory regions to larger one before
copying and using asynchronous and proactive communication
with the mhelper in our future work.
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