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Abstract: User’s experience of network services using large-scale distributed systems is markedly affected by a net-
work condition (i.e., network latency) between a user terminal and a server. In a mobile environment, the network
latency fluctuates because a mobile node on the cellular network frequently changes its access network than before
when handover or offloading occurs due to users movement on a real world. Many researchers attempt to perform
simulation studies on large-scale distributed services provided through mobile networks for revealing the impact of
the network condition on the service performance, hence an evaluation model that simulates a realistic state change of
latency variation is attracting attention. However, existing studies have assumed only a condition where the tendency
of latency variation never changes. Therefore, we propose a new modeling method using a Markov Regime Switching
which builds a realistic evaluation model which can represent the dynamic change of the mobile network state. Fur-
thermore, the effectiveness of the proposed modeling method is evaluated based on the actual latency dataset which
is collected while a user of a cellular phone moves around within a wide area. Here, with a wide spread of smart
phones and tablets in recent years, the Internet connection has become able to be utilized through a cellular and a WiFi
network while the mobile user is moving by various kinds of transportation (e.g., train, car). In this study, as a typical
example of the transportation, we focus on the Yamanote Line which is the most famous railway loop line used by a
large number of office workers in Japan, hence the target dataset which is measured when the mobile user gets on the
Yamanote Line is analyzed by the modeling method for building the evaluation model. The evaluation results help us
to disclose whether or not the evaluation model constructed by the proposed modeling method can accurately estimate
the dynamic variation of the mobile network quality.
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1. Introduction

Network services using large-scale distributed systems such as
cloud computing have recently been widely available over the In-
ternet [1], [2]. In these services, a network condition (i.e., net-
work latency) between a user terminal and a server affects the
user’s experience of the service, and dynamically changes due
to several factors (e.g., network congestion, mobility). Espe-
cially, in a mobile environment, the network latency between
end-computers fluctuates because a mobile node on the cellular
network frequently changes its access network than before when
handover or offloading occurs due to a user’s movement by var-
ious kinds of transportation (e.g., car, train). Therefore, in order
to keep the quality of a user’s experiences within an acceptable
level, a service provider should disclose the impact of the net-
work state change on the performance of the provided service in
advance.

Many researchers have performed simulation studies for re-
vealing the impact of the network condition on the service per-
formance. However, the existing studies have not assumed a mo-
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bile network but a fixed network environment as the simulation
model. Furthermore, several existing researches have focused on
modeling the dynamic characteristics of the Internet [3], [4], [5],
but have analyzed only some fixed paths.

On the other hand, several time series analysis techniques have
been proposed to model various time series data (e.g., stock price,
chemical process) [6], [7]. The ARIMA model has particularly
been used for modeling variations in the amount of data traf-
fic on the Internet and for forecasting the future values. A la-
tency dataset that includes a self similarity characteristic has been
generated by the ARIMA model in our previous studies [8], [9].
However, the ARIMA-based method cannot model a condition
where the dynamic trend (i.e., long-term standard deviation) of
the latency variation changes with time as in the mobile network.

Therefore, in this study, we propose a new Markov Regime
Switching-based modeling method which provides simulation
studies with realistic latency characteristics of network paths es-
tablished through the mobile network. By using the proposed
method, the evaluation model is composed of multiple ARIMA
models so that the estimated latency dataset based on the model
can represent the impact of the dynamic change of the mobile
network state on the mobile network quality.

First, a latency measurement system is newly developed for
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collecting long-term measurement data of actual latency on the
mobile network while the user is moving around within a wide
area. Here, with the wide spread of smart phones and tablets in re-
cent years, the Internet connection has become able to be utilized
through a cellular and a WiFi network while the mobile user is
moving by various kinds of transportation (e.g., train, car). There-
fore, as a typical example of the transportation, we focus on the
Yamanote Line which is the most famous railway loop line used
by a large number of office workers in Japan, hence the target
dataset is measured when the mobile user gets on the Yamanote
Line. In addition, the measurement results are analyzed by us-
ing both of the existing ARIMA-based method and the proposed
Markov Regime Switching-based technique in order to build an
evaluation model for simulation studies on mobile networks. As
a results, we disclose the effectiveness of our proposed modeling
method which builds a multi-state ARIMA model so as to accu-
rately simulate the dynamic trend on the mobile network.

The rest of this paper is organized as follows. In Section 2,
existing studies related with the modeling method of a dynamic
network condition are introduced. Next, Section 3 introduces the
latency measurement system and the measurement results. After
that, Section 4 reveals the limitation of an existing ARIMA-based
method, and Section 5 proposes a new modeling method using a
Markov Regime Switching technique. In Section 6, the effective-
ness of the proposed modeling method is evaluated using mea-
surement results of the latency measurement system. Finally, the
conclusions and the future works are presented in Section 7.

2. Related Works

Many researchers have evaluated the impact of the dynamic
network latency on the quality of user’s experience when using a
large-scale distributed service [10], [11]. In these researches, an
average or a median value of the latencies between end-nodes has
mainly been considered, but the impact of the dynamic change
on the performance has not been evaluated. Furthermore, high
performance mobile terminals (e.g., smart phones, tablets) have
widely been spread, hence the distributed services should be pro-
vided through mobile networks. The trend of latency variation on
the mobile network dynamically changes with time because the
mobile terminal sometimes moves to a different access network
than before when handover or offloading occurs due to the user’s
movement in the real world.

Therefore, a new evaluation model where the dynamic change
of the mobile network state can accurately be expressed is attract-
ing attention for realistic simulation studies. The existing studies
related with the modeling are introduced in the following parts of
this section.

2.1 Modeling of Dynamic Latency Variation Using Time Se-
ries Analysis

A mobility pattern of the mobile users in cellular and ad-hoc
networks have been studied by several researchers, and realis-
tic mobility models (e.g., Random Waypoint) have been pro-
posed [12], [13]. However, the objective of the existing studies
is to model a realistic mobility pattern, hence the impact of the
mobility pattern on the mobile network quality has not been mod-

eled. In addition, modeling of path loss on a wireless part of the
mobile network has been considered by assuming various radio
frequencies (e.g., 5 GHz, UWB), but the impact of the path loss
on dynamic trend of end-to-end mobile network quality has not
been disclosed [14], [15].

Furthermore, some existing researches have analyzed a net-
work latency measurement dataset, and have identified a type of
distribution (e.g., Gamma-like distribution) which can generate
the realistic network latencies [16], [17]. This distribution unveils
the statistical characteristics of the dynamic latency variation, but
does not include any knowledge of the time series of the latency.

On the other hand, a time series analysis technique was used
to analyze the measurement dataset to model the time series data.
In the existing studies, several techniques (e.g., ARIMA (Auto-
Regressive Integrated Moving Average) model [6], Brownian mo-
tion [7]) have been used in the time series analysis. Especially,
the ARIMA model has been used for modeling variations in the
amount of data traffic on the Internet and for forecasting future
values in the time series [3], [4], [5]. A realistic latency dataset
that includes a self similarity characteristic can be generated by
the ARIMA model [8], [9].

The ARIMA-based modeling in the existing researches can be
used to generate only a dataset where the dynamic trend (i.e., the
long-term average and the standard deviation) never changes, but
cannot express the dynamic change of the network state due to a
user’s movement in the mobile environment.

2.2 Expression of Dynamic State Change Using Markov
Regime Switching

Simple finite-state Markov chain models have often been uti-
lized to characterize a state transition of wireless channels [18],
[19]. However, the existing studies have focused on modeling
only a channel state on a wireless part of the mobile network,
and have not modeled the dynamic trend of end-to-end latency
variation.

On the other hand, in order to express the dynamic state change
of the time series data, a Markov Regime Switching has been pro-
posed [20]. The Markov Regime Switching is an application of a
hidden Markov model where the tendency of the time series data
is defined as a Markov process with multiple unobserved states,
and each state is composed of a set of coefficients that determine
the behavior of the ARIMA model. In other words, an ARIMA
model is selected in each step according to the Markov model for
generating time series data. The “hidden” state transition prob-
abilities and coefficients of the ARIMA model in each state are
extracted from observed time series data by using an optimizaiton
algorithm. The Markov Regime Switching is mainly utilized for
modeling the stochastic volatility (e.g., a stock price) in a finan-
cial area.

2.3 Objective of This Study
In this study, we attempt to model the dynamic latency varia-

tion on the mobile network due to the movement of mobile users
in the real world by applying the Markov Regime Switching to an
existing ARIMA-based latency modeling technique. First, in or-
der to collect dataset of the actual network latency on the mobile
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network while a mobile user is moving around within a wide area,
a latency measurement system which can measure a one-way la-
tency between a mobile terminal (e.g., smart phone) and a server
on the Internet is newly developed. Next, we disclose the limi-
tation of the existing ARIMA-based modeling method, and then
evaluate feasibility of the proposed Markov Regime Switching
for modeling the dynamic latency variation on the mobile net-
work.

3. Proposed Latency Measurement System
Using Smart Phone

In this section, we propose a new latency measurement system
which can obtain a one-way latency between a terminal on a mo-
bile network and a server deployed on the Internet. Emphasized
new technique of the proposed system is a probe transmission
collaborated with NAT traversal. In recent years, almost all cellu-
lar phones are working behind a large-scale NAT (CGN: Carrier-
grade NAT) deployed by cellular carriers, and are configured with
private network addresses. Therefore, the probe packets cannot
directly be transmitted to the mobile terminal on the cellular net-
work, hence the NAT traversal method is necessary for measuring
the one-way latency especially in a downstream direction.

In the following part of this section, we explains the overall
structure of the proposed measurement system and the detailed
procedure for measuring the end-to-end latency by traversing
NAT.

3.1 System Structure and Measurement Procedure
Figure 1 shows a system structure of the proposed latency

measurement system. As illustrated in this figure, the proposed
system consists of a client program on mobile terminals and a
server program on a centralized management server. The server
program can accept measurement requests from multiple client
programs, and controls the measurement procedure between the
mobile terminal and the server.

Next, Fig. 2 depicts a sequence chart of the proposed system
for measuring the one-way latency between a mobile terminal and
a management server. As shown in this figure, the latency mea-
surement in the upstream direction (mobile terminal → server)

Fig. 1 System structure of latency measurement system.

and that in the downstream direction (server → mobile termi-
nal) are performed in the different manner. When starting the
latency measurement, the client program first sends the measure-
ment request including its ID (i.e., IP address, phone number)
to the server in order to authenticate the mobile terminal. In the
proposed system, a measurement operator sets the measurement
direction (upstream or downstream) to the server in advance, and
the server notifies the client of the direction as a response of the
request.

Regardless of the measurement direction, the client periodi-
cally transmits probe packets to the server, and the probe pack-
ets are transmitted by UDP. Here, if the measurement direction
is “downstream,” the server sends back the probe packets to the
client as shown in Fig. 2. Normally, when the mobile terminal is
running behind the NAT device, the probe packet which is gen-
erated on the Internet cannot arrive at the client which is config-
ured with the private IP address. However, by transmitting a UDP
packet through the NAT device in advance, a setting of the NAT
device is updated so that the probe packets are forwarded to the
client. As a result, the probe packets can be directly exchanged
between the mobile terminal and the server even when the latency
of the downstream direction is measured.

3.2 Measurement Experiment of Actual Latency Data
By using our proposed latency measurement system, the ac-

tual latency data is prepared for designing a new latency model-
ing method. The client program of the measurement system was
developed as an Android application, and was installed on an An-
droid smart phone which can access both a 3G cellular network
and a WiFi network.

The measurement experiment was performed in middle of
September 2012. In order to evaluate the impact of a user’s realis-
tic movement on the dynamic trend of the mobile network quality,
the Android terminal was placed on a train of the Yamanote Line
which is a railway loop line in Tokyo, Japan. The Yamanote Line
is one of the most important lines in Tokyo, connecting most of

Fig. 2 Measurement procedure of latency measurement system with NAT
traversal.
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Fig. 3 Measured latency between a smart phone on the Yamanote line and
a server on the internet.

Tokyo’s major stations including Shibuya, Shinjuku, and so on.
The one-way latency between the smart phone on the mobile net-
work and the management server on the Internet was measured
every one second while the train traveled around the Yamanote
Line (about 1 hour). Note that an offloading event did not occur
during the experiment, and any handover event could not be de-
tected because the IP address of the smart phone did not change.

Figure 3 shows the measurement results in both upstream
(smart phone→ server) and downstream (server→ smart phone)
directions. Note that the measurement results are normalized by
the average value of latency in the upstream direction. In addi-
tion, the latency sometimes becomes lower than zero, because a
clock could not be completely synchronized between the server
and client.

As shown in Fig. 3, the latency in the downstream direction
largely fluctuates compared with that in the upstream direction.
This is because many users of the smart phone use a service or an
application which consumes much bandwidth in the downstream
direction. Therefore, the mobile network quality markedly fluc-
tuates and degrades in the location where many users concentrate
(e.g., Shibuya). Furthermore, the dynamic characteristic of a la-
tency variation can be classified into at least two states. In the
first state, the time interval when the range of variation is com-
paratively small continues for some time. After that, the latency
suddenly and drastically changes for a very short interval in the
second state.

The latency modeling method should be able to represent such
a state change of latency variation. Therefore, in the following
sections, we evaluate the capability of an existing ARIMA-based
modeling method for building the realistic evaluation model, and
then consider more a suitable modeling method for the multi-state
latency variation.

4. Capability Evaluation of Existing Latency
Modeling Method based on ARIMA Model

In this section, we attempt to model the latency variation by
using an existing ARIMA-based Method, and evaluate the capa-
bility of the modeling method for representing a realistic latency
variation on mobile networks.

4.1 Overview of ARIMA-based Method
The ARIMA model is generally referred to as an ARIMA(p,

Fig. 4 Time variation of estimated latency using ARIMA-based method
(downstream).

d, q) model, where the parameters p, d, and q represent the order
of the auto-regressive, integrated, and moving average, respec-
tively. When the time series data yt, where t is an integer index,
is analyzed, the ARIMA(p, d, q) model is given by the following
equation.

Δdyt=m + φ1Δ
dyt−1 + · · · + φpΔ

dyt−p

+at + θ1at−1 + · · · + θqat−q. (1)

where at is a white noise at time t and m is a mean value of the
time series data. In addition, Δd is an operator that represents the
d-th order difference. For example, Δ1yt and Δ2yt are yt − yt−1

and Δ1yt − Δ1yt−1, respectively. The difference process is used
to transform the linear non-stationary time series into a station-
ary time series. The p-th order auto-regressive part and the q-th
order moving average of the white noise are used to model the
stationary time series data.

In order to generate a realistic dataset that can represent the
temporal latency variation on mobile networks, order parameters
(i.e., p, d, q) and coefficients of Eq. (1) should be optimized by
analyzing the measurement results. In this study, an R-tool with
a forecast package [21] is used for deciding the optimal param-
eters. The R-tool is a free software programming language and
software environment for statistical computing, and the function
can be extended by installing an add-on package. The forecast
package includes auto.arima function which can automatically
optimize the parameters of the ARIMA model so as to minimize
the representative objective function (i.e., AIC: Akaike’s Infor-
mation Criterion).

4.2 Evaluation of Estimated Latency Using ARIMA-based
Method

Figures 4 and 5 show time series data of latency in the down-
stream direction and that in the upstream direction generated from
the ARIMA model (Eq. (1)). In these figures, the latency data is
normalized by the average of measurement results in the upstream
direction. By using the auto.arima function of R-tool, ARIMA(0,
1, 1) and ARIMA(1, 0, 1) models are selected for downstream
and for upstream directions, respectively. As shown in these fig-
ures, the existing one-state ARIMA model cannot follow a real-
istic condition of the mobile network where the latency basically
fluctuates within a small range but sometimes drastically changes.

In addition, we reveal the capability of the existing ARIMA
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model by evaluating the standard deviation of the estimated la-
tency, because the tendency of the latency variation dynamically
changes with time on the mobile network, which should appear in
time variation of the standard deviation. Figures 6 and 7 show the
cumulative distribution function of the standard deviation which
is calculated from latency data of each 10 seconds. In these fig-
ures, the ARIMA models with various order parameters in addi-
tion to the optimal one are evaluated.

As shown in these figures, the standard deviation of the existing
ARIMA model concentrates within a short range (300–800 [ms])
regardless of the order parameter because the existing model sim-
ulates only a condition where the tendency of latency variation
never changes. Therefore, in order to generate a realistic dataset
of latency on mobile networks, a new modeling method which
can simulate the dynamic state transition of the latency variation
should be proposed.

Fig. 5 Time variation of estimated latency using ARIMA-based method
(upstream).

Fig. 6 Standard deviation of estimated latency using ARIMA-based method
(downstream).

Fig. 7 Standard deviation of estimated latency using ARIMA-based method
(upstream).

5. Proposed Latency Modeling Method based
on Markov Regime Switching

In this study, we propose a new modeling method using the
Markov Regime Switching (MRS) in order to accurately model
dynamic latency variation on the mobile network. As explained
in Section 2.2, the MRS can be used to generate time series data
of latency including multiple state as shown in Fig. 8. The mo-
bile network can also be modeled as a data source consisting of
multiple states, because an end-to-end network path which affects
the dynamic trend of the latency variation dynamically changes
when handover or offloading occurs due to the movement of mo-
bile users.

In the MRS-based method, time series data is generated by
multiple ARIMA models, and the future state of the model is de-
cided based solely on the present state and a transition matrix P.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p21 · · ·
p12 p22

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

If the present state is i, j is selected as a next state at a probabil-
ity of pi j. When the i-th state is selected, the time series data at
time t is derived from the following equation of ARIMA (p, 0, q)
model.

yt = ai0+ai1yt−1+· · ·+aipyt−p+ ci0εt+· · ·+ciqεt−q. (3)

In this equation, εt means a white noise at time t which is derived
from a standard normal distribution.

For constructing an evaluation model which generates time se-
ries data including multiple states, the transition matrix P and the
coefficients of the ARIMA model (Eq. (3)) of each state should be
decided by analyzing the measurement results of latency. In this
study, we utilize an R-tool with a Fitting Markov Switching Mod-
els (MSwM) package [22] for deciding these parameters. The
MSwM package can automatically decide an appropriate transi-
tion matrix P and coefficients of the ARIMA model, but supports
only an ARIMA (p, 0, 0) model (i.e., Auto-Regressive model
with p-order). There parameters are derived using expectation-
maximization (EM) algorithm in the MSwM package. The EM

Fig. 8 Proposed Markov Regime Switching-based multi-state ARIMA
model (2-States).
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algorithm is an iterative method, i.e., an expectation (E) step,
which derives the expectation of the current estimate for the pa-
rameter, and a maximization (M) step, which searches more suit-
able parameters improving the expectation, are sequentially iter-
ated for finding the maximum likelihood estimates of the param-
eters. Furthermore, a time series data xt that explains the vari-
able response yt should be prepared because the MSwM pack-
age decides parameters by regression analysis. Arbitrary time
series data (e.g., linear function, trigonometric function) can be
utilized for the analysis, but the explanatory variable xt should be
included in the evaluation model. As a result, the latency varia-
tion on the mobile network is modeled as the following equation.

yt = ai0+ai1yt−1+· · ·+aipyt−p + bixt + ciεt. (4)

6. Experimental Evaluation of Proposed
MRS-based Modeling Method

In this section, we clarify whether or not the proposed latency
modeling method can be used to simulate realistic time series data
of the mobile network quality. Here, the measurement results in
Section 3.2 are analyzed by using our proposed method for mod-
eling a realistic dynamic characteristic of latency variation on the
mobile network. Furthermore, in order to disclose the effective-
ness of the proposed method, the existing ARIMA-based mod-
eling method is also applied as a comparative method. This is
because the ARIMA model has been treated as a candidate tech-
nology for accurately modeling variations in the amount of data
traffic on the Internet and for forecasting future values of the time
series in existing studies [3], [4], [5] as explained in Section 2.1.

6.1 Evaluation of Estimated Latency from Each Model
Figures 9 and 10 show the estimated latency in the downstream

direction and that in the upstream direction based on the eval-
uation model constructed by the proposed MRS-based modeling
method. In these figures, the latency data is normalized by the av-
erage of measurement results in the upstream direction. In order
to confirm the fundamental availability of our proposed method,
a simple two-states and four-states Auto-Regressive models with
one-order (AR(1)) is used to generate the latency data. As shown
in these figures, the constructed multi-state model can simulate
a realistic condition of the mobile network where the latency ba-
sically fluctuates within a small range but sometimes drastically

Fig. 9 Time variation of estimated latency using MRS-based method
(downstream).

changes, while the ARIMA model cannot follow the trend.
Next, we evaluate the standard deviation of the estimated la-

tency based on the proposed MRS-based modeling method as the
same as Section 4.2. Figures 11, 12, 13, and 14 show the cumula-
tive distribution function of the standard deviation which is calcu-
lated from latency data of each 10 seconds. In these figures, vari-
ous kinds of evaluation models based on Markov Regime Switch-

Fig. 10 Time variation of estimated latency using MRS-based method (up-
stream).

Fig. 11 Standard deviation of estimated latency using MRS-based method
(2 states, downstream).

Fig. 12 Standard deviation of estimated latency using MRS-based method
(4 states, downstream).

Fig. 13 Standard deviation of estimated latency using MRS-based method
(2 states, upstream).
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Fig. 14 Standard deviation of estimated latency using MRS-based method
(4 states, upstream).

Table 1 Kullback-Leibler distance from cumulative distribution function of
measurement result (downstream).

2-St.AR(1) 2-St.AR(2) 4-St.AR(1) 4-St.AR(2) ARIMA(0,1,1)

0.369 0.208 0.170 0.272 0.781

Table 2 Kullback-Leibler distance from cumulative distribution function of
measurement result (upstream).

2-St.AR(1) 2-St.AR(2) 4-St.AR(1) 4-St.AR(2) ARIMA(1,0,1)

0.620 1.362 0.327 2.528 1.450

ing with different number of states (two or four) and a different
parameter of p (one or two) are evaluated. As shown in these fig-
ures, the standard deviation of the proposed evaluation model is
distributed over a wide range as the same as the measurement
results, while that of the existing ARIMA model concentrates
within a short range.

In addition, the difference between the cumulative distribu-
tion of the measurement result and that of the estimated latency
based on each modeling method is evaluated in another metric.
For comparing two distributions, Kullback-Leibler (KL) distance
is often used as a measure of the difference between them [23].
When Pi and Qi denotes the probability densities of the measure-
ment results and the estimated latency, the KL distance can be
derived from the following equation.

DKLD =
∑

i

(Pi − Qi) ln
Pi

Qi
. (5)

In this evaluation, the probability density in 50 [sec] width of
the standard deviation is calculated, and the KL distance of each
model from the measurement result is derived. Tables 1 and 2
summarize the KL distance of the modeling methods in down-
stream and upstream directions, respectively. As shown in these
tables, the 4-states AR(1) model can the most accurately simulate
the dynamic trend of the actual network latency in both directions.

As explained above, the best combination of parameters should
be selected for the proposed modeling method so as to gener-
ate a realistic latency dataset on the mobile network. In order
to establish the optimal evaluation model, the modeling method
first selects the candidate forms of the evaluation model (e.g., 2-
States AR(1), 4-States AR(2)), and then decides parameters of
each model (i.e., coefficients of the AR model, transition matrix)
using the MSwM package. After that, by comparing a measure
of the difference (e.g., KL distance of the standard deviation) be-
tween the actual latency and the estimated latency from each can-
didate model, the optimal evaluation model can be selected.

Fig. 15 Effect of aggregation time interval on standard deviation (30 [sec],
downstream).

Fig. 16 Effect of aggregation time interval on standard deviation (60 [sec]),
downstream).

Fig. 17 Effect of aggregation time interval on standard deviation (30 [sec],
upstream).

As described above, it has been clarified that the proposed
MRS-based modeling method is effective for estimating the re-
alistic latency variation using two datasets (i.e., upstream and
downstream directions), but the appropriate parameters have been
different between the upstream and downstream directions. The
conditions of the mobile network dynamically changes depend-
ing on several factors (e.g., time, place, kind of transportation),
and the suitable modeling method and/or its parameters may be
different among them. Therefore, in order to build the general
modeling method, we will have to prepare measurement datasets
in various conditions, and evaluate the accuracy of the evaluation
model established by the several modeling and parameter deriva-
tion methods.

Finally, Figs. 15, 16, 17, and 18 show the standard deviation
when the aggregation time interval of latency data is set to 30 or
60 seconds. As shown in these figures, regardless of the aggrega-
tion time interval, the distribution of the standard deviation of the
proposed evaluation model is similar to that of the actual latency
on the mobile network. Therefore, it is concluded that the eval-
uation model established by our proposed modeling method can
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Fig. 18 Effect of aggregation time interval on standard deviation (60 [sec],
upstream).

estimate the future dynamics of the mobile network quality while
the simple ARIMA model cannot achieve that.

However, as shown in the evaluation results, the actual latency
is still far from the generated latency from the proposed evalua-
tion model, although the proposed modeling method can estab-
lish a more accurate evaluation model than the existing method.
On the other hand, the main use case of the proposed modeling
method is a simulation study on the distributed services whose
performance is very sensitive to the network latency variation
(e.g., content delivery, on-line gaming), as explained in Section 1.
The main objective of the simulation study is to evaluate the im-
pact of the temporal latency variation on the service performance,
hence the latency dataset which captures a realistic trend of the
actual latency variation should be prepared for the simulation. As
explained above, the evaluation model established by our pro-
posed modeling method can estimate the realistic trend of the
long-term latency variation (i.e., variation of standard deviation)
that cannot be expressed by the existing ARIMA-based model-
ing method. Therefore, the proposed modeling method can con-
tribute to the large-scale simulation for evaluating the long-term
performance of the distributed services.

6.2 Future Study for Improvement of Markov Regime
Switching-based Latency Modeling Method

As explained above, our objective in this study is to estab-
lish a practical evaluation model which can generate a realistic
latency data on the mobile network. Through the experimental
evaluation, it has been clarified that a multi-state Auto-Regressive
model, which is constructed by our proposed Markov Regime
Switching-based modeling method, can simulate a realistic trend
of the latency variation on the mobile network. However, the suit-
able modeling method and/or the optimal parameter set (the num-
ber of states and the order parameter of Auto-Regressive model)
is different depending on several factors related with the network
condition of the path (e.g., time, place, kind of transportation). In
order to construct a large-scale evaluation model for simulation
study of the mobile network services, the appropriate modeling
method should be selected and the appropriate parameters should
be decided for various paths on the mobile network.

Therefore, in the future study, we will collect a large amount
of actual latency data by using our proposed latency measure-
ment system. For example, other conditions where the user of
the mobile terminal uses other kinds of transportation (e.g., car,
Shinkansen) will be assumed in order to evaluate impact of the

Table 3 Coefficients of multi-state AR in downstream direction.

State i ai0 ai1 bi ci

1 −1.43 1.00 1.19 69.0

2 34.4 0.991 −7.51 492

3 177 0.965 −224 1223

4 −1.99 1.00 0.869 23.0

rapid movement on the mobile network quality. Furthermore, the
measurement results will be analyzed in order to disclose how the
dynamics of the mobile network affect the accuracy of the mod-
eling method and optimal parameters of the evaluation model.

In addition, the proposed evaluation model cannot keep up with
the sudden drastic change of the latency as shown in Fig. 10,
hence the worst case performance of the distributed services can-
not be evaluated even when utilizing the proposed model. There-
fore, in the future study, we will also study the enhancement of
the multi-state model (e.g., use of multi-state ARIMA model) so
as to express such a drastic latency variation in the actual mobile
networks.

Furthermore, the modeling method can be utilized in order to
estimate future events which will occur on the mobile network.
As explained in Section 6.1, the drastic change of the latency
can depend on the events on the mobile network, but the detail
of the event cannot easily be specified by the end-point mea-
surement. For example, the IP address of the cellular phone
which is allocated from the carrier-grade NAT rarely changes
even when the handover process is executed. On the other hand,
our proposed modeling method can identify the network event
as a state transition of a Markov chain. Therefore, in the future
study, we will propose a new identification method of the net-
work events on the mobile network, and a new prediction method
of future events based on the established evaluation model using
the Markov regime switching.

6.3 Main Contribution of This Study for Network Simula-
tion

Dynamic trend of the latency variation in downstream and up-
stream directions have been modeled by 4-states AR(2) model
and 4-states AR(1) model as explained in Section 6.1. Further-
more, typical parameters of these models have been decided so
as to accurately simulate the latency variation on the mobile net-
work. The transition matrix (Pdown) of the 4-states AR(2) model
and that (Pup) of the 4-states AR(1) model have been derived as
follows.

Pdown =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.686 0.157 0.026 0.088
0.117 0.492 0.096 0.109
0.005 0.032 0.742 0.010
0.193 0.320 0.136 0.792

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Pup =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.798 0.210 0.339 0.101
0.087 0.686 0.125 0
0.114 0.103 0.505 0.211

0 0 0.031 0.689

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Coefficient parameters of these models are summarized in Ta-
bles 3 and 4.

From the established model with these parameters, researchers
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Table 4 Coefficients of multi-state AR in upstream direction.

State i ai0 ai1 bi ci

1 0.389 0.997 −0.339 22.1

2 10.2 0.968 −0.916 65.8

3 240 0.185 −35.7 380

4 1542 0.666 −656 2546

Fig. 19 Pseudo code for simulating mobile network quality.

can prepare a realistic latency dataset for their simulation studies
on distributed services provided through mobile networks. Fig-
ure 19 illustrates a pseudo code which can generate a latency
dataset based on the parameters in Eqs. (6) and (7) and Tables 3
and 4.

7. Conclusions and Future Work

We have proposed a new Markov Regime Switching-based
Modeling method for building a realistic evaluation model which
can generate a latency dataset for simulation studies. The latency
dataset should be able to represent the impact of a realistic be-
havior (i.e., movement) of the user on the mobile network quality.
The proposed method analyzed time series data of latency mea-
surement results using a hidden Markov model technique, and
established a multi-state Auto-Regressive model with an appro-
priate transition matrix and coefficient parameters.

In addition, the effectiveness of the proposed modeling method
has been evaluated based on the measurement result which is col-
lected while a user of the cellular phone travels around a railway
loop line in Tokyo. As a result, it has been concluded that the
estimated model from the proposed method accurately simulates
the dynamic state change of the mobile network quality. As a
main contribution of this study, we have illustrated a generation
method of realistic latency for the simulation study of mobile net-
work services (See Section 6.3).

In the future study, we will improve our proposed modeling
method so as to automatically determine optimal parameters of
the multi-state ARIMA model in each path, and will consider a
new prediction method of future events (e.g., handover, offload-

ing) that will occur on the mobile network. Here, a target dataset
of the analysis in this study was gathered when a mobile user was
getting on the Yamanote Line (railway loop) in Japan, but the pro-
posed Markov Regime Switching-based Auto-Regressive model
may be applied to other kinds of transportation (e.g., train, car)
whose vehicle speed is almost the same as the Yamanote Line. In
order to apply the proposed modeling method to a transportation
(especially, Shinkansen) whose speed is much different from the
Yamanote Line, more actual latency dataset will be collected and
analyzed for building a suitable modeling method for the trans-
portation.
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