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Abstract: Feature selection problem has been widely used for various fields. In particular, the sparse estimation
has the advantage that its computational cost is the polynomial order of the number of features. However, it has the
problem that the obtained solution varies as the dataset has changed a little. The goal of this paper is to exhaustively
search the solutions which minimize the generalization error for feature selection problem to investigate the problem of
sparse estimation. We calculate the generalization errors for all combinations of features in order to get the histogram
of generalization error by using the cross validation method. By using this histogram, we propose a method to verify
whether the given data include information for binary classification by comparing the histogram of predictive error for
random guessing. Moreover, we propose a statistical mechanical method in order to efficiently calculate the histogram
of generalization error by the exchange Monte Carlo (EMC) method and the multiple histogram method. We apply our
proposed method to the feature selection problem for selecting the relevant neurons for face identification.

Keywords: feature selection, exhaustive search, cross validation, exchange Monte Carlo method

1. Introduction

Feature selection problem, in which a combination of relevant
features is selected from the given features, is an important pro-
cess for improving the generalization capability and interpretabil-
ity of learning models [6], [10]. Cover and Van Campenhout
showed that no non-exhaustive sequential feature selection pro-
cedure can be guaranteed to produce the optimal subset in the
feature selection problem [1]. However, the exhaustive search
method requires huge computational cost because the number of
possible subsets grows combinatorially as the dimension of data
increases.

From this problem, the various algorithms of feature selection
problem have been developed, which is reviewed in Ref.[10].
Sparse estimations such as Least absolute shrinkage and selec-
tion operator (LASSO) [12] and automatic relevance determina-
tion (ARD) [15] are one of these algorithms, and widely used in
recent studies. The sparse estimation is a method to minimize the
error function with a small number of features. One advantage of
the sparse estimation is that its computational cost is the polyno-
mial order of the number of features. Another advantage is that
the algorithm can search a unique optimal solution because the al-
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gorithm of sparse estimation reduces to the convex optimization
problem. On the contrary, the sparse estimation has the prob-
lem that the obtained solution varies as the dataset has changed
a little [7], [11], [14]. In this case, the solution also varies as the
algorithm of sparse estimation changes, and hence, it is difficult
to select the relevant features.

In order to clarify the reason of this problem, we need to know
the structure of solution space for training task. The goal of this
paper is to exhaustively search the solutions which minimize the
generalization error for feature selection problem. This paper
focuses on the feature selection problem for the binary classifi-
cation with linear discriminant. We use the support vector ma-
chine (SVM) as the linear discriminant, and the cross validation
method for the estimation of the generalization error for a com-
bination of features. We calculate the generalization errors for all
combinations of features in order to get the histogram of gener-
alization error. By using this histogram, we propose a method to
verify whether the given data include information for binary clas-
sification by comparing the histogram of generalization error for
random guessing. This proposed method gives us a new insight
compared to the conventional method such as sparse estimation,
in which we assume that the given data have information signifi-
cantly for binary classification.

Moreover, we propose a statistical mechanical method in or-
der to efficiently calculate the histogram of generalization error.
Typically, it costs exponential order of the number of features to
obtain the histogram of generalization error. Hence, it is neces-
sary for developing the algorithm to efficiently calculate the his-
togram of the generalization error in the case of high-dimensional
data analysis. In this paper, we propose the method for efficiently
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calculating the histogram of generalization error by combining
the exchange Monte Carlo (EMC) method [8] and the multiple
histogram method [9].

We apply our proposed method to the feature selection problem
for selecting the relevant neurons for face identification in order
to check the effectiveness of the proposed method. We show that,
for identification of a certain pair of faces, the result for conven-
tional sparse estimation varies so that we cannot recognize which
neurons are relevant for face identification. Moreover, we show
that the data for face identification of this pair do not include sig-
nificant information by using the proposed verification method.

2. Method

In this section, we firstly describe feature selection problem
for binary classification with linear discriminant. We propose a
method to estimate the generalization performance for all combi-
nation of features, and to evaluate whether the training data given
have information for desired binary classification by using the
histogram of generalization error.

2.1 Binary Classification Problem with Linear Discriminant
Firstly, we formulate binary classification problem with linear
discriminant.
The problem treated here is a binary classification problem us-
ing training data set;

ey

N
{Geitles = L), e RP e (41, -1,

where x; is a D-dimensional feature vector, ¢; is a class label of
x;, and N is the number of samples. Given the data set, the goal
of binary classification is to find a hyperplane in the feature vec-
tor space that separates the samples with #; = 1 from those with
t; = —1 by using this data set. The obtained hyperplane is referred
to as a decision boundary, and is expressed by a linear equation:

yx)=w'x+b=0, (@)

where w is a weight vector. The goal is to find w and b that satisfy
y(x;) > 0fort; = 1 and y(x;) < O for#; = —1, that is, ty(x) > O for
all samples.

There are several learning machines for binary classification
with linear discriminant. In this paper, we use support vector ma-
chine (SVM), which is described in Appendix in detail. SVM has
been widely used as a learning machine with high generalization
performance based on the concept of maximization of margin.
However, SVM does not have an ability of feature selection be-
cause learning algorithm of SVM is constructed by using all of
features given.

In this study, we use the cross validation in order to select rel-
evant features from the given features. The cross validation (CV)
is a model validation technique for estimating the generalization
performance of unknown data. In the CV, the given data is di-
vided into two parts. One part is used for the training of the
model, and the other part is for validating the generalization per-
formance of the model. This training and validating operation are
iterated with different partitioning in order to reduce variability.
In this study, we use leave-one-out CV (LOOCYV), in which the
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Assumption 1 Assumption 2

data are randomly labeled. data are labeled by linear discriminant.

>
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Fig. 1 Schematic figure of the proposed method.

number of test data is set one.

Let us formulate concretely. We define an indicator variable
s={s j}?: , €10, 1}P, which represents a combination of features.
The variable s indicates that s; = 1 if the j-th feature is con-
tained in the combination, and s; = —1 if it is not. By using the
combination of features represented by the indicator variable s,
we calculate the predictive error rate E(s) for test data. When the
predictive error rate E(s) is small, the corresponding combination
of features provides good generalization performance.

2.2 Exhaustive Search and Histogram of E(s)

In this study, we evaluate the generalization performance by
calculating the predictive error rate E(s) for all combination of
features in order to clarify the solution-space structure of the pre-
dictive error rate E(s). In particular, we propose a method to
judge whether the given data include information for the desired
binary classification by using the histogram g(E) of the predic-
tive error rate or not. When the histogram g(E) has much density
in small values of E, the given data can be considered to contain
much information for binary classification.

We also propose a method to compare the obtained histogram
g(E) to the histogram ¢,;(E) for random guessing. Figure 1
shows a schematic figure of the proposed method. More specifi-
cally, we assume that the given data are randomly labeled regard-
less of input data x. In this case, the probability that each datum
is correctly labeled was 0.5, and the error rate for N data is given
by the following binomial distribution

N! k N—k
W(O.S) (1-0.5"", 3)

where k& is the number of misclassifications. From the distribution

pk) =

p(k), we construct the histogram g;(E) by plotting E = k/N for
horizontal axis and g;(E) = p(k) x (2P — 1) for vertical axis. If
the histogram g(E) is significantly different from the histogram
gpi(E) for random guessing, the given data have information for
the desired binary classification. Otherwise, the data have no such
information.

In order to quantitatively evaluate the difference between the
two distribution g(E) and gp;(E), we use the following Kullback
divergence,

g(E)
gui(E)
The Kullback divergence has the property that KL(glgp;) > 0, and

that KL(glgp;) = O if and only if g(E) = gp(E). Hence, when
the value of Kullback divergence is small, the given data have

KL(glgs) = )" 9(E)log @)
E

information for the desired binary classification.
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2.3 Efficient Exhaustive Search Method

In order to carry out the method described in the above sec-
tion, we require the histogram g(E) of the predictive error rate,
which spends the huge computational cost proportional to the ex-
ponential order of the dimension D. This is a terrible problem. In
this section, we propose a statistical mechanical method, which
consists of the exchange Monte Carlo method and Multiple his-
togram method, in order to overcome the problem of computa-
tional cost.
2.3.1 Exchange Monte Carlo Method

The exchange Monte Carlo (EMC) method is an algorithm of
the Markov chain Monte Carlo (MCMC) method, and is to ef-
ficiently sample from the desired probability distribution. The
purpose of the EMC method in this study is to sample from the
following probability distribution with the CV error E(s),

1
P(s:B) = = exp(=BE(s)), &)
B

where § > 0 is the parameter called “inverse temperature.” The
probability distribution p(s; ) has high density in the state s with
small CV error E(s). Hence, the sampling from the probability
distribution p(s; /) corresponds to the search of the state s with
small CV error E(s).

In the EMC method, we prepare for replicas of the probability
distribution p(s; ) with several inverse temperatures 0 = ; <
B2 < -+ < Buy. That is to say, the EMC method is consid-
ered to sample from the following joint probability distribution
P(St, ... Sm),

M
Pt ssu) = [ ] plsms B (©)
m=1

The detailed algorithm of EMC method consists of the following
two steps.
Step 1: update for each replica
Update the state s for each replica by the Metropolis algo-
rithm, which is the most fundamental algorithm of MCMC

method. Then, the state s = (sy, ..., Sq, ..., Sp) is changed to
the state s” = (sy,...,—S4, ..., sp) with the following prob-
ability,

p(s — s") = min (1, exp(-B(E(s") — E(s)))) (7

Step 2: exchange between the neighboring replicas
Exchange the states between the neighboring replicas, that
1S, {Sm» Smr1} = {Sm+1, S}, With the following probability,

P(Sm < Spy1) = min(l,v)

P(Sme 13 Bu) P(Sm Bn1)

P Bu) P(Sm15 Bm+1)

exp ((Bu+1 = Bu)E(Sm+1) — E(sm))) -

v =

After iterating these two steps many times, the obtained distribu-
tions of states {sy,..., sy} converge to the joint probability dis-
tribution Hf,‘f: 1 D(Sm;Bm). Then, we obtain the samples from the
probability distributions p(s,,;8,) for each inverse temperature

Bum-
One of the advantages for the EMC method is that this method
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can search the global optimal solution even though the error func-
tion has many local minima. As above-mentioned, the calcu-
lation of the error functions for all combinations of features re-
quires huge computational cost. On the other hand, the method
to search the solution locally such as the gradient descent method
has the risk to trap the local minima. The EMC method enables
us to search the global optimal solution efficiently because we
can avoid that the sample traps the local minima by the exchange
process in EMC method.

2.4 Multiple Histogram Method

Our proposed method cannot only search the combinations of
features with minimal CV error, but also can estimate the his-
togram g(E) of CV error by combining the multiple histogram
method [4], [9]. The EMC method can search many optimal so-
lutions efficiently. However, it is difficult to search all possible
optimal solutions by the EMC method because this method is
based on the probabilistic algorithm. For this problem, by com-
bining this method to the multiple histogram method, we can es-
timate the histogram g(E) of CV error by using sample sequence
of states {sy, ..., sy} generated by the EMC method.

The histogram g(E) is also called density of states, and is de-
fined as follows,

g(E) = > 6 (E — E(s)), @®)

where 6(E) is the Dirac delta function. The density of states g(E)
has the relationship between the normalization constant Zg for
Eq. (5) as follows,

Zy =) exp(-BE(s)) ©)
= > > 6(E - E(s)) exp (-BE(s)) (10)
s E
= > g(E)exp (-BE). (1n)
E

On the other hand, the histogram Hg(E) of CV error E(s) ob-
tained by the EMC method with the inverse temperature S can be
expressed by the expectation value over the probability distribu-
tion p(s; ) as follows,

Hy(E) = )" 8 (E = E(s)) p(s: ) (12)
=Z§(E_E(s))w (13)

s Zﬁ
_ 9(E)exp(-pE) 14

Zg
Consequently, the density of states g(E) is given by using the nor-
malization constant Zg and the histogram Hg(E),
Hp(E)
exp(—BE)/Zs
By using Eq. (11) and Eq. (15), when given the histogram Hg(E)

by the EMC method, we can calculate the density of states g(E)
by the iteration equation of the normalization constant Zg and

9(E) = (15)

the density of states g(E). In fact, since we can get the his-

M

tograms {H,;W(E)}ﬁf:l with several inverse temperatures {§,,},,_,
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by the EMC method, we can estimate the density of states g(E)
by the following iteration equations,

Yoy Wy, Hg, (E)
M wpny, exp(—BuE)/Zg,
Zy, = ) g(E)exp(~BuE),
E

g(E) = (16)

7

where n,, is the total number of samples at 3,,, and w,, is a weight
factor originally determined by an autocorrelation time at 3,,. The
multiple histogram method defined by Eq. (16) is the best estima-
tion method for minimizing the error in the resultant estimate for
g(E) [4]. In EMC method, however, the time correlation is diffi-
cult to define well, because the temperature of each replica does
not remain constant during the simulation. Hence, we assume that
the factor wy,, is independent of temperature, i.e., w,, = 1.0[9].

In principle, we can estimate the density of states g(E) from a
histogram Hg(E) with a certain inverse temperature 5. However,
this leads to the poor accuracy of the density of the states g(E).
When we use a histogram Hg(E) with a small value of inverse
temperature 3, we can search the wide range of energy, while the
accuracy of the density of the states g(E) goes worse in a small
CV error. On the contrary, when we use a histogram Hg(E) with a
large value of inverse temperature (3, it is difficult to estimate the
density of states g(E) in a whole range of CV error E because the
algorithm searches the state with a small CV error. Consequently,
in order to estimate the density of states g(E) accurately, we need

multiple histograms {Hpg, (E)M

m—1 With several values of inverse
temperatures {ﬂm},ﬂy;’:r Therefore, the EMC method is good at
estimating the density of states g(E) by the multiple histogram

method.

Identity 1 data Identity 3
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3. Simulation

In this section, we describe the simulation result in order to
show the effectiveness of the proposed method.

3.1 Data and Issue with the Conventional Method

The data represented the firing rates of 23 neurons in the an-
terior inferior temporal (AIT) cortex of a monkey measured by
conducting a single-unit recording, when the monkey was per-
forming a sequential delayed matching-to-sample task requiring
the identification of facial images [2], [3]. The presented images
consisted of the face images of four different identities viewed
from seven different angles. The AIT is known to be important
for the face identification. Hence, the goal of this data analysis is
to select the relevant neurons for the face identification from the
neural recording data.

In this simulation, we treated the binary classification problem
for face identification, Identity 1 vs. 3 pair and Identity 1 vs. 4
pair. The left figures in Fig.2 show the neural activity data for
Identity 1 vs. 3 and Identity 1 vs. 4. The horizontal axes show
the index of facial images, and the vertical ones the index of neu-
ron. The center and the right figures respectively show the results
for the logistic regression with the ARD prior [15], and those for
the logistic regression with the L1 prior [13] for the data repre-
sented in the left figures. These two methods are well known as
the sparse estimation for feature selection problem. We carry out
LOOCYV in each method. These figures show the selected fea-
tures for each CV. The horizontal axis shows the index of CV,
and the vertical one the index of neuron. The black cells in these
figures indicate that the corresponding neurons were selected in
each method, and the white cells indicate that the neurons were
not selected.

logistic regression with L1 prior
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20 |

Identity 1 data Identity 4
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Fig. 2 The left, center, and right figures respectively show the neural activity data, the estimation results

for the logistic regression with the ARD prior [

15], and those for the logistic regression with the

L1 prior [13]. The upper figures show the case of Identity 1 vs. 3, and the lower ones the case of

Identity 1 vs. 4.

© 2015 Information Processing Society of Japan

26



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.2 23-30 (July 2015)

Random guessing

Identity 1 vs 3

Identity 1 vs 4

[
o

20

110

log(density)
=)

o

0 0.5 1 0

Error

20

10

0

0.5 1 0 0.5 1

Error

Error

Fig. 3 The histograms of the CV error. The left, center, and right figure respectively show the histogram
gpi(E) for random guessing, the histogram for Identity 1 vs. 3, and the histogram for Identity 1 vs.
4. The horizontal axes show the predictive error rate, and the vertical ones the logarithm of density.
The curved lines in center and right figure show the histogram g;;(E) for random guessing.

From the result for Identity 1 vs. 3, though there are a little
difference between the result of ARD prior and that of L1 prior,
the 6th and 13th neurons are selected in both estimation methods.
This implies the success for extracting the information by the fea-
ture selection. On the other hand, the results of the ARD prior for
Identity 1 vs. 4 vary as the CV trial, and unstable. Moreover, the
results of the L1 prior show that no neuron should be selected.
Consequently, it is difficult to judge which neurons should be se-
lected as the relevant neurons from the conventional estimation
methods.

3.2 Verification for Comparing the Histograms

As the reason why the results in the above subsection were ob-
tained, one can be considered that the given data do not include
the information for binary classification. Although AIT is known
to be important for face identification, it is difficult for us to judge
whether the monkey used in the experiment recognizes the face
identification between Identity 1 and Identity 4 from the neural
data given. In this simulation, we calculated the histogram g(E)
by the CV for all combination of neurons, whose number was
223 1 = 8,388,607. Figure 3 shows the results. The left, cen-
ter, and right figure respectively show the histogram g;;(E) for
random guessing, the histogram for Identity 1 vs. 3, and the his-
togram for Identity 1 vs. 4. The horizontal axes show the predic-
tive error rate, and the vertical ones the logarithm of density. The
curved lines in center and right figure show the histogram g;(E)
for random guessing. We also calculated the Kullback divergence
KL(glgp:) for Identity 1 vs.3 and 1 vs. 4. As the result, the values
of the Kullback divergence KL(g|gy;) were 0.8104 for 1 vs. 3, and
0.0546 for 1 vs. 4.

From these results, the histogram g(E) for Identity 1 vs. 3
is significantly different from the histogram g;;(E) for random
guessing, in particular, in the small value of predictive error rate.
This means that the neural activity data for Identity 1 vs. 3 in-
clude significant information for binary classification. On the
other hand, the histogram g(F) for Identity 1 vs. 4 cannot be seen
the difference from the histogram g;;(E£). This means that the
neural activity data for Identity 1 vs. 4 do not include information
for binary classification.

This conclusion is consistent to the result for sparse estimation
above mentioned. That is, because the given data for Identity 1 vs.
4 do not include information for binary classification, the results
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of the sparse estimation for the case of Identity 1 vs. 4 vary or
show that no neuron should be selected. Consequently, our pro-
posed method gives us interpretation about the incomprehensible
results of the conventional sparse estimation by judging whether
the given data include information or not by exhaustively search-
ing all combinations of features. This means the importance for
clarifying the solution-space structure by the exhaustive search,
and the effectiveness of our proposed method.

3.3 Estimation of Density of the States

Next, we show the simulation result for the estimation of the
density of the states by using the EMC method and the Multiple
histogram method.

We set the number M of replica as M = 36 for the EMC
method, and the parameters { m}gzl of inverse temperature was
set by a geometrical progression as follows,

Bu=r""~1, (18)
r=(1+30.0)"", (19)

In this setting, 81 = 0.0 and By, = 30.0. The initial state of the
combination s, for each replica is randomly generate from the
uniform distribution of 223 — 1 = 8388607 combinations. We de-
fine the Monte Carlo step (MCS) as carrying out the step 1 and
step 2 of the EMC method once, and we simulate 2,300 MCS.
Then, we calculate the CV error 36 x 2,300 = 82,800 times. Its
computational cost is about 1:#0 of the exhaustive search method,
because the number of all combination of features is 8,388,607.
The initial condition of the iterative equations, Egs. (16) and (17),
for the multiple histogram method is set as Zg, = e~! for all B,,,
which corresponds to the setting of free energy Fg, = —logZg,
as Fg = 1.

Figure 4 (a) shows the result of the estimation of the density
of the states g(E). The horizontal axis shows the logarithm of the
density and the vertical one shows the value of CV error. Open
circles in Fig. 4 (a) show the density of the states g(E) calculated
by the exhaustive search method, and crossing points show the
estimated density of the states by using the EMC method and
the Multiple histogram method. In Fig. 4 (a), the typical number
of iteration to converge g(E) is 50 steps. From this result, the
estimated density of the states is almost same as the density of
the states g(E) calculated by the exhaustive search method. This
shows the effectiveness of the proposed estimation method of the
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Fig. 4 Estimated histogram of CV error in Fig(a). Number of CV error calculation is 82,800. Open circle
is the true value obtained by the exhaustive search with all combinations, in which the number of
CV error calculation is 8,388,607, and the crossing point is the estimated value. Feature subsets
having E(s) = 0 obtained by the simulation of (b) exhaustive search and (c) the EMC simulation.
Horizontal and vertical axes represent number of subsets and neurons. Black cells indicate that the

feature is in the subset.

density of the states g(E).

Figure 4 (b) and 4 (c) respectively show the combination of the
selected features s with minimum CV error E(s), i.e., E(s) = 0,
obtained by the exhaustive search method and obtained by the
EMC method. As a result of the exhaustive search method, the
number of combinations of features with E(s) = 0 was 1,938. On
the contrary, the EMC method can search the 118 combinations
of features with E(s) = 0, which is 6.09% of all combinations.
This indicates the goodness of the EMC method because the cal-
culation cost of the EMC method was about 1% of the exhaustive
search method. We can also see a similar tendency for selected
features, i.e., neurons between the exhaustive search method and
the EMC method. For example, from Fig. 4 (b), the 9th and 13th
neurons are selected in many combinations, and the 5th, 8th, and
14th neurons are hardly selected. This tendency about the se-
lected neurons can be seen from the result for the EMC method.

4. Discussion and Conclusion

In this paper, we focused on the feature selection problem for
the binary classification problem with linear discriminant. We
proposed a method to judge whether the given data include infor-
mation for binary classification problem by calculating the his-
togram of the generalization error for all combination of features
by the cross validation method. We applied the proposed method
to the feature selection problem for selecting the relevant neurons
for face identification. As a result, we clarify that the data for a
certain pair of identity 1 vs. 4 does not include information for
binary classification. This result gives us a clear reason why the
solution in a conventional sparse estimations such as LASSO and
ARD become unstable, and indicates the importance for exhaus-
tively searching all combination of features. We also proposed
the method to efficiently estimate the density of the states by us-
ing the exchange Monte Carlo method and the multiple histogram
method, and showed its effectiveness by comparing the result of
the proposed estimation method to that of the exhaustive search
method.

The reason why we obtained the result that the data for the pair
of identity 1 vs. 4 does not include information for binary classi-
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fication can be the small size of samples. As above mentioned in
Section 1, Cover and Van Campenhout showed that showed that
no non-exhaustive sequential feature selection procedure can be
guaranteed to produce the optimal subset in the feature selection
problem. Moreover, they also showed that the exhaustive search
method has a risk to provide the subset of features different from
the optimal subset when the sample size is small [1]. However,
the result of our simulation showed that the data for the pair of
identity 1 vs. 3 includes information for binary classification al-
though the sample size is same as that for the pair of identity 1
vs. 4. Therefore, the method to judge whether the given data set
have information for feature selection is very important, and the
result of our study indicates that our proposed method is efficient.

As the future work, it is important whether the relevant features
are selected from the result of the exhaustive search method. One
can consider the method to select the relevance features which are
selected in many combinations for the exhaustive search method,
as described above in Fig. 4 (b) and in Fig. 4 (c). However, it is the
problem which combinations are selected as the relevant combi-
nation of features. In the results in Fig. 4 (b) and in Fig. 4 (c), we
focused on the combination of neurons with minimum CV error,
i.e., E(s) = 0. However, this selection has arbitrariness. Hence, in
order to select the combination of features without arbitrariness
as much as possible, we need a test for statistical significance for
each combination of features. This test have to carry out many
times, and we have to consider the correction by the multiple hy-
pothesis testing [5]. Consequently, Development of the feature
selection method by using the exhaustive search method and the
multiple hypothesis testing is very important, and should be ad-
dressed as the future works.
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Appendix
A.1 Support Vector Machine

In Appendix A, we describe the learning of support vector ma-
chine (SVM), which is used as the linear discriminant in this
study. The SVM learns the parameter w and b based on the princi-
ple of maximization of margin, which is the distance between the
decision boundary and the closest sample to the decision bound-
ary. More concretely, the learning of SVM is formulated by using
the Lagrange multiplier,

N
1 2
min ma —|lw|I*+C i
min max {2|| || Z]f

—ZN:/L' {t,‘(wa,' +b)— 1}—§:/~li§i}, (A.1)
i=1 i=1

where € = {f,-}fi 1»& = 0 is slack variable which represents a
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penalty for misclassification, and the variable A, u is the Lagrange
multiplier. The variable C is a regularization constant which con-
trols the trade-off between the penalty of slack variable & and the
margin maximization. In our simulation, we set C = 5.0.

A.2 Verification of Multiple Histogram
Method

In Appendix B, we show the result of the multiple histogram
method for single temperature in order to verify the effective-
ness of multiple histogram method. Figure A-1 show the esti-
mation result of the histogram of CV error for the single temper-
ature. The values of temperature 3 are from left to right 8 = 0.0,
B = 5.4505 and B8 = 30.0. These figures indicate that the esti-
mation for the single temperature partially approximates the his-
togram of CV error. This is caused that the Monte Carlo algo-
rithm is difficult to sample from whole region of CV error in a
single temperature. As can be seen from Eq. (15), if Hg(E) = 0,
then g(E) = 0. Multiple histogram method overcomes the prob-
lem that it estimates g(E) = 0 by using the multiple sequence of
Markov chain with different temperatures.
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