
Function + Action = Interaction

Ichiroh Kanaya, Mayuko Kanazawa, Masataka Imura

This article presents the mathematical background of general interactive systems. The first principle of
designing a large system is to “divide and conquer”, which implies that we could possibly reduce human
error if we divided a large system in smaller subsystems. Interactive systems are, however, often composed
of many subsystems that are “organically” connected to one another and thus difficult to divide. In other
words, we cannot apply a framework of set theory to the programming of interactive systems. We can
overcome this difficulty by applying a framework of category theory (Kleisli category) to the programming,
but this requires highly abstract mathematics, which is not very popular. In this article we introduce the
fundamental idea of category theory using only lambda calculus, and then demonstrate how it can be used
in the practical design of an interactive system. Finally, we mention how this discussion relates to category
theory.

1. Introduction
The Oxford English Dictionary (OED) defines the
word “function” as: 1 an activity that is natural to or
the purpose of a person or thing: ‘bridges perform the
function of providing access across water’; ‘bodily
functions’. 2 [Mathematics] a relation or expression
involving one or more variables: ‘the function (bx +
c)’…

As defined by the OED, the word function has (at
least) a double meaning: activity (the first meaning)
and relation (the second meaning). The relation is
often referred to as a mapping in mathematics,
which typically implies referential transparency.

Conversely, lambda calculus is identical to a
mapping in mathematics, and also to a Turing
Machine. This means that every program
(computer code) can be represented by the lambda
calculus [1].

However, there are often difficulties in regarding
interactive systems as a mapping. Moggi tackled
this problem and found a unique solution: he
applied Kleisli category theory and regarded a
function as a morph, which is a more abstract
concept of an ordinary mapping [2].

Moggi discovered that these interactive systems
cannot be divided into small lambda calculus
expressions. He explained that this was due to the
mismatch of types of input and output in the
lambda calculus and suggested that this gap could
be overcome by regarding an interactive system as
a morph of a function to an action [3].

Moggi’s theory uses highly abstract mathematics
and is generally difficult for computer scientists to

understand. However, Moggi’s concept is
understandable without a deep understanding of
Kleisli’s category theory.

In this paper we first interpret Moggi's discussion
without using category theory and then explain
how this theory can be applied to our interactive
art called Polyphonic Jump! [4]. Finally, we provide
rigid proof that our discussion follows Moggi’s
original proposal.

2. Interaction Equation
Let x and y be an input to and an output from a
certain system, respectively. Generally x and y are
not scalars. Hereafter, we assume that all functions
are referentially transparent.

Interactive systems can be classified as one of four
classes: A class 0 system outputs a constant value,
while class 1 outputs a value that is a function of
time. A class 2 system outputs a value that is a
function of arbitrary inputs (including time). A
class 3 system outputs a value that is a function of
an arbitrary input and its internal status.

Class 0: output y is constant, that is, y = c, where c
is a constant value.

Class 1: output y is a function of time t. We denote
this function as f, and call it the transfer function.
Assume that all functions used in this paper are
curried and left-associative. The equation for class 1
is

y = ft. (1)

Class 2: output y is a function of an arbitrary value
x. Thus, the equation is

y = fx. (2)

1ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-HCI-164 No.10
2015/8/1

Class 3: output y is a function of an arbitrary input
x and an internal status s. If we allowed referential
opacity of function f, we would obtain the
following equation:

y = f! s x, (3)

where function f! changes its behavior based on s,
and rewrites the value of s. Because rewriting any
variables is not allowed in this discussion, we
forget about this disruptive function f!.

One well-known method for retaining referential
transparency is placing the internal status outside
the box. For example,

[y, t] = f’[x, s] (4)

is a referentially transparent equation. Here
function f’ returns a pair of output y and a new
internal status t. To match the types of input and
output, the argument is also a pair.

Assume we have function inject given by

inject x := \s . [x, s] (5)

where \ denotes lambda. This function inject
abstracts the internal status s, and thus we can call
inject x as an input with context.

Because we wish to apply transfer function f to
input x, output y should be

y = inject (f x). (6)

Although Equation (6) is perfectly correct, it is not
practical, because output y is with context, but
input x is without context. A practical transfer
function, say F, would be

y = F (inject x). (7)

Let us extract transfer function f as a parameter of
function F as

F = bind f (8)

to obtain

y = bind f (inject x). (9)

Equation (9) of a class 3 system corresponds with
equation (2) of a class 2 system.

Next we introduce several symbols to facilitate
human readability. The dagger symbol denotes the
injection operator and is given by

x† := inject x. (10)

The # symbol denotes the binding operator and is
given by

f # m := bind f m. (11)

Equation (9) can be simplified by these operators as
follows:

y = f # x† (12)

The binding operator is defined as

f # m := \s . f x s’ where [x, s’] = m s , (13)

Figure 1. Polyphonic Jump!

2ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-HCI-164 No.10
2015/8/1

where the keyword where declares local variables.
Because almost all practical programming
languages provide syntax for declaring local
variables, we follow popular programming-
language style and use let instead of where:

f # m := \s . let [x, s’] = m s in f x s’ (14)

where let … in … is defined as

let a = b in c := (\a . c) b. (15)

3. Composition of Transfer Functions
Assume that transfer function f is the composition
of two different transfer functions g and h; that is,

f = h • g, (16)

where

b • a := \z . b (a z). (17)

Let x be the input to the system, and m be a
contextual version of x. Then m is given by

m := x†. (18)

Furthermore, let

n := g # m (19)

where

n = \s . let [x, s’] = m s in g x s’. (20)

Now we can expand h # n as

h # n = \t . let [x, s’] = m t, [y, t’] = g x s’

in h y t’, (21)

which leads to

h # g # *x = \s . let [x, s’] = *x s, [_, s’’] = g x s’

in (h • g) x s’’. (22)

As seen above, transfer functions can be combined
using a binding operator. Composition through a
binding operator keeps the context as shown in
equation (22), and also maintains the order of
evaluation of the functions because the operator
follows equation (17).

Now we use another operator $ denoting quick
composition of transfer functions. We can think of

applying non-contextual function fNC to contextual
m as

fNC $ m := (fNC x)† where \s . [x, s’] = m s. (23)

Operator $ gives context to function fNC, and is
known as a functor as discussed later.

4. An Example: Polyphonic Jump!
Polyphonic Jump! is a system that allows humans
to be immersed in a fantasy world in which many
creatures create a polyphonic chorus. The audience
stands in front of a huge canvas on which a picture
of a forest has been painted in oils, and individuals
jump to interact with oil-painted animals on the
canvas as if they were also on the canvas. These
individuals feel as though they are actually in a
picture book [4].

For seamless integration of the physical painting,
which presents true reality and computer-
generated animation that moves dynamically and
interacts with the audience, we have incorporated
real-time 3D modeling and projection technology in
this artwork (see Figure 1).

As shown in Figure 2, Polyphonic Jump! has the
following subunits: (A) clock generator, (B) image
capturing unit, (C) animation frame database, (D)
motion sensor, (E) animation generator, and (F)
renderer. The authors use white for trivial
referentially transparent units, and blue for non-
trivial referentially transparent units. Arrows show
the flow of information.

(A) The clock generator synchronizes all units by
controlling the renderer (F).

(B) The image capturing unit captures a figure in
the audience.

(C) The animation frame database retrieves each
frame of animations.

(D) The motion sensor returns True if a member of
the audience is jumping, otherwise False.

Figure 2. System structure of Polyphonic Jump!

3ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-HCI-164 No.10
2015/8/1

(E) The animation generator, referring to the
motion sensor (D), generates frame information in
XML format based on current time. Animation in
this art work is complex because multiple
sequences run at different timings/speeds.

(F) The renderer renders a frame based on the XML
information given by the animation generator (E)
and images from the animation frame database (C).

Units (B), (C), (D), and (F) are trivially referentially
transparent, because unit (B) is a function that takes
a time value and returns an image, unit (C) is a
function that takes a query and returns images, unit
(D) is a function that returns the audience’s motion,
and unit (F) is a function that takes the frame
information and returns a computer-graphics
image.

Unit (A) returns a time-variant value, however, it is
still referentially transparent when considering that
it always returns an “evaluate the current timing”
action.

Conceptually unit (E) has its own internal status,
because it runs a pre-defined animation sequence
(normal status), and starts a new animation when
the motion sensor triggers the unit (triggered
status). After a certain time, unit (E) returns to its
normal status.

The actual unit (E) was designed to be completely
referentially transparent. The internal status is
given, and proceeds through the unit as an action
(lambda calculus). This action is eventually
evaluated in unit (F) once rendering has started.

Polyphonic Jump! assigns time (action to evaluate
the current time) to variable x in equation (5), and
the status of the animation generator as context s.

5. Note on Monad of Category Theory
We define a category C with objects A, B, … and a
morph φ. Objects are monoids, including the set of
integers, list of scalars, and tree of scalars. Morph φ

can be a function length that returns the length of a
list.

If we have an identity projection idC and a functor T
from category C to C, the following natural
transforms η and μ follow:

η: idC → T, (24)

μ: T2 → T. (25)

Moreover, if transforms η, μ are commutative with
functor T, i.e., ηTA = TηA and TμA = μTA, a triple [T,
η, μ] is called a monad in category theory [2].

Kleisli introduced operator * instead of the μ of
category theory, and called triple [T, η, *] a Kleisli
triple. Operator * follows these equations:

(ηA)*=idTA, (26)

f* • ηA=f, (27)

g* • f* = (g* • f)*, (28)

where projection f projects A to TB and another
projection g exists. Figure 4 illustrates the
relationship among functor T, the natural transform
η, and operator *.

Kleisli’s triple is identical to our triple [$, †, #],
which is called a Monad in Programming. For
example, the triple [fmap, return, >>=] in the
programming language Haskell is identical to
Kleisli’s triple.

6. Concluding Remarks
In this paper we presented a strict mathematical
framework for interactive systems. A difficulty in
describing such interactive systems relates to
dividing such systems into subsystems owing to
the organic connection of every part of the system.
Global variables, hidden contexts, and non
referentially transparent functions are examples of
this difficulty in programming [5].

Referential transparency is a popular concept
among mathematicians for reducing complexity.
We can regard a function as a projection of values if

Figure 3. Example of animation sequence of Polyphonic Jump!

4ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-HCI-164 No.10
2015/8/1

the function is referentially transparent. The
domain and co-domain of a function are monoids if
they have an identity projection. This means that
such a projection can intuitively be divided into
composite projections, thereby reducing the
complexity for programmers. For this reason, some
domain specific languages for scientific computing
support referential transparency [6, 7].

Algorithms for interactive systems must consider
both the input from users and output to users, and
thus they cannot be discussed simply as purely
mathematical mappings. For example, composition
of monodis is well studied and can be applied to
scientific computing, however, it cannot be applied
to interactive systems.

Interactive systems are, however, projections
(morphs) in terms of the Kleisli category. The
Kleisli triple is identical to the monad of
programming.

This paper showed that interactive systems can be
described as a composition of subsystems without
using highly abstract mathematics. It also
illustrated the concrete example of Polyphonic
Jump! and showed how our discussion
corresponds with traditional category theory.

Referential transparency is not the only way to
divide interactive systems into subsystems. The
monad of programming can spatially divide a

system, while the continuation of programming
can temporally divide a system. Unfortunately
continuation is known to disrupt referential
transparency; however, we can still hope for the
existence of a more abstract mechanism that treats
referential transparency and continuation equally.

References
[1] Alonzo Church: Unsolvable Problem of Elementary Number
Theory; American Journal of Mathematics, 58, 345-363, 1936.

[a] Amir M. Ben-Amram: The Church-Turing thesis and its look-
alikes; ACM SIGACT News, 36, 3, 113–114, 2005.

[2] Eugenio Moggi: Notions of computation and monads;
Information and Computation, 93, 1, 1991.

[3] Yoshiyuki Onoue: Self-reproducing programs; Information
Processing Society of Japan (IPSJ) Magazine, Vol. 47, No. 3,
2006. (Japanese)

[4] Mayuko Kanazawa, Masataka Imura, Ichiroh Kanaya:
Polyphonic Jump!; Proc. 12th Conf. Institute of Environmental
Art and Design, 2011. (Japanese)

[5] Cousineau, Guy and Michel Mauny. The Functional
Approach to Programming. Cambridge, UK: Cambridge
University Press, 1998.

[6] Akihiro Umemura: Modification of algebraic specifications
based on monads; Trans. Programming Language, 93, 97, 1-8,
Information Processing Society of Japan (IPSJ), 1993. (Japanese)

[7] Stephen Wolfram: The Mathematica Book, Fourth Edition;
Cambridge University Press, 1999.

Figure 4. Relationship of operators T, η, * of Kleisli Triple [T, η, *]

5ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-HCI-164 No.10
2015/8/1

