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This  article  presents  the  mathematical  background of  general  interactive  systems.  The  first  principle  of 
designing a large system is to “divide and conquer”, which implies that we could possibly reduce human 
error if we divided a large system in smaller subsystems. Interactive systems are, however, often composed 
of many subsystems that are “organically” connected to one another and thus difficult to divide. In other 
words,  we cannot apply a framework of  set  theory to the programming of  interactive systems.  We can 
overcome this difficulty by applying a framework of category theory (Kleisli category) to the programming, 
but this requires highly abstract mathematics, which is not very popular. In this article we introduce the 
fundamental idea of category theory using only lambda calculus, and then demonstrate how it can be used 
in the practical design of an interactive system. Finally, we mention how this discussion relates to category 
theory.

1. Introduction
The Oxford English Dictionary (OED) defines the 
word “function” as: 1 an activity that is natural to or
the purpose of  a person or thing: ‘bridges perform the 
function  of  providing  access  across  water’;  ‘bodily 
functions’.  2  [Mathematics]  a  relation  or  expression
involving  one  or  more  variables:  ‘the  function  (bx  + 
c)’…

As defined by the OED, the word function has (at 
least) a double meaning: activity (the first meaning) 
and relation (the second meaning). The relation is 
often  referred  to  as  a  mapping  in  mathematics, 
which typically implies referential transparency.

Conversely,  lambda  calculus  is  identical  to  a 
mapping  in  mathematics,  and  also  to  a  Turing 
Machine.  This  means  that  every  program 
(computer code) can be represented by the lambda 
calculus [1].

However,  there  are  often difficulties  in  regarding 
interactive  systems as  a  mapping.  Moggi  tackled 
this  problem  and  found  a  unique  solution:  he 
applied  Kleisli  category  theory  and  regarded  a 
function  as  a  morph,  which  is  a  more  abstract 
concept of an ordinary mapping [2].

Moggi  discovered  that  these  interactive  systems 
cannot  be  divided  into  small  lambda  calculus 
expressions. He explained that this was due to the 
mismatch  of  types  of  input  and  output  in  the 
lambda calculus and suggested that this gap could 
be overcome by regarding an interactive system as 
a morph of a function to an action [3].

Moggi’s  theory  uses  highly  abstract  mathematics 
and is generally difficult for computer scientists to 

understand.  However,  Moggi’s  concept  is 
understandable  without  a  deep understanding of 
Kleisli’s category theory.

In this paper we first interpret Moggi's discussion 
without  using  category  theory  and  then  explain 
how this theory can be applied to our interactive 
art called Polyphonic Jump! [4]. Finally, we provide 
rigid  proof  that  our  discussion  follows  Moggi’s 
original proposal.

2. Interaction Equation
Let x  and y  be an input to and an output from a 
certain system, respectively. Generally x and y are 
not scalars. Hereafter, we assume that all functions 
are referentially transparent.

Interactive systems can be classified as one of four 
classes: A class 0 system outputs a constant value, 
while class 1 outputs a value that is a function of 
time.  A class  2  system outputs  a  value  that  is  a 
function  of  arbitrary  inputs  (including  time).  A 
class 3 system outputs a value that is a function of 
an arbitrary input and its internal status.

Class 0: output y is constant, that is, y = c, where c 
is a constant value.

Class 1: output y is a function of time t. We denote 
this function as f, and call it the transfer function. 
Assume that  all  functions  used in  this  paper  are 
curried and left-associative. The equation for class 1 
is

y = ft. (1)

Class 2: output y is a function of an arbitrary value 
x. Thus, the equation is

y = fx. (2)
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Class 3: output y is a function of an arbitrary input 
x and an internal status s. If we allowed referential 
opacity  of  function  f,  we  would  obtain  the 
following equation: 

y = f! s x, (3)

where function f!  changes its behavior based on s, 
and rewrites the value of s. Because rewriting any 
variables  is  not  allowed  in  this  discussion,  we 
forget about this disruptive function f!.

One  well-known  method  for  retaining  referential 
transparency is placing the internal status outside 
the box. For example,

[y, t] = f’[x, s] (4)

is  a  referentially  transparent  equation.  Here 
function f’  returns a  pair  of  output  y  and a  new 
internal status t.  To match the types of input and 
output, the argument is also a pair.

Assume we have function inject given by

inject x := \s . [x, s] (5)

where  \  denotes  lambda.  This  function  inject 
abstracts the internal status s, and thus we can call 
inject x as an input with context.

Because  we  wish  to  apply  transfer  function  f  to 
input x, output y should be

y = inject (f x). (6)

Although Equation (6) is perfectly correct, it is not 
practical,  because  output  y  is  with  context,  but 
input  x  is  without  context.  A  practical  transfer 
function, say F, would be

y = F (inject x). (7)

Let us extract transfer function f as a parameter of 
function F as

F = bind f (8)

to obtain

y = bind f (inject x). (9)

Equation (9) of a class 3 system corresponds with 
equation (2) of a class 2 system.

Next  we  introduce  several  symbols  to  facilitate 
human readability. The dagger symbol denotes the 
injection operator and is given by

x† := inject x. (10)

The # symbol denotes the binding operator and is 
given by

f # m := bind f m. (11)

Equation (9) can be simplified by these operators as 
follows:

y = f # x† (12)

The binding operator is defined as

f # m := \s . f x s’ where [x, s’] = m s , (13)

Figure 1. Polyphonic Jump!
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where the keyword where declares local variables. 
Because  almost  all  practical  programming 
languages  provide  syntax  for  declaring  local 
variables,  we  follow  popular  programming-
language style and use let instead of where:

f # m := \s . let [x, s’] = m s in f x s’ (14)

where let … in … is defined as

let a = b in c := (\a . c) b. (15)

3. Composition of Transfer Functions
Assume that transfer function f is the composition 
of two different transfer functions g and h; that is,

f = h • g, (16)

where

b • a := \z . b (a z). (17)

Let  x  be  the  input  to  the  system,  and  m  be  a 
contextual version of x. Then m is given by

m := x†. (18)

Furthermore, let

n := g # m (19)

where

n = \s . let [x, s’] = m s in g x s’. (20)

Now we can expand h # n as

h # n = \t . let [x, s’] = m t, [y, t’] = g x s’

in h y t’, (21)

which leads to

h # g # *x = \s . let [x, s’] = *x s, [_, s’’] = g x s’ 

in (h • g) x s’’. (22)

As seen above, transfer functions can be combined 
using a binding operator.  Composition through a 
binding  operator  keeps  the  context  as  shown  in 
equation  (22),  and  also  maintains  the  order  of 
evaluation  of  the  functions  because  the  operator 
follows equation (17).

Now  we  use  another  operator  $  denoting  quick 
composition of transfer functions. We can think of 

applying non-contextual function fNC to contextual  
m as

fNC $ m := (fNC x)† where \s . [x, s’] = m s. (23)

Operator  $  gives  context  to  function  fNC,  and  is 
known as a functor as discussed later.

4. An Example: Polyphonic Jump!
Polyphonic Jump! is a system that allows humans 
to be immersed in a fantasy world in which many 
creatures create a polyphonic chorus. The audience 
stands in front of a huge canvas on which a picture 
of a forest has been painted in oils, and individuals 
jump to  interact  with  oil-painted  animals  on  the 
canvas as  if  they were also on the canvas.  These 
individuals  feel  as  though they  are  actually  in  a 
picture book [4].

For seamless integration of  the physical  painting, 
which  presents  true  reality  and  computer-
generated animation that moves dynamically and 
interacts with the audience, we have incorporated 
real-time 3D modeling and projection technology in 
this artwork (see Figure 1).

As shown in Figure 2,  Polyphonic Jump! has the 
following subunits: (A) clock generator, (B) image 
capturing unit, (C) animation frame database, (D) 
motion  sensor,  (E)  animation  generator,  and  (F) 
renderer.  The  authors  use  white  for  trivial 
referentially  transparent  units,  and  blue  for  non-
trivial referentially transparent units. Arrows show 
the flow of information.

(A)  The clock generator synchronizes all  units by 
controlling the renderer (F).

(B)  The image capturing unit captures a figure in 
the  audience.

(C)  The  animation  frame  database  retrieves  each 
frame of animations.

(D) The motion sensor returns True if a member of 
the audience is jumping, otherwise False.

Figure 2. System structure of Polyphonic Jump!
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(E)  The  animation  generator,  referring  to  the 
motion sensor (D), generates frame information in 
XML format based on current time. Animation in 
this  art  work  is  complex  because  multiple 
sequences run at different timings/speeds.

(F) The renderer renders a frame based on the XML 
information given by the animation generator (E) 
and images from the animation frame database (C).

Units (B), (C), (D), and (F) are trivially referentially 
transparent, because unit (B) is a function that takes 
a  time value and returns  an image,  unit  (C)  is  a 
function that takes a query and returns images, unit 
(D) is a function that returns the audience’s motion, 
and  unit  (F)  is  a  function  that  takes  the  frame 
information  and  returns  a  computer-graphics 
image.

Unit (A) returns a time-variant value, however, it is 
still referentially transparent when considering that 
it always returns an “evaluate the current timing” 
action.

Conceptually unit  (E) has its  own internal status, 
because it  runs a pre-defined animation sequence 
(normal status), and starts a new animation when 
the  motion  sensor  triggers  the  unit  (triggered 
status). After a certain time, unit (E) returns to its 
normal status.

The actual unit (E) was designed to be completely 
referentially  transparent.  The  internal  status  is 
given, and proceeds through the unit as an action 
(lambda  calculus).  This  action  is  eventually 
evaluated in unit (F) once  rendering has started.

Polyphonic Jump! assigns time (action to evaluate 
the current time) to variable x in equation (5), and 
the status of the animation generator as context s.

5. Note on Monad of Category Theory
We define a category C with objects A, B, … and a 
morph φ. Objects are monoids, including the set of 
integers, list of scalars, and tree of scalars. Morph φ 

can be a function length that returns the length of a 
list.

If we have an identity projection idC and a functor T 
from  category  C  to  C,  the  following  natural 
transforms η and μ follow:

η: idC → T, (24)

μ: T2 → T. (25)

Moreover, if transforms η, μ  are commutative with 
functor T, i.e., ηTA = TηA and TμA = μTA, a triple [T, 
η, μ] is called a monad in category theory [2].

Kleisli  introduced  operator  *  instead  of  the  μ  of 
category theory, and called triple [T, η, *] a Kleisli 
triple. Operator * follows these equations:

(ηA)*=idTA, (26)

f* • ηA=f, (27)

g* • f* = (g* • f)*, (28)

where  projection  f  projects  A  to  TB  and  another 
projection  g  exists.  Figure  4  illustrates  the 
relationship among functor T, the natural transform 
η, and operator *.

Kleisli’s  triple  is  identical  to  our  triple  [$,  †,  #], 
which  is  called  a  Monad  in  Programming.  For 
example,  the  triple  [fmap,  return,  >>=]  in  the 
programming  language  Haskell  is  identical  to 
Kleisli’s triple.

6. Concluding Remarks
In  this  paper  we presented a  strict  mathematical 
framework for interactive systems. A difficulty in 
describing  such  interactive  systems  relates  to 
dividing  such  systems  into  subsystems  owing  to 
the organic connection of every part of the system. 
Global  variables,  hidden  contexts,  and  non 
referentially transparent functions are examples of 
this difficulty in programming [5].

Referential  transparency  is  a  popular  concept 
among  mathematicians  for  reducing  complexity. 
We can regard a function as a projection of values if 

Figure 3. Example of animation sequence of Polyphonic Jump!
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the  function  is  referentially  transparent.  The 
domain and co-domain of a function are monoids if 
they have an identity projection.  This means that 
such  a  projection  can  intuitively  be  divided  into 
composite  projections,  thereby  reducing  the 
complexity for programmers. For this reason, some 
domain specific languages for scientific computing 
support referential transparency [6, 7].

Algorithms for  interactive  systems must  consider 
both the input from users and output to users, and 
thus  they  cannot  be  discussed  simply  as  purely 
mathematical mappings. For example, composition 
of monodis is well studied and can be applied to 
scientific computing, however, it cannot be applied 
to interactive systems.

Interactive  systems  are,  however,  projections 
(morphs)  in  terms  of  the  Kleisli  category.  The 
Kleisli  triple  is  identical  to  the  monad  of 
programming.

This paper showed that interactive systems can be 
described as a composition of subsystems without 
using  highly  abstract  mathematics.  It  also 
illustrated  the  concrete  example  of  Polyphonic 
Jump!  and  showed  how  our  discussion 
corresponds with traditional category theory.

Referential  transparency  is  not  the  only  way  to 
divide  interactive  systems  into  subsystems.  The 
monad  of  programming  can  spatially  divide  a 

system,  while  the  continuation  of  programming 
can  temporally  divide  a  system.  Unfortunately 
continuation  is  known  to  disrupt  referential 
transparency;  however,  we  can  still  hope  for  the 
existence of a more abstract mechanism that treats 
referential transparency and continuation equally.
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Figure 4. Relationship of operators T, η, * of Kleisli Triple [T, η, *]
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