
Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

[DOI: 10.2197/ipsjjip.23.449]

Regular Paper

Strict Application Execution Control
with Hierarchical Group Management

Using Digital Certificates on Educational Windows PCs

Daisuke Okamoto1,†1,a) Keita Kawano1 Nariyoshi Yamai2 Tokumi Yokohira1

Received: September 16, 2014, Accepted: March 4, 2015

Abstract: We have developed a system (traditional system) to flexibly provide the requested applications environment
on educational Windows PCs. The traditional system dynamically controls the execution of applications installed on
each educational PC depending on the rules defined by teachers as well as by administrators. The traditional system,
however, has a low tolerance for malicious attacks. If the execution file of a certain application is falsified, the cor-
responding rules already applied become invalid. In addition, though the traditional system has a function to define
groups of controlled applications, it does not support hierarchical groups. This reduces the usability of the traditional
system. In order to address these issues, this paper proposes a control method of application execution using digital
certificates. The proposed method has a high tolerance for the falsification of execution files by controlling their ex-
ecutions based on the reliability of the corresponding digital certificates. It also improves its usability by introducing
hierarchical group management utilizing hierarchical structure for digital certificates.

Keywords: application execution control, digital certificate, educational PC

1. Introduction

In many educational institutions, PCs used by students for ed-
ucation are arranged into several rooms of scattered facilities to
make usage more convenient for students [1], [2], [3]. Those PCs
are called “educational PCs” and provide a common user envi-
ronment to the students [3], [4]. To achieve this efficiently, edu-
cational PCs are usually managed using one (or some) common
disk image.

Since all the administrators have to do is to maintain the com-
mon disk image and reflect it into all the educational PCs, their
burden of management has been reduced. This management,
however, has a drawback of lacking the flexibility to provide an
individual applications environment depending on the requests
from teachers.

Therefore, we have developed a system (traditional system)
to control the execution of applications on educational Windows
PCs, as previous research [5], [6], [7]. The traditional system al-
lows or prohibits the execution of applications on each educa-
tional PC depending on individual requests. Even when immedi-
acy is required, teachers can change the applications environment
in their classroom in real time, with a configuration tool for teach-
ers.

However, the execution rules already set become invalid if the
falsification of execution files occurs in the traditional system.

1 Okayama University, Okayama 700–8530, Japan
2 Tokyo University of Agriculture and Technology, Koganei, Tokyo 184–

8588, Japan
†1 Presently with KDDI CORPORATION
a) daisuke.net@s.okayama-u.ac.jp

The traditional system uses hash values of the corresponding ex-
ecution files to identify each application. The hash value here,
is a 32-bit unique value calculated from each execution file. If a
certain execution file is falsified, its hash value changes, resulting
in the invalidation of the corresponding rules.

Moreover, although the traditional system has a function to de-
fine groups of controlled applications, it does not support hierar-
chical groups [6]. A group cannot include other groups in itself. If
a teacher wants to control the execution of applications in multi-
ple groups, the teacher needs to set the rules to the corresponding
groups one by one. This reduces the usability of the traditional
system.

To solve these problems, this paper proposes a control method
of application execution using digital certificates. The proposed
method can defeat the falsification of execution files and real-
ize hierarchical applications group management. When a student
starts up an application on their educational PC, a program of the
proposed method verifies the reliability of the certificate used to
certify the application. If its reliability is ensured, the student can
use the application.

Furthermore, the proposed method applies hierarchical struc-
ture for certificates to application execution control. The pro-
posed method can control the execution of applications in an ar-
bitrary hierarchy of groups by trusting or distrusting the corre-
sponding certificates.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes an outline and problems
of the traditional system. Details of the proposed control method
using digital certificates are described in Section 4. The results
of several experimentations are shown in Section 5 to confirm the

c© 2015 Information Processing Society of Japan 449

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

feasibility of the proposed method. Section 6 summarizes this
paper and describes some future work.

2. Related Work

The administration of large educational systems is one of the
important missions of the information centers in educational in-
stitutions. They have constructed their educational systems by
employing various solutions to overcome their individual prob-
lems and satisfy their individual needs [8].

Providing a common user environment on all the educational
PCs is important to increase convenience for students [3], [4]. To
achieve this efficiently, most educational systems have some kind
of image-based centralized management system [2], [3]. Using
such a system, one common disk image can be easily reflected
into all the educational PCs. Some universities have maintained
multiple common disk images to satisfy individual requirements
from different departments [2], [9]. This method, however, in-
creases the burden of system management while increasing user
satisfaction.

As an older but simple way to reflect disk images, there is a
method to distribute the latest disk image and replace disk im-
ages of educational PCs with it at night. Our current system
employs this type of centralized management. Some universi-
ties employ a newer way to distribute the latest disk image, called
NetBoot [2], [9]. This type of centralized management system al-
lows educational PCs to get the latest disk image with high-speed
network when they boot up. Some universities employ the Net-
Boot system with diskless thin clients in consideration of fault
tolerance [4]. Other universities employ the NetBoot system with
local hard disks [2], [9]. In educational systems, a large number
of PCs start up almost simultaneously at the beginning of classes.
To reduce the start-up time, local hard disks are used to cache the
present disk image.

In addition, some progressive universities have introduced a
method called Virtual Desktop Infrastructure (VDI) [3], [4], [10].
Educational PCs run on a high-spec virtualized infrastructure, and
students use them through local PCs like thin clients. Basically,
VDI system has no restriction of the type of clients. Students can
use their own devices to access the virtual educational PCs. Uti-
lizing this feature, some universities implement the “Bring Your
Own Computers” policy to reduce system introduction cost and
to promote studies at home or elsewhere [11].

As a method to construct a virtual educational PCs envi-
ronment with cloud computing platform, Apache Virtual Com-
puting Lab (VCL) has developed [12], [13]. Some universi-
ties are trying to share their computing resources among multi-
ple universities to reduce system introduction and management
cost [13], [14]. Other universities are trying to allow teachers, or
perhaps students, to create their own disk images and maintain
them [15], [16], [17]. The latter provides management flexibility
when the teachers, or the students, have a certain amount of skill
and knowledge about computers.

Moreover, in many universities having a variety of depart-
ments, it is necessary to use multiple OSs (including different ver-
sions of the same OS) on educational PCs, such as the Microsoft
Windows family, Apple OS X, and Linux [18], [19], [20], [21].

To address this issue, some universities employ the multiboot fea-
ture while other universities introduce the virtualization feature in
which one OS runs on another OS [1], [2], [4], [22]. This paper,
however, focuses on educational PCs having only a single version
of Windows, for implementation reason and for simplicity *1.

As described above, Educational systems have various needs
and many solutions for administering them have been introduced.
Even with those solutions, however, an application environment
on each educational PC cannot be changed after its start-up. Our
solution is applicable in many educational systems employing the
above solutions.

On the other hand, application streaming is another method to
realize individual application environments [23], [24], [25]. In
this method, some streaming servers have virtualized applica-
tions, and educational PCs get each application from the servers
and use it when they need. This method, however, needs power-
ful streaming servers to handle simultaneous requests from edu-
cational PCs at the same class.

There are some vendor solutions to control the execution of ap-
plication installed on Windows PCs [26], [27], [28], [29]. As far
as our investigation, however, no solutions use digital certificates
to identify each application. For instance, from their web site,
we can guess one solution uses hash values like our traditional
system [26].

3. Traditional System

In this chapter, an outline of the traditional application execu-
tion control system we have developed is described. After that,
two problems of the traditional system are shown.

3.1 Outline of Traditional System
As mentioned above, educational PCs are typically managed

using a centralized management system with one (or some) com-
mon disk image [7]. However, this system cannot reflect the mod-
ification of the image in real time. Moreover, the administrative
burden increases in proportion to the number of images.

In order to solve these problems, we have developed an appli-
cation execution control system (traditional system) [5], [6], [7].
The traditional system controls user’s application execution by
setting control policies. The settings of the policy can be done
in real time even in a class. If an application which is tried to be
used by a student has a limitation on the number of license, the
traditional system determines the application usage depending on
the number of remaining license. This system can immediately
and flexibly construct different application environments.

The traditional system consists of four programs. The first is
the Configuration Tool. It is a program for teachers to set the
policy of application usage. The second is the Execution Control
Program. It is a program to actually control the use of specified
application on each educational PC. In addition, there is a pro-
gram for administrators to configure group control, called Man-
agement Tool. The last is a server program to store the rules and
direct whole operation, called Policy Decision Server. It has a
database (Policy Database) which retains execution rules of ap-

*1 Actually, the OS on all of our current educational PCs is Windows 7.

c© 2015 Information Processing Society of Japan 450

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

plication.
The operation of the traditional system when a teacher sets a

control rule is shown in Fig. 1.
As shown in Fig. 1, each student PC has Execution Control

Program, teacher PC has Configuration Tool, and administrator
PC has Management Tool. When a student logs in to an educa-
tional PC, the Execution Control Program receives initial control
rules from the Policy Decision Server and reflects them. Then,
if the teacher asks the server to modify the execution rules, the
modification is notified to the Execution Control Program on the
corresponding student PCs and is reflected.

The traditional system uses a function of Windows called
“Group Policy,” to control the execution of applications. With a
feature of the Group Policy, application start-up can be controlled
by changing a registry value [30]. A hash value is used to identify
each application. The hash value is a hexadecimal unique value
calculated from each execution file. This value has a feature that
if the input data is changed, the output data is also changed [31].

Moreover, the traditional system has default-state configura-
tion function and grouping function to control multiple applica-
tion at once. With the default configuration function, a teacher
can set default state which is a rule for all non-specific applica-
tions. If no default-state is set, “default-permission” which allows
all non-specific application execution is chosen as standard con-
figuration. To achieve “default-prohibition,” a prohibition rule
using wildcard of “path rule” [32] is set. At this time, by setting
individual permission rule, the teacher can allow the use of appli-
cation that the teacher wants.

Furthermore, the grouping function can control multiple appli-
cations at once by registering some applications as a group and
setting a control rule to the group. If an administrator has cre-
ated a group of control target applications using the Management
Tool, teachers can control the execution of multiple applications
simultaneously using the group definition.

3.2 Problems of Traditional System
This section describes two problems of the traditional system.

3.2.1 Low Tolerance for Falsification of Execution Files
As mentioned above, the hash value is used to identify each ap-

plication in the traditional system. Students having expert knowl-

Fig. 1 The operation of the traditional system when a control rule is set.

edge, however, can change the hash value of the execution file of
a certain application by rewriting its binary data using a kind of
binary editor. If a calculated hash value is changed, control rules
already set are no longer valid.

Under the default-permission state, individual prohibition rules
for specific applications are usually defined. If a student rewrites
the binary data of the execution file of a corresponding applica-
tion, the hash value of the defined prohibition rule and the hash
value of the execution file can be different. Then the rule becomes
invalid and the student can execute the application that the student
wants to use.

Under the default-prohibition state, individual permission rules
for specific applications are usually defined. If a student rewrites
the binary data of the execution file of a corresponding applica-
tion, the hash value of the defined permission rule and the hash
value of the execution file can be different. Then the rule be-
comes invalid and the student can prevent the execution of the
application that is inconvenient for the student but is needed for
the administration. Normally, this type of falsification should be
restricted with proper permission management. More of this is
described in Section 4.1.

An example of actual falsification is shown below. The execu-
tion prohibition rule of the corresponding application has been set
in advance. When a user attempts to start up the application, the
message shown in Fig. 2 is displayed and it cannot be executed.
After that, assume that the user falsifies an unused part in binary
data of the execution file, and attempts to start it up again. This
time, no message is displayed, and the application can be exe-
cuted. This is because the hash value has changed and the rule
has become invalid.
3.2.2 Lack of Hierarchical Group Management

As described in previous chapter, the traditional system has a
grouping function. This function can reflect a single rule into
multiple applications at once. However, it was designed for the
purpose of simple grouping (e.g. different versions of applica-
tions). A group cannot include other groups into itself. With the
current Configuration Tool, if a teacher wants to control multiple
groups at once, the teacher has to set control rules to the groups
one by one. The burden on the teacher increases in proportion
to the number of the target groups. An example of traditional
grouping is shown in Table 1.

As in Table 1, the group “IE” contains the application “Internet

Fig. 2 The execution prohibition message.

Table 1 Group information.

Group Name Member
IE Internet Explorer 11.0

Internet Explorer 11.1
Internet Explorer 11.2

Firefox Firefox 29.0
Firefox 29.1

c© 2015 Information Processing Society of Japan 451

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

Explorer 11.0,” “Internet Explorer 11.1,” and “Internet Explorer
11.2.” The group “Firefox” contains the application “Firefox
29.0” and “Firefox 29.1.” At this time, suppose that the admin-
istrator attempts to create a group “browser.” The administrator
needs to select 5 applications one by one since the administrator
cannot specify the groups “IE” and “Firefox” as the group mem-
bers. In addition, a burden of management increases because the
administrator has to maintain these duplicate information. If the
application “Firefox 29.2” is newly registered as target applica-
tion at this time, the administrator needs to register it to the group
“browser” in addition to the group “Firefox” as each group mem-
ber.

4. Proposed Control Method Using Digital
Certificates

In order to solve the problems described in Section 3, this pa-
per proposes a new control method of application execution using
digital certificates. An outline of the proposed method is shown
in Section 4.1. Then, Sections 4.2 and 4.3 describes the detailed
functions of the proposed method. The operation flow of the pro-
posed method is shown in Section 4.4.

4.1 Outline
To solve the problems described in Section 3, new functions to

defeat the falsification of execution files and to control the groups
flexibly are needed.

To defeat the falsification of execution files, their permissions
have to be managed properly in educational systems. Except
for personal areas, no files should be changed by students. This
method is always effective to protect applications installed by ad-
ministrators. Our proposal also assumes this setting. However,
the administrators cannot control permissions of execution files
of applications installed on the personal area by students. This
allows students to falsify these execution files and cheat on the
system.

As for hierarchical group management, there is a way to simply
extend the traditional way of management. Hierarchical group
information can be managed together with associated application
information on the Policy Database. However, when actual modi-
fication of control policies for a certain group is enforced with the
Execution Control Program, the setting for individual application
in the group has to be changed iteratively with this method. The
number of iteration and the amount of associated control mes-
sages increase linearly as the number of group members grows.

This paper introduces two functions to address these problems.
A function called “Defeat Falsification Function” controls the
start-up of each execution file based on the reliability of the cor-
responding digital certificate. In addition, a function called “Hi-
erarchical Control Function” constructs the hierarchical structure
for certificates, and controls multiple groups at once.

First, the Defeat Falsification Function verifies the reliability of
the digital certificate used to certify each execution file each time
the associated application starts up. If its reliability is not en-
sured, the execution is to be prohibited. In this way, the proposed
system can prevent malicious student from avoiding the rules.

Next, the Hierarchical Control Function applies hierarchical

structure for digital certificates to application execution control.
By switching a reliability, which indicates whether the certificate
can be trusted or not, of an upper layer certificate, the execution
of multiple applications with lower layer certificates can be con-
trolled at once.

In order to achieve these functions, we have to add some fea-
tures to handle digital certificates to the traditional system. First,
a function which modifies digital signatures, which include the
information of the digital certificates of their signers, on execu-
tion files of applications has to be added to the Management Tool.
Next, we have to allow the Execution Control Program to control
application execution based on the digital certificates. In addition,
we have to modify the Policy DB to store certificate rules.

4.2 Defeat Falsification
In general, digital signatures are used for the purpose of ensur-

ing that the data contains no falsification. The digital signature is
able to be appended to execution files of applications, and there
are many such products [33]. If a digital signature appended on
an application is verified and the result is invalid, it determines
that there is a data rewriting. However, as far as we have tested,
even if the falsification occurs, any error messages are not dis-
played for local applications unless we check the information of
the digital signatures from their properties. The proposed system
aims to prohibit the use of such falsified applications. Only the
applications certified by the signers with reliable certificates can
be executed.

Note here that, in the Group Policy, not only hash values (“hash
rules” [34]) but digital certificates (“certificate rules” [35]) are
also supported as the identifier for execution control [36]. The
identification is based on the digital certificate of the signer of the
digital signature. If a rule for an application is defined using the
corresponding certificate, other applications which are certified
by the signer with the same certificate are affected by the rule at
the same time. For instance, because signers of the Microsoft Of-
fice suite (e.g., Excel, Word and PowerPoint) are the same, single
certificate rule is applied for these applications. Thus, for individ-
ual application execution control, we add a function which over-
writes the digital signature in the proposed method. By setting
rules using different certificates of different signers, strict appli-
cation control can be supported.

The Group Policy actually controls application execution by
verifying the reliability of the corresponding certificates. The re-
liability of the certificates is switched depending on the control
rules. If the execution of applications associated with the certifi-
cate is configured as permission, the certificate is set to valid. On
the contrary, if it is configured as prohibition, the certificate is set
to invalid. In fact, the information of the certificate is registered to
a special part of the registry, named “Certificate Stores” [37]. The
important items to switch the reliability of the digital certificates
are shown in Table 2.

Table 2 The import destination to switch the reliability in the certificate
stores.

item’s name which certificate will be imported
Trusted Publishers certificates with permission rule

Disallowed Certificates certificates with prohibition rule

c© 2015 Information Processing Society of Japan 452

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

As shown in Table 2, if a permission rule using certificates is
set in the Group Policy, the certificate information is automat-
ically imported into “Trusted Publishers” to set the certificate
valid. On the contrary, if a prohibition rule is set, it is imported
into “Disallowed Certificates” automatically to set the certificate
invalid. Thus, we let the proposed method configure the Certifi-
cate Stores properly to control the application execution.

As mentioned above, the traditional system can switch a mode
(default state) which prohibits or permits the execution of all non-
specified application. Under the state of the default-prohibition,
the execution of the falsified application is not allowed because
its digital signature is invalid *2. On the other hand, the behavior
varies with falsification parts of the execution file of the appli-
cation when the state is the default-permission and a prohibition
rule for that application using the digital certificate is set. If the
unused parts of the execution file are falsified, the prohibition rule
is applied because the signature parts has no changes. However,
if the signature parts are falsified, the certificate information is
not matched with the prohibition rule which is already registered.
Therefore, a user can execute the application even if the prohibi-
tion rule using the digital certificates is set under the state of the
default-permission.

For preventing the execution of the falsified applications like
that, we modify the traditional default-states. We rebuild the
default-permission state by allowing the execution of all the ap-
plications by certifying them with trusted certificates. For real-
izing this state, a prohibition rule using wildcard of “path rule”
(all-prohibition rule) is set and the execution of all applications
is set to permit using the permission rules using certificates [32].
Herewith, even if the signature parts of the execution file are fal-
sified, the system can prohibit the execution of the application
because the above all-prohibition rule is applied.

Actually, this way of rebuilding can be also applied to the tra-
ditional execution control using hash values. We, however, still
use digital certificates instead of hash values mainly because we
utilize the hierarchy of digital certificates for hierarchical control
to be described in the following section. In addition, using the
above described feature, i.e. rules are defined with the signer of
digital signatures, we can reduce the total number of rules under
the rebuilt default-permission state. Some applications that are
required for the administration of educational systems but chang-
ing their execution policies are not needed during classes can be
signed by the same signer and can be controlled at once.

4.3 Hierarchical Control
There are some certificates to use for application execution

control. First, the certificates which are used to sign applications
called “End certificate.” Next, the “Intermediate certificate” is for
certifying the End certificates or the lower layer Intermediate cer-
tificates. At last, the “Root certificate” locates in the top of the
structure and certifies the reliabilities of lower layer certificates.

Note here that, the system cannot control application execu-
tion using the digital certificates only if these certificates are just

*2 The execution of applications with invalid digital signature is prohibited
by the default-prohibition rule even if the permission rule using the cor-
responding certificate is defined.

created. Administrators have to import these certificates into the
proper part of the Certificate Stores in advance. The important
items for the proposed method to validate each certificate are
shown in Table 3.

As shown in Table 3, the items of import destination differ de-
pending on the kinds of certificates. First, the certificates created
as the Root certificates becomes valid by importing into “Trusted
Root Certification Authorities.” Next, the Intermediate certifi-
cates are imported into “Intermediate Certification Authorities.”
Finally, the End certificate can be handled as the certificate which
can be controlled in the Group Policy, by importing them into
“Other People.”

As mentioned above, the Intermediate certificate ensures that
the End certificate is reliable. If the Intermediate certificates are
invalidated (imported into “Disallowed Certificates”), the lower
layer End certificates are also invalidated at the same time. And
then, if the Intermediate certificates are re-validated (deleted
from “Disallowed Certificates”), its End certificates are also re-
validated. In other words, the reliability of the Intermediate cer-
tificate is inherited to the lower layer End certificates.

The proposed system applies this feature to the application
group control. We achieve the prohibition of application group,
by invalidating the certificates of the hierarchy level correspond-
ing to the application groups.

As described above, under the default-permission state, if the
upper Intermediate certificate is invalidated, application cannot
start up even if the End certificate is set a permission-rule (im-
ported into “Trusted Publishers”). The rule is able to re-set to
permission by deleting the Intermediate certificate from “Disal-
lowed Certificates.”

Under the default-prohibition state, however, the behavior is
different from previous case. In the Group Policy, even if the
Intermediate certificate is just imported into “Trusted Publish-
ers,” an execution of application certified by the lower layer End
certificate is not allowed. Unless each End certificate is set a
permission-rule (imported into “Trusted Publishers”), the appli-
cation execution is kept as prohibition. As shown in here, the
process that permits the group in the default-prohibition state is
difficult to realize only using hierarchical structure at this stage.
We need more considerations of realizing a function that permits
the application execution for the group by reliability operation
using hierarchical structure for certificates.

To achieve above execution control, the proposed system al-
lows the administrator to construct a certification relation of the
End certificates and the Intermediate certificates flexibly. By us-
ing this way, the proposed method can support group control
more freely than the traditional method, since the number of the
Intermediate certificates is able to be configured as administrators
like. By changing the certification relation between the Interme-
diate certificates and the End certificates, the proposed method

Table 3 The import destination to validate certificates in the Certificate
Stores.

item’s name which certificate will be imported
Trusted Root Certification Authorities Root certificates
Intermediate Certification Authorities Intermediate certificates

Other People End certificates

c© 2015 Information Processing Society of Japan 453

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

Fig. 3 The operation flow of the proposed method.

can change a range of applications controlled execution.
We have to add some function to create and sign the certificates

to the Configuration Tool and the Management Tool, for prepar-
ing the certificates used to control execution. We are thinking
of using the Windows SDK published by the Microsoft Corpora-
tion. This is a Software Development Kit to create applications
operated on the Windows PC. This kit includes some execution
files such as “makecert” for creating the certificate, “signtool” for
signing to each file, and so on [38].

4.4 Operation Flow
The operation flow of the proposed method is shown in Fig. 3.

In advance, an administrator creates certificates and appends
them to the execution control target applications. Then, a teacher
prohibits a certain application. After this, the Educational PC re-
flects its rule.

An operating procedure is concluded as follows.
(an administrator creates certificates by the Management
Tool)

(1) The Management Tool sends these certificate information to
the Server Program.

(2) The Server program registers the certificate information into
the corresponding tables, and sends a message indicating
completing the registration.
(a teacher sets a prohibition rule by the Configuration Tool)

(3) The Configuration Tool sends the rule to the Server Program.
(4) The Server Program registers the rule to the corresponding

table and sends a message indicating the registration com-
pleted to the Configuration Tool.

(5) The Server Program notifies the control information mod-
ification to the corresponding Execution Control Program.
Then, the Execution Control Program reflects it.

5. Experiment

We experimented to verify the efficacy and feasibility of the
control method using digital certificates described in Section 4.

5.1 Defeat Falsification
We examined the behavior when the execution file of a control

target application is falsified. First, we falsify the execution file
of the application which is set a prohibition rule of the certificate.
Then, we confirm keeping the execution prohibited. Here, the
behavior varies depending on where is replaced in the execution
file. Thus, we experimented to falsify two parts in the file. The
first is the unused bytes which have no impact to the operation

Fig. 4 Certification information after falsification of unused bytes.

of the application even if it was re-written. And the other is the
appended certificate part.
• (Experiment 1.1) Falsification of the unused bytes

[Initial State]
All-prohibition rule using wildcard is set. An execution
file “testapp1.exe” is signed with an End certificate “End1”
(publisher: “InterCA1”). A rule which prohibits execution
of application signed with the “End1” is set by using the
Group Policy.
[Procedure]
(1) Confirm that testapp1.exe cannot be started up.
(2) Replace unused bytes in the execution file.
(3) Just the same as above, confirm that testapp1.exe can-

not be started up.
(4) Check the state of digital signature.
[Result]
The message indicating execution prohibition was dis-
played, when we attempt to start up the application after
falsifying the execution file. The prohibition rule had been
retained, since the rule was set by using a certificate instead
of a hash value as the identifier. There were no changes in
the certificate part of the binary data.
After that, we confirmed the state of the digital signature
from properties of the execution file, and a message indi-
cating that the signature is not valid as shown in Fig. 4 was
displayed. This is because the hash value calculated from
the binary data and the value included in the signature were
not matched.

• (Experiment 1.2) Falsification of certificate part
[Initial State]
As same as the Experiment 1.1, an execution file
“testapp1.exe” is signed with an End certificate “End1” un-
der the state of all-prohibition rule using wildcard is set. A
rule which prohibits execution of application signed with
the “End1” is set by using the Group Policy.
[Procedure]
(1) Confirm that testapp1.exe cannot be started up.
(2) Rewrite the bits of certificate part in the execution file.
(3) As same as previous, confirm that testapp1.exe cannot

be started up.
(4) Check the state of digital signature.

c© 2015 Information Processing Society of Japan 454

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

Fig. 5 Certification information after falsification of certificate part.

[Result]
After the falsification of the execution file, we could con-
firm that the prohibition rule had been retained by seeing
the message indicating execution prohibition. In this exper-
iment, the all-prohibition rule using wildcard was applied
instead of the End1 prohibition rule. That is, the execution
prohibition of “testapp1.exe” had been retained, since the
prohibition rule using wildcard of the “path rules” worked.
After that, we verified the state of the digital signature ap-
pended to the execution file from properties of the execu-
tion file, and confirmed that a message like Fig. 5 indicating
that the certificate was modified was shown.

5.2 Hierarchical Control
[Initial State]
All-prohibition rule using wildcard is set. The End
certificate “End1” and “End2” (publisher of both: “In-
terCA1”) are certified by the Intermediate certificate “In-
terCA1” (publisher: “RootCA”). Moreover, an execution
file “testapp1.exe” is signed with the End1. In the same
way, “testapp2.exe” is signed with the End2. The InterCA1
is imported into “Intermediate Certification Authorities,”
and thus it is valid. In addition, the execution of applica-
tions signed with the End1 and End2 are permitted by the
Group Policy.
[Procedure]
(1) Confirm that “testapp1.exe” and “testapp2.exe” can be

started up.
(2) Invalidate the InterCA1 by importing it into “Disal-

lowed Certificates.”
(3) Confirm that “testapp1.exe” and “testapp2.exe” cannot

be started up.
[Result]
After importing the InterCA1 into “Disallowed Certifi-
cates,” we attempted to execute the “testapp1.exe.” Then, a
prohibition message was displayed, and we were not able
to start up the application. The case of “testapp2.exe” was
the same as this. Further, when we confirmed certificate
relation from their properties, a message indicating “the in-
terCA1 is revoked” as shown in Fig. 6 is displayed. Accord-
ing to the above results, we confirm that we can prohibits

Fig. 6 Invalidation of the Intermediate certificate “InterCA1.”

Fig. 7 End3’s certification path. Fig. 8 End4’s certification path.

all execution of application signed with the lower layer End
certificate by invalidating the Intermediate certificates.

5.3 Verification Time of Digital Certificate
The results of measurement time of verifying certificate re-
liabilities when starting up an application are shown here.
The experiments were conducted with changing the number
of hierarchies of Intermediate certificates to confirm the pro-
posed method has short response time to meet actual use.
[Initial State]
For the three pattern experiments, the application which
is not appended the digital certificate, the End certificate
“End3” (publisher: “InterCA3”), and the End certificate
“End4” (publisher: “InterCA8”) are prepared. The “End3”
is the 5 levels certificate whose certification path consists
of the 3 Intermediate certificates and the one Root certifi-
cate as shown in Fig. 7. Moreover, the “End4” is 10 levels
certificate whose certification path has the 8 Intermediate
certificates and the one Root certificate as shown in Fig. 8.
[Procedure]
(1) Measure time until the start-up completion from com-

c© 2015 Information Processing Society of Japan 455

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

Table 4 The comparison of start-up time.

start-up time[ms]
without signature 5 levels 10 levels

1st time 107.42 562.71 1136.72
2nd time 117.19 281.25 178.16
3rd time 158.20 166.02 227.54
4th time 111.33 169.92 215.19
5th time 103.52 187.50 174.80
average

(from 2nd to 5th) 122.56 201.18 198.92

mand input about application without digital signature
5 times.

(2) Append the End certificate “End3” to the application.
(3) In the same way, measure the time about the 5 levels.
(4) Overwrite the End certificate “End4” to the applica-

tion.
(5) In the same way, measure the time about the 10 levels.
[Result]
The result of each experiment is shown in Table 4.
With the Table 4, we can find out that the start-up time
of the execution file signed with 5 levels certificate is in-
creasing about 500ms at most, compared with the case of
no-signature. Moreover, the time difference is about 1s in
case of 10 levels. The impact on the application start-up
is tiny, because the number of hierarchies we assumed is
about 5 at most. For instance, the group “Browser” as de-
scribed above has 4 levels such as Root certificate, Interme-
diate certificate “Browser,” Intermediate certificate “IE” or
“Firefox,” and each End certificate. Though the number of
hierarchies differs depending on the usage, it is sufficient to
represent the application group unless the number of hier-
archies gets so large.
Furthermore, the start-up time from the second time to fifth
time is reduced compared to the first time for each certifi-
cate. It is considered that the certificate information that is
verified in the first time has cached in the system.

6. Conclusion

In this paper, we proposed and designed a control method of
the execution of applications using digital certificates. Since the
traditional system used hash values to identify each application,
it could not prevent falsification of execution files. In addition,
flexible control target setting was difficult because the traditional
group construction had restrictions.

However, by using the digital certificates, we can defeat the fal-
sification of execution file and prohibit the execution. Moreover,
by applying the hierarchical structure for the digital certificates
to the application control, we can control the application group
flexibly.

In future work, we will implement a prototype of the proposed
method, and will consider how to make the group permission set-
tings under the state of default-prohibition using the certificates.

References

[1] Fujimura, N., Inoue, H. and Hashikura, S.: Experience with the educa-
tional ICT environment in Kyushu University, Proc. SIGUCCS 2009,
pp.167–172 (2009).

[2] Ueda, H., Kita, H., Mori, M., Ishii, Y., Tonomura, K., Ueki, T.,

Uehara, T. and Kajita, S.: Kyoto University Educational Computer
System with Network Boot and Desktop Virtualization for Reduction
in Total Cost of Ownership, Proc. IOTS 2012, pp.47–54 (2012) (in
Japanese).

[3] Hamamoto, N., Ida, H., Saitoh, T., Sakai, H., Otagiri, T. and
Kumehara, S.: Construction of computer system for PC rooms for ed-
ucation using Virtualization Technology, Journal for Academic Com-
puting and Networking, No.17, pp.33–41 (2013) (in Japanese).

[4] Tadaki, S., Tanaka, Y., Matsubara, Y., Hieida, Y., Eto, H. and
Watanabe, K.: Virtual user desktops through server-hosted thin-
clients (The new educational terminal system in Saga University),
IPSJ SIG Technical Report, Vol.2010-IOT-11, No.3, pp.1–5 (2010) (in
Japanese).

[5] Fujiwara, M., Kawano, K. and Yamai, N.: An Execution Control Sys-
tem for Application Software Reducing Administrative Burden of Ed-
ucational PCs, Proc. C3NET 2012, pp.375–380 (2012).

[6] Okamoto, D., Fujiwara, M., Kawano, K. and Yamai, N.: Target Ap-
plication Grouping Function Considering Software Updates on Appli-
cation Execution Control System, Proc. ADMNET 2013, pp.627–632
(2013).

[7] Kawano, K., Okamoto, D., Fujiwara, M. and Yamai, N.: A Flexible
Execution Control Method of Application Software for Educational
Windows PCs, J. Inf. Process., Vol.22, No.2, pp.161–174 (2014).

[8] Masuda, H.: The Large Scale Educational Computer Systems, IPSJ
Magazine, Vol.45, No.3, pp.225–226 (2004) (in Japanese).

[9] Sugiura, T.: Development and Evaluation of Netboot Computer Room
System Based on Virtual Server Infrastructure, Journal for Academic
Computing and Networking, No.17, pp.43–50 (2013) (in Japanese).

[10] Segawa, H., Tsujisawa, T. and Tatsumi, T.: Consolidation of Servers
and Development of Educational Terminal System by Virtualization
Technique, Journal for Academic Computing and Networking, No.11,
pp.134–141 (2011) (in Japanese).

[11] Fujimura, N.: Bring Your Own Computers Project in Kyushu Univer-
sity Proc. SIGUCCS 2013, pp.43–50 (2013).

[12] The Apache Software Foundation: Apache VCL (online), available
from 〈https://vcl.apache.org/〉 (accessed 2014-12-31).

[13] Schaffer, H.E., Averitt, S.F., Hoit, M.I., Peeler, A., Sills, E.D. and
Vouk, M.A.: NCSU’s Virtual Computing Lab: A Cloud Computing
Solution, IEEE Computer Society, Vol.42, No.7, pp.94–97 (2009).

[14] Kajita, S.: Investigation on A Next-generation Student Terminal Ser-
vice for Teaching and Learning on Cloud Environment, Proc. SSS
2012, pp.213–215 (2012) (in Japanese).

[15] Rindos, A., Vouk, M., Vandenberg, A., Pitt, S., Harris, R., Gendron,
D. and Danford, T.: The Transformation of Education through State
Education Clouds, IBM Global Education (2010).

[16] Li, P.: Provisioning Virtualized Datacenters through Virtual Comput-
ing Lab, Proc. FIE 2010, T3C, pp.1–6 (2010).

[17] Vouk, M., Averitt, S., Bugaev, M., Kurth, A., Peeler, A., Shaffer, H.,
Sills, E., Stein, S. and Thompson, J.: “Powered by VCL” - Using Vir-
tual Computing Laboratory (VCL) Technology to Power Cloud Com-
puting, Proc. ICVCI 2008, pp.1–10 (2008).

[18] Microsoft: Windows (online), available from
〈http://windows.microsoft.com/en-us/windows/home〉 (accessed
2014-12-29).

[19] Apple: OS X Yosemite (online), available from
〈http://www.apple.com/osx/〉 (accessed 2014-12-29).

[20] The CentOS Project: CentOS Project (online), available from
〈http://www.centos.org/〉 (accessed 2014-12-29).

[21] Canonical: Ubuntu: The leading OS for PC, tablet, phone and cloud
(online), available from 〈http://www.ubuntu.com/〉 (accessed 2014-12-
29).

[22] Maruyama, S., Saita, K., Kozuka, M., Ishibashi, Y., Ikeda, K., Mori,
M. and Kita, H.: A Virtual Machine Solution for Large Scale Edu-
cational Computer Systems, J. Inf. Process., pp.949–964 (2005) (in
Japanese).

[23] Microsoft: Application Virtualization (online), available from
〈http://technet.microsoft.com/en-us/appvirtualization/〉 (accessed
2014-12-27).

[24] CITRIX: XenApp (online), available from 〈http://www.citrix.com/
products/xenapp/overview.html〉 (accessed 2014-12-27).

[25] VMware: ThinApp (online), available from
〈http://www.vmware.com/products/thinapp/〉 (accessed 2014-12-27).

[26] Sky: SKYSEA Client View (online), available from
〈http://www.skyseaclientview.net/〉 (accessed 2014-12-27).

[27] Kaspersky Lab: Endpoint Security Select (online), available from
〈http://usa.kaspersky.com/business-security/endpoint-select〉
(accessed 2014-12-31).

[28] McAfee: McAfee Application Control (online), available from
〈http://www.mcafee.com/us/products/application-control.aspx〉
(accessed 2014-12-31).

[29] Computer Wing: Wingnet (online), available from

c© 2015 Information Processing Society of Japan 456

Journal of Information Processing Vol.23 No.4 449–457 (July 2015)

〈http://www.cwg.co.jp/?page id=141〉 (accessed 2014-12-31).
[30] Microsoft TechNet: Group Policy (online), available from

〈http://technet.microsoft.com/en-us/library/cc725828(WS.10).aspx〉
(accessed 2014-09-04).

[31] Rivest, R.: The MD5 Message-Digest Algorithm, RFC1321 (1992).
[32] Microsoft Developer Network: Create a path rule (online), available

from 〈http://msdn.microsoft.com/en-us/library/cc781337〉
(accessed 2014-09-12).

[33] Symantec: Symantec Code Signing Certificates for Microsoft Authen-
ticode (online), available from 〈https://www.symantec.com/
code-signing/microsoft-authenticode〉 (accessed 2014-09-04).

[34] Microsoft Developer Network: Create a hash rule (online), available
from 〈http://msdn.microsoft.com/en-us/library/cc781507〉
(accessed 2014-09-12).

[35] Microsoft Developer Network: Create a certificate rule (online), avail-
able from 〈http://msdn.microsoft.com/en-us/library/cc757067〉
(accessed 2014-09-12).

[36] Microsoft Developer Network: Software restriction policies overview
(online), available from 〈http://msdn.microsoft.com/en-us/library/
cc759106〉 (accessed 2014-09-04).

[37] Microsoft Developer Network: Certificate stores (online), available
from 〈http://msdn.microsoft.com/en-us/library/cc757138〉
(accessed 2014-09-04).

[38] Microsoft Developer Network: CryptoAPI Tools Reference (online),
available from 〈http://msdn.microsoft.com/en-us/library/windows/
desktop/aa380240(v=vs.85).aspx〉 (accessed 2014-09-10).

Daisuke Okamoto received his B.E.
and M.E. degrees in engineering from
Okayama University, Okayama, Japan,
in 2013 and 2015. He is currently with
KDDI CORPORATION. His research
interests include distributed systems.

Keita Kawano received his B.E., M.E.,
and Ph.D. degrees from Osaka Univer-
sity, Osaka, Japan, in 2000, 2002, and
2004, respectively. From October 2004 to
March 2010, he was an assistant profes-
sor of the Information Technology Center,
Okayama University, Okayama, Japan.
From April 2010 to March 2011, he was

an assistant professor of the Center for Information Technology
and Management, Okayama University. Since April 2011, he has
been an associate professor of the same center. His research in-
terests include mobile communication networks and distributed
systems. He is a member of IEEE and IEICE.

Nariyoshi Yamai received his B.E. and
M.E. degrees in electronic engineering
and his Ph.D. degree in information and
computer science from Osaka University,
Osaka, Japan, in 1984, 1986 and 1993, re-
spectively. In April 1988, he joined the
Department of Information Engineering,
Nara National College of Technology, as a

research associate. From April 1990 to March 1994, he was an as-
sistant professor in the same department. In April 1994, he joined
the Education Center for Information Processing, Osaka Univer-
sity, as a research associate. In April 1995, he joined the Compu-
tation Center, Osaka University, as an assistant professor. From
November 1997 to March 2006, he joined the Computer Center,
Okayama University, as an associate professor. From April 2006
to March 2014, he was a professor in the Information Technol-
ogy Center (at present, the Center for Information Technology
and Management), Okayama University. Since April 2014, he
has been a professor in the Institute of Engineering, Tokyo Uni-
versity of Agriculture and Technology. His research interests in-
clude distributed system, network architecture and Internet. He is
a member of IEICE and IEEE.

Tokumi Yokohira received his B.E.,
M.E. and Ph.D. degrees in information
and computer sciences from Osaka Uni-
versity, Osaka, Japan, in 1984, 1986 and
1989, respectively. From April 1989 to
May 1990, he was an assistant profes-
sor in the Department of Information
Technology, the Faculty of Engineering,

Okayama University, Okayama, Japan. From May 1990 to
December 1994 and from December 1994 to March 2000, he
was a lecturer and an associate professor, respectively, in the
same department. From April 2000 to June 2003, he was an as-
sociate professor in the Department of Communication Network
Engineering of the same faculty. From July 2003 to March 2005,
he was a professor in the same department. Since April 2005, he
has been a professor of the Department of Information and Com-
munication Systems, the Graduate School of Natural Science and
Technology, Okayama University. His present research interests
include performance evaluation and improvement of computer
networks and communication protocols, design algorithm of
optical networks and network securities. He is a member of IEEE
Communication Society, IEICE and IPSJ.

c© 2015 Information Processing Society of Japan 457

