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Abstract: A congestion detection on mobile networks becomes the main challenge of cellular carriers and mobile
network providers because the mobile network quality easily degrades when many users concentrate on a limited
place. Especially when a large-scale event is held, a heavy network congestion interferes with the communication
of the participants and local residents. Therefore, the congestion detection process has been performed by several
network providers, but has been executed on a high-performance computing resource in a centralized manner, which
markedly increases the computing cost. On the other hand, with the wide spread of a large-scale distributed computing
environment (e.g., cloud computing), a Complex Event Processing (CEP) system has recently been made available
for several purposes. The CEP is a distributed computing system which can identify meaningful events by analyzing
a large amount of data stream (e.g., sensor data) in real time. Here, the congestion detection can be considered as
a suitable application for the CEP system, where a large amount of traffic logs (i.e., data streams) should rapidly be
analyzed in order to detect network congestions (i.e., meaningful events). Therefore, in this study, we propose a new
system structure of the CEP-based congestion detection system using distributed computing resources. In the proposed
system, processing components are deployed on multiple resources, and execute independent tasks that are carefully
extracted from a system procedure of the congestion detection. Through experimental evaluation using computing
resources on a popular cloud service (Amazon EC2), it is disclosed that the CEP-based system contributes to achieve
the real time detection of congestions on the mobile networks.
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1. Introduction

With the wide spread of smartphones and tablets, the mobile
network quality easily degrades when many users concentrate
on a specific and limited place. In particular, when a large-
scale event is held, the total amount of network traffic becomes
much larger than usual, and heavy network congestion interferes
with a network communication of participants and local residents.
Therefore, congestion detection on mobile networks becomes the
main challenge of cellular carriers and mobile network providers.

In the congestion detection system, several measurement
points are prepared on the border of access networks (e.g., access
points of a mobile network) of the provider, and continuously
capture data traffics that are transmitted to/from user terminals.
A large amount of traffic log is collected by a centralized man-
agement server, and is analyzed for locating an access network
where the network congestion occurs. The congestion detection
process has mainly been executed on a high-performance com-
puting resource in a centralized manner. However, the centralized
processing requires much computing cost so that the analysis of
the traffic log can be completed in real-time.
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On the other hand, with the wide spread of a large-scale dis-
tributed computing environment (e.g., cloud computing), a Com-
plex Event Processing (CEP) [1] system has recently been made
available for several purposes. The CEP is a distributed comput-
ing system which can identify meaningful events by analyzing a
large amount of streaming data (e.g., sensor data) in real time.
The congestion detection can be considered as a suitable appli-
cation for the CEP system, because the traffic log is the typical
streaming data including multiple events, and should rapidly be
analyzed in order to detect meaningful events (i.e., occurrence of
network congestion).

Therefore, in this study, we propose a new system structure
of the CEP-based congestion detection system using distributed
computing resources. The proposed system derives representa-
tive network performance metrics (e.g., Round-Trip Time) by an-
alyzing a large amount of traffic logs that is captured on packet
capture points, and identifies the occurrence of the network con-
gestion when the metrics change differently than usual. In the
proposed system, processing components are deployed on multi-
ple resources on the distributed computing system, and execute
independent tasks that are carefully extracted from the system
procedure of the congestion detection. Here, in order to decide
appropriate network metrics and a functional structure, we ana-
lyze a large amount of traffic logs which is captured on a mobile
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network when a large-scale event, the Nagaoka Fireworks Festi-
val, is held [2], [3]. Furthermore, through experimental evalua-
tion using computing resources on a popular cloud service (Ama-
zon EC2), it is disclosed that the CEP-based system contributes
to achieve real time detection of congestions on the mobile net-
works.

The rest of this paper is organized as follows. In Section 2,
existing studies related with network congestion detection and
a distributed computing system are introduced. Section 3 intro-
duces an overview of our proposed CEP-based congestion detec-
tion system. Sections 4 and 5 decide appropriate network per-
formance metrics by analyzing an actual traffic log captured in
a large-scale event, and construct a functional structure which is
suitable for congestion detection based on the metrics. In Sec-
tion 6, the practicality of the proposed system is revealed through
experimental evaluation using a cloud computing service. Fi-
nally, the conclusion is presented in Section 7.

2. Related Works

A detection method of network failure has been proposed in or-
der to provide high-quality and high-reliability services [4], [5].
The network failure indicates a condition where a communica-
tion is stopped due to failure or configuration errors of network
equipment. However, even if the network failure does not exist,
network congestion occurs when a large amount of traffic concen-
trates at a specific and limited area. Therefore, a network conges-
tion detection method should be considered in a different man-
ner from the network failure. However, the congestion detection
can also be applied for avoiding the network failure because the
network failure is sometimes caused by a heavy network conges-
tion [6], [7].

The congestion detection system requires high-performance
computing resources in order to derive network performance met-
rics (e.g., Round-Trip Time) related with the network conges-
tion by analyzing a large amount of traffic logs (e.g., packet cap-
ture data). In addition, the heavy computation process should
be quickly completed because the real-time information is nec-
essary to prepare for the occurrence of the network congestion.
Therefore, the traffic log has mainly been executed on a high-
performance computing resource in a centralized manner, but the
centralized processing requires much computing cost so that the
analysis of the traffic log can be completed in real-time.

On the other hand, with the wide spread of a large-scale dis-
tributed computing environment (e.g., cloud computing), a batch
processing and a stream processing techniques have recently been
made available for analyzing a large amount data (i.e., big data)
in a distributed manner. As the distributed batch processing tech-
nique, MapReduce [22] and Hadoop (as the implementation) [23]
are attracting attention. The MapReduce is a distributed process-
ing framework of the big data on clusters of commodity hardware,
which splits a large set of data files into blocks, and distributes
them among the computing nodes in the cluster. Therefore, the
MapReduce-based processing system is not suitable for the real-
time processing of the continuously generated data, but is appro-
priate for processing a large amount of dataset at a time (e.g.,
once a day).

On the contrary, the stream processing technique is composed
of a set of processing components where the type of input/output
stream is defined and the processing details between them are de-
signed. Each component is deployed on the computing nodes,
and can be linked with others in the cluster for constructing a
large-scale pipelining system through the Internet. The Internet-
scale pipelining system is suitable for processing the continu-
ously generated streaming data. The streaming data process-
ing system has widely been studied and has already been im-
plemented by several organizations [8], [9]. The implemented
framework was mainly utilized to analyze web access [10], au-
tomotive driving [11], sensor data [12]. The processing technique
can also be applied to the detection of network congestion, be-
cause a traffic log is typical time series data generated continu-
ously from measurement equipment (e.g., routers, switches). In
particular, we focus on a CEP which is a suitable technique for
quickly analyzing a large amount of data [13], [14]. By analyzing
a combination of multiple data streams or complex events with
distributed computing resources, the CEP can extract a more ef-
fective event from them in real time. The CEP-based system can
minimize the idle time of the computing resource, because each
function of the CEP-based system can start to process next part
of the streaming data without being blocked by the system just
after transferring the processing results to the other functions.
The network traffic is typical streaming data consisting of mul-
tiple events, and should be analyzed for detecting a sign of the
network congestion. Therefore, by using the CEP, the network
management system can rapidly and precisely detect the occur-
rence of the network congestion. In this research, we utilize an
Oracle CEP [15] for building our proposed system, because the
Oracle CEP is free for prototyping, and has been applied to vari-
ous commercial systems.

Here, in the existing study [24], the CEP-based system for de-
tecting traffic congestion, i.e., traffic jam, in the transport network
has been proposed. The existing system has analyzed the location
information, i.e., GPS, of each vehicle on the road, but the loca-
tion of each packet cannot directly be captured on the Internet
because the capture points of the packets can be deployed on the
limited number of places. Therefore, the procedure of the existing
system cannot be easily applied to the network congestion detec-
tion on the Internet, and a different approach should be selected
for building the detection system.

Furthermore, in recent years, an web service that provides
a virtual cloud computing environment such as Amazon EC2
(Amazon Elastic Compute Cloud) [16] provided by AWS (Ama-
zon Web Services) [17] is attracting attention. By utilizing the
Amazon EC2, computing resources (i.e., virtual machines) can
be prepared on-demand for constructing a high performance dis-
tributed processing environment [18]. Considering these situa-
tions, we propose to use the Oracle CEP on the virtual machines
of the Amazon EC2 so as to detect a sign of the network conges-
tion in real-time.

3. Overview of Proposed CEP-based Conges-
tion Detection System

Figure 1 shows an overview of our proposed CEP-based con-
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Fig. 1 Overview of proposed congestion detection system.

gestion detection system. As shown in this figure, the proposed
system is composed of four functions.

The first function, Packet Capture Point, is usually deployed
on a mobile access network, and continuously capture data traf-
fics that are transmitted through a communication path between
user terminals and a server on the Internet. The capture points
that are prepared on the Internet send the traffic log to a cloud
computing environment so that a large amount of traffic data can
be processed by distributed servers using the CEP.

In the second function, Packet Classification, of the CEP-based
system, the traffic log is analyzed so as to extract HTTP packets
including information of the user’s location from original cap-
tured data. The location information is recorded on HTTP re-
quests by several types of web applications (e.g., navigation) that
access a GPS function of the user terminal in order to specify
the user’s location. After that, the packet sequence of each TCP
connection is extracted from the traffic log, and is divided into
several groups based on the location information so that each
group includes packets transferred in the same area. The third
function, Metric Derivation, derives network performance met-
rics (e.g., RTT) in each area by analyzing the packets. Here, the
metrics should be carefully selected so as to include a sign of the
network congestion. Finally, the forth function, Congestion De-
tection and Notification, notifies a network administrator of the
sign of network congestion when the congestion is detected in
specific areas.

In the following sections, a detailed derivation procedure of
several network performance metrics in the third function (Metric
Derivation) is proposed, and appropriate metrics for the conges-
tion detection are decided by analyzing actual traffic log that was
captured in a specific area during a large-scale event (Section 4).
Furthermore, we explain an implementation design of the CEP-
based system that can rapidly calculate the metrics for congestion
detection (Section 5).

4. Selection of Network Performance Metrics
for Congestion Detection

4.1 Derivation Method of Network Performance Metrics
In our proposed system, we focus on two network performance

metrics (Round-Trip Time (RTT) and State of TCP Session Ter-
mination) as analysis targets for congestion detection. Figure 2
shows functional structure of the Metric Derivation function of

Fig. 2 Functional structure.

Fig. 3 Metric-1: RTT.

the system. In the following part of this subsection, a derivation
method of the two metrics is introduced in the detail. Further-
more, by analyzing a large amount of actual traffic data using the
proposed derivation method, effectiveness of the metrics for net-
work congestion detection is revealed in Section 4.2.
4.1.1 Derivation Procedure of RTT

As shown in Fig. 3, the proposed system derives an RTT when
each TCP session is established over a target communication
path. A packet capture point is deployed on the communication
path between a server and a user terminal, and obtains a time-
stamp when capturing “SYN+ACK” packet from the server and
“ACK” packet from the user terminal. Here, the RTT between
the capture point and the user terminal is derived by calculating
a difference between these time-stamps, which can be defined as
one of network performance metric of each TCP session. This
is because the derived RTT indicates network performance of an
access network where the communication resources are shared
by many users concentrating on a specific and limited area (e.g.,
venue of a large-scale festival, disaster-stricken area).

Here, the network performance of the access network can be
derived even when a server instead of a user terminal starts to es-
tablish the TCP session, but we consider only a condition where a
TCP session is established by the user terminal as shown in Fig. 3.
This is because the number of TCP sessions that are started by the
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server is very small compared with the number of sessions that are
started by the user terminal.

Furthermore, the RTT is analyzed for detecting a sign of the
network congestion as follows.
( 1 ) An RTT of each TCP session is calculated when a TCP ses-

sion is established.
( 2 ) An average value and a standard deviation of RTT in each

one minute are calculated. Here, we assume that a scattering
pattern of the RTT follows a standard distribution, and only
RTT values that do not exceed 99% confidence interval are
extracted from all of them.

( 3 ) An average of RTT values extracted in the previous step is
calculated and utilized as a metric for congestion detection.

4.1.2 Derivation Procedure of State of TCP Session Termi-
nation

In the proposed system, we judge that a TCP session is ter-
minated due to “timeout,” when packets related with the session
termination (i.e., “FIN” and “FIN+ACK”) cannot be found in the
packet sequence of the TCP session. Especially, when a user ter-
minal does not respond after a server transmits a FIN packet, a
state of the TCP session which is terminated due to the timeout is
defined as “FIN-No-ACK.” The “FIN-No-ACK” state represents
a condition where a packet drops in a client-side network (i.e.,
mobile network) due to network congestion as shown in Fig. 4.

A network performance metric is derived by analyzing a state
of the TCP session termination as explained in the following
steps.
( 1 ) The termination state of each TCP session is identified

by analyzing the packet sequence (especially, “FIN” and
“FIN+ACK” packets).

( 2 ) Ratio of TCP sessions whose termination state is “FIN-No-
ACK” to all of them is calculated in each one minute, and is
utilized as a metric for congestion detection.

4.2 Evaluation of Network Performance Metrics
4.2.1 Target Traffic Log

In order to evaluate the feasibility of our proposed network
performance metrics for congestion detection, we analyze a traf-
fic log which was generated in Nagaoka-city, Niigata-prefecture,
Japan during the Nagaoka Fireworks Festival. The Nagaoka Fire-
works Festival is ranked as one of the three biggest Japanese fire-
work festivals which is held in August 2 and 3, and more than
900,000 people visit the Nagaoka-city to attend the festival every

Fig. 4 Metric-2: FIN-No-ACK.

year. Therefore, during the festival, a serious congestion is ex-
pected to occur in the Nagaoka-city. By analyzing the captured
traffic data, we attempt to extract a sign of the network conges-
tion.

The target dataset of the analysis was captured by a traffic
capture point deployed on the border between a 3G mobile ac-
cess network and the Internet in August 2 and 3, 2012 and 2013.
Therefore, the target area of the network congestion detection has
already been identified, hence the Packet Classification function
of the proposed system is not considered in the following evalua-
tion.
4.2.2 State of TCP Session Termination

Tables 1 and 2 show observation results of each state of TCP
session termination in 2012 and 2013, respectively. In these ta-
bles, “first/second” in each row represents the first/second reason
of the session termination.

“clt fin/srv fin” means a case that a server responds and trans-
mits a FIN packet after a user terminal requests active close by
sending a FIN packet, and then the TCP connection is normally
closed. On the other hand, the state of “clt rst/timeout” and
“srv rst/timeout” may be assumed as abnormal session termina-
tion, because a receiver of the RST packet did not transmit any
packet when the TCP session was terminated. However, this is
typical behavior of implementation of the TCP protocol, hence
these states are categorized as normal session termination.

On the contrary, “timeout” indicates that any packet related
with the session termination was not recorded on the traffic log.
Therefore, it cannot be judged whether the TCP sessions could
not correctly terminate due to network congestion or not, hence
this state cannot be used as a metric for congestion detection.

As a result, “srv fin/timeout” and “clt fin/timeout” can be
treated as candidate states of abnormal TCP session termina-
tion due to network congestion. Figure 5 shows the packet se-
quence in a case that a user terminal starts to terminate the TCP
session (i.e., clt fin/timeout). As shown in this figure, in the
clt fin/timeout state of the session termination, packet losses oc-
curred on an upstream network of the capture point. Therefore,
only a “srv fin/timeout” (highlighted in Tables 1 and 2) state (i.e.,
“FIN-No-ACK” explained in Section 4.1.2) can be utilized as a

Table 1 Observations of each type of TCP session termination in 2012.

Table 2 Observations of each type of TCP session termination in 2013.
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Fig. 5 FIN-No-ACK of client start-up.

network performance metric.
Furthermore, in order to detect the network congestion, the

metric should satisfy the following requirements.
( 1 ) A large number of samples can be observed so as to detect

occurrence of network congestion.
( 2 ) When the network congestion occurs, the number of samples

specifically changes from the stable state.
The network performance metric which does not satisfy the sec-
ond condition is not suitable for the congestion detection because
the occurrence of the congestion cannot be identified if the met-
ric does not drastically change with time even when the network
congestion occurs. The FIN-No-ACK state satisfies the first re-
quirement because the number of samples is large compared with
other states as shown in Tables 1 and 2. Therefore, in the next
subsection, we clarify whether the FIN-No-ACK state satisfies
the second requirement or not by analyzing an actual traffic log.
4.2.3 Effectiveness of Each Network Performance Metric

Figures 6 and 7 show an average RTT and a ratio of FIN-No-
ACK state that were observed during the time interval from 19:30
to 21:00 in August 1 (usual day) and 2 (day of the festival), 2012
and 2013. In Fig. 6, the average RTT of each day is normalized by
that of August 1 in each year. In addition, Fig. 7 illustrates a ratio
of TCP sessions whose termination state is “FIN-No-ACK” to all
of them. As shown in these figures, it is clarified that both metrics
increase in the day of the festival in both years. In addition, ten-
dency of the change of the network performance metric is differ-
ent between 2012 and 2013, because the number of participants
of the festival, the number of users of smart-phones/tablets, and
network equipment of a cellular carrier may change. Especially,
the number of users of the smart-phones/tablets has markedly in-
creased in recent years, hence the network condition of the cel-
lular network in 2013 has become worse than 2012. On the con-
trary, the cellular carrier in Japan is preparing the special cellular
base station when the large-scale event is held in order to prevent
the network congestion. As a result, the difference of the perfor-
mance metric between the usual day and the event day becomes
smaller in 2013. However, in both years, each metric becomes
larger in the day of the festival than that in the usual day. There-
fore, it can be concluded that these metrics are appropriate for
detecting network congestion.
4.2.4 Time Variation of Each Network Performance Metric

Figures 8 and 9 show time variation of the average RTT and
the ratio of FIN-No-ACK in 2012. Here, Fig. 8 depicts the aver-

Fig. 6 Average RTT.

Fig. 7 Ratio of TCP session termination by FIN-No-ACK.

Fig. 8 Time variation of average RTT.

Fig. 9 Time variation of FIN-No-ACK ratio.

age RTT in each one minute which is normalized by that in time
interval from 19:30 to 21:00, and Fig. 9 depicts the ratio of FIN-
No-ACK to all session termination in each one minute.

As shown in these figures, the network congestion was not de-
tected on August 1 because Nagaoka Fireworks Festival was not
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held on this day. On the other hand, these metrics increased when
remarkable big fireworks were set off on August 2. Time varia-
tion of these metrics is roughly synchronized, but the degree of
the variation is much different between these metrics. This is be-
cause the impact of the network congestion on the packet transfer
can appear in the different metric, i.e., some packets may wait for
a long time in the base station, and others may be dropped on the
congested wireless channel. If all packets can be captured and
analyzed for deriving the metrics, the average values of the met-
rics may be highly synchronized. However, in the experiment,
all packets that were generated in Nagaoka city could not be cap-
tured, because the capture point could not identify the generation
site of the packets that did not include the GPS information.

The average RTT increased approximately 40 times, and the
ratio of FIN-No-ACK termination increased 50% compared with
the usual day. This result indicates that the communication traffic
increased because many participants may send e-mails with pic-
tures and/or use SNS for expressing impression of the fireworks
to their friends or family.

Furthermore, before the large network congestion occurs, these
network metrics start to increase as a sign of the congestion, and
then keep larger values than the usual for a long time. Therefore,
by specifying such an increase in the metric, the network conges-
tion can be detected in advance.

As shown in Figs. 8 and 9, the network performance metrics
largely increased before the drastic deterioration (part enclosed
by the dashed line) due to the network congestion. Concretely,
the RTT exceeded five times the average value in the usual, and
the ratio of FIN-No-ACK became larger than 10% as a sign of the
network congestion. Therefore, the appropriate threshold for the
Nagaoka Fireworks Festival can be set to five times the average
RTT in the usual, and can be set to 10% of the ratio of FIN-No-
ACK. However, such an appropriate threshold for the network
performance metric should be carefully selected for each large-
scale event. Therefore, in the future study, we will analyze other
dataset of a traffic log which is captured during other events in
order to establish a general method of determining the threshold.

5. Design of CEP-based Congestion Detection
System

In the previous sections, an overview of our proposed CEP-
based congestion detection system has been introduced. Further-
more, we have selected appropriate network performance metrics
that are utilized for detecting network congestion on mobile net-
works where many users concentrate when a large-scale event is
held.

In this section, a distributed processing method of our pro-
posed congestion detection system is designed so as to minimize
processing time for extracting the network metrics from a large
amount of traffic logs, and for specifying a sign of the network
congestion. After that, the proposed system is implemented by
using a popular commercial cloud computing service.

5.1 Distributed Processing Method
In order to minimize processing time of the congestion detec-

tion, a distributed computing method using a large number of

computers is a reasonable solution. The distributed processing
method can roughly be categorized to two types, “Vertical” and
“Horizontal.” Figure 10 shows system structure of the distributed
processing system. In the vertical distribution, each server exe-
cutes a different function from others in order to achieve load
balancing. On the other hand, in the horizontal distribution, the
same function is allocated to multiple servers, and a large amount
of data is processed by them simultaneously.

In the functional structure of the proposed congestion distribu-
tion system (See Section 3), the Congestion Detection and Notifi-
cation function should be executed after all network performance
metrics have been extracted from the traffic log by the Metric
Derivation function. Therefore, these functions should be “ver-
tically” distributed into servers. In addition, the Packet Classi-
fication function and the Metric Derivation function should be
vertically distributed or should be processed in the same server,
because the Metric Derivation function cannot be executed be-
fore the packet sequence of each TCP session is extracted from
the traffic log by the Packet Classification function. On the
other hand, a combination of the Packet Classification and Met-
ric Derivation functions can be horizontally distributed, because
each piece of the traffic log can be processed independently from
others.

Therefore, the system structure of our proposed congestion
detection system is composed of both of the vertical and hor-
izontal distribution parts as shown in Fig. 11. As explained
above, the workload of the Packet Classification is horizontally
distributed into virtual servers by utilizing the load distribution
mechanism of the Oracle CEP. Furthermore, the results of the
Packet Classification are automatically transferred to one com-
puting resource running the Metric Derivation using the process

Fig. 10 Method of distributed processing.

Fig. 11 System structure and deployment of CEP-based system.
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Fig. 12 Block diagram of CEP-based system.

distribution mechanism of the CEP-based system. The combi-
nation of the load/process distribution mechanisms for detecting
network congestion is the main originality of our proposed sys-
tem.

5.2 Functional Structure of CEP-based System
As mentioned in Section 5.1, the horizontal distributed pro-

cessing method is applied to the combination of the Packet Clas-
sification and Metric Derivation functions. In the horizontal dis-
tribution part, the two functions should be processed sequentially
for deriving the network performance metrics. Here, in order to
minimize a processing time, we want to avoid a condition where
one function gets in an idle state while another function is pro-
cessing the data. Therefore, in our proposed congestion detection
system, a CEP technology is adopted for implementing the dis-
tributed processing method. The CEP has been released as an
easy-to-use software package that can construct a distributed en-
vironment for extracting important events by analyzing a large
amount of streaming data. Furthermore, the CEP-based system
has a unique characteristic for minimizing the idle time of each
function as explained in Section 2.

Figure 12 shows a block diagram of CEP-based implementa-
tion of our proposed congestion detection system. Each func-
tional component in this figure is an event driven, hence it is in-
voked when receiving an event from others. A detailed procedure
of the CEP-based congestion detection system is explained as fol-
lows.
( 1 ) A “fileReadAdapter” component reads a PCAP (Packet

CAPture) file consisting of a traffic log which is captured on
a packet capture point. The traffic log is divided into packets,
and is transmitted to a next component.

( 2 ) An “AnalyzePacketBean” component extracts information
which is needed to identify the packet sequence of each TCP
session, and sends that to a next component.

( 3 ) A “ReconstructBean” component reconstructs the packet se-
quence of each TCP session, and attempts to extract a state
of TCP session termination by analyzing the sequence. The
state is transmitted to a next component together with the
time when the session termination was observed.

( 4 ) A “DataCacheBean” component gathers information re-
quired for deriving network performance metrics in each one
minute, and derives network performance metrics using the

Table 3 Evaluation environment.

Virtual Server Amazon EC2 (Small Instance)

OS Ubuntu 12.04 LTS

CPU Equivalent of 1 GHz

Memory 1.7 GiB

derivation method explained in Section 4.1. The network
metrics are transmitted to a next component.

( 5 ) Finally, a “DetectCongestionBean” component detects the
occurrence of network congestion by analyzing the dynamic
time change of the network performance metrics.

In the Oracle CEP, a special query language, named Oracle
Continuous Query Language (Oracle CQL), is used to express
queries on data streams to perform a complex event processing in
each component using Oracle CEP. However, the proposed sys-
tem does not treat complex queries that the CQL is necessary to
express but basically processes only simple queries, i.e., one kind
of input stream is processed in the component (Java program),
and the output of the component is simply transferred to the out-
put stream as explained above.

In this study, our CEP-based congestion detection system an-
alyzes only the PCAP file captured for deriving the network per-
formance metric of each TCP session. This is because we have
focused on the detection of the network congestion which affects
the end-to-end quality of mobile users. The procedure of the
CEP-based system can be enhanced to accommodate other mea-
surement results (e.g., ping, SNMP, etc.) for detecting other kinds
of congestion (e.g., failure of the equipment in the core network)
in the future study.

5.3 Deployment on Amazon EC2
As shown in Fig. 11, functional components of our proposed

CEP-based congestion detection system are deployed on virtual
servers in a cloud computing environment. By utilizing the cloud
computing service, a large amount of traffic logs can efficiently
be obtained from multiple packet capture points deployed on the
Internet.

In this study, we select an Amazon Elastic Compute Cloud
(Amazon EC2) as the cloud computing environment, because the
setup of the evaluation environment (e.g., the number of virtual
servers) can easily and dynamically be changed on the Amazon
EC2. Table 3 shows specifications of each virtual machine uti-
lized for constructing the evaluation environment [19]. Further-
more, an Oracle CEP is utilized for building our proposed CEP-
based system, because the Oracle CEP is free for prototyping, and
has been applied to various commercial systems as explained in
Section 2.

Through the experimental evaluation on the environment, we
disclose the feasibility of our proposed CEP-based system de-
ployed on the cloud computing environment.

6. Experimental Evaluation

6.1 Evaluation Result of Distributed Processing Method
In order to clarify the feasibility of our proposed distributed

processing method using CEP, we evaluate the processing time
of our proposed system deployed on the cloud computing envi-
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Fig. 13 Relationship between number of virtual servers and processing
time.

ronment. The specification of the experimental environment is
explained in Section 5.3.

Figure 13 shows the relationship between the processing time
and the number of virtual servers where the horizontal distribu-
tion part of the proposed system (See Section 5.1) is deployed.
In this figure, the processing time is the time interval needed for
extracting the network performance metrics (i.e., RTT, state of
TCP session termination) from the traffic log, and the error bar
represents one standard deviation of the processing time. Here,
the traffic log includes information about 1,740,000 packets that
were captured on 2nd August, 2013.

As shown in Fig. 13, with the increase in the number of virtual
servers, the proposed distributed processing method improves the
processing time, and the processing time decreases to 26.3 [sec]
when eight servers are utilized for the distributed processing. Of
course, the processing time cannot equally be divided by the num-
ber of virtual servers, because the fixed amount of processing load
occurred on each server (e.g., invocation time of each process). In
addition, even if the same amount of workload is dispatched to the
servers, the processing time largely fluctuates due to the existence
of the virtual server with the lower computation performance than
others. Although there are the above-mentioned limitations, the
processing time markedly decreases with the increase in the num-
ber of the servers. As a result, it can be concluded that the larger
amount of traffic log can be analyzed in each unit time as the more
computing resources are utilized for the distributed processing.

Next, in order to evaluate feasibility of the vertical distribution
part, Fig. 14 shows the relationship between the processing time
of each metric and the number of TCP sessions that the Metric
Derivation function has analyzed. As shown in this figure, the
processing time does not change even when the number of vir-
tual servers increase. The Congestion Detection function should
group a set of extracted metrics that were captured in each unit
time interval, and then should process them at one time because
the derivation process of the statistics of the metrics (i.e., average
RTT, ratio of FIN-No-ACK) in the unit time cannot be divided to
several parts. Therefore, the process of the function cannot hor-
izontally be distributed, and the processing time of the metrics
(RTT and FIN-No-ACK) is simply proportional to the number of
the target TCP sessions. However, the congestion detection can
be completed within 1 [msec] even when a large number of TCP
sessions (more than 400) is processed at a time, hence the pro-

Fig. 14 Relationship between the number of TCP sessions and processing
time.

Fig. 15 Average processing time of each server.

cessing time is much shorter than that of deriving the network
performance metrics. As a result, it can be concluded that our
proposed system can detect network congestion by analyzing a
large amount of traffic logs in real time.

Finally, Fig. 15 shows the average processing time of each
server when the congestion detection process is executed by eight
virtual servers ten times, and the error bar represents the stan-
dard deviation. As shown in this figure, the computing perfor-
mance of virtual servers is much different between each other in
the Amazon EC2, hence the difference of the processing time be-
comes longer than 10 [sec]. Furthermore, it takes 26 [sec] for all
servers to finish analyzing the traffic log while the average pro-
cessing time of all servers is 17.9 [sec]. Therefore, if a virtual
server which has worse performance than others is selected for
the distributed processing, the performance of our proposed sys-
tem markedly degrades. In order to solve the problem, we will
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consider an optimal load balancing method between the virtual
servers in the future study. For example, the amount of the traf-
fic log which is allocated to each virtual server should be care-
fully decided so as to finish the computation by almost the same
time among the virtual servers. Especially, the optimization of
scheduling workload in each server becomes an important issue
especially when the number of capture points is large, because
each capture point generates the traffic log of a different size from
others and the size of the traffic-log varies with time. Further-
more, the performance of the virtual server cannot be accurately
estimated because the computing resource of the virtual server
should be shared with other users. Therefore, a use of real servers
whose computing resources can be occupied for the CEP-based
system may be a reasonable solution for preventing the fluctua-
tion of the processing time for a mission critical task.

6.2 Capability of Congested Area Estimation
An objective of our proposed system is to estimate an area

where the network congestion occurs. An appropriate congested
area estimation method depends on the deployment policy of the
packet capture points (i.e., location/the number of capture points).
In the following part, we consider capability of the estimation
method for each case of the deployment policy.
6.2.1 Case 1: Capture Point is Deployed in Each Area

If the packet capture point can be deployed in the access net-
work of each target area of the congestion detection, the con-
gested area can easily be estimated. This is because, location
information of the capture point can be recorded on the cap-
tured packets when the packets are obtained by the packet cap-
ture point, which is very useful for dividing packets related with
the same area into the same group. If the occurrence of the net-
work congestion is detected by analyzing the captured packets in
a certain group, the congested area can be uniquely estimated.

Here, when the user terminal moves to the different place, the
packets generated from the terminal are captured by the differ-
ent capture point, hence are categorized to the different group.
Therefore, in this case, the movement of each user terminal does
not have to be completely traced.

By utilizing a cloud computing environment as the same as
our proposed system, a large amount of traffic logs can directly
be transmitted from many capture points to the cloud comput-
ing environment, and can be analyzed by many virtual servers.
However, the equipment for constructing the packet capture point
should be prepared in various places in this case.
6.2.2 Case 2: Capture Point is Deployed in Limited Points

on the Internet
If the packet capture point can be deployed in only few points

(i.e., the border between the core and access networks), the cap-
tured traffic log includes a large number of packets generated in
various areas. Therefore, in order to identify the location where
the packet is generated, a reverse-geocoding technology that esti-
mates address information corresponding to the GPS information
is an appropriate solution. In recent years, many web services
(e.g., map, navigation) using the reverse-geocoding have already
been released [20], and the reverse-geocoding API has been made
available for implementing such a service [21].

As explained in Section 3, our proposed system extracts HTTP
packets including GPS information from the captured traffic log,
and the information is analyzed by using the reverse-geocoding
API in order to identify the user’s location. By extracting only
packets that are related with the target location of congestion de-
tection system by collaborating with the reverse-geocoding API,
the processing load that is needed for deriving network metrics
and for detecting network congestion can be mitigated.

In this case, when the user terminal moves to the different
place, the accurate location of the terminal cannot be identified
until the terminal sends the packet including the GPS informa-
tion. Therefore, the accuracy of the congestion detection slightly
deteriorates compared with the Case 1. In order to mitigate the
performance deterioration of the congestion detection, we will
consider a new tracking method of the user terminal using not
only GPS information in the HTTP packets but also other identi-
fication information in the future study.

As explained in Section 4.2.1, the dataset including pack-
ets, whose generated location has already been identified as the
Nagaoka-city, was analyzed in the experimental evaluation, hence
the reverse-geocoding and packet extraction functions have not
been implemented in this study.

In an actual congestion detection system, extension of these
functions yields additional processing time. However, the pro-
cessing load for the additional functions can horizontally be dis-
tributed into multiple virtual servers as the same as the func-
tions evaluated in Section 6.1. Therefore, in the future study,
we will assume a condition where the packet capture points can
be deployed in limited points on the Internet (i.e., Case 2), and
will implement a horizontal distributed processing method for the
reverse-geocoding and packet extraction functions.

7. Conclusions

In this study, we have proposed a new system structure of
a CEP-based network congestion detection system using dis-
tributed computing resources on a virtual cloud computing ser-
vice. First, in order to determine network performance metrics
that can be used to estimate a sign of the network congestion, we
have analyzed a large amount of traffic logs which were captured
on a mobile network when a large-scale event, the Nagaoka Fire-
works Festival, was held. From the analytical results, it has been
revealed that an average RTT and a specific state of TCP session
termination (i.e., FIN-No-ACK event) are appropriate for detect-
ing the network congestion.

In addition, in order to minimize the processing time of the
congestion detection, a distributed computing method using a
large number of computing resources has been proposed. In the
proposed method, a function for deriving the network metrics by
analyzing a large amount of traffic logs has horizontally been dis-
tributed and allocated to multiple servers. Furthermore, a CEP
technology has been used to implement the proposed method in
the cloud computing environment so as to minimize the idle time
of the computing resources. Through experimental evaluation us-
ing the traffic log captured during the Nagaoka Fireworks Festi-
val, it has been clarified that our proposed system can reduce the
processing time by 70% when eight servers are utilized for the
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distributed processing.
In the future study, we will consider the feasibility of other

network metrics (e.g., packet loss rate) for network congestion
detection, and will develop a general method that can be used
to judge whether network congestion occurs or not based on the
extracted network metrics. Furthermore, an optimal load balanc-
ing method between virtual servers will be proposed in order to
further reduce the processing time.
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