
Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

[DOI: 10.2197/ipsjjip.23.382]

Invited Paper

Public Data Dissemination via Broadcasting

MichaelWisely1,a) Sahra Sedigh Sarvestani1,b) Ali R. Hurson1,c)

Received: December 3, 2014, Accepted: April 7, 2015

Abstract: Many modern mobile applications appeal to users because they grant access to a wealth of information
anytime, anywhere. However, a number of obstacles stand between users and the data they seek. Firstly, mobile de-
vices have limited access to energy sources. Devices should be able to access information without sacrificing hours
of battery life. Secondly, users expect timely access to data. While respecting the energy limitations of devices, data
must be quickly accessible. Data broadcasting has been proposed as a quick and efficient solution for providing users
with the data they desire. Broadcasting disseminates data from a server in a way that is analogous to AM/FM radio
or television broadcasts. Devices tune in to wireless channels to fetch data items from a broadcast. Several technical
challenges must be addressed to ensure efficient and timely data access for clients. These include organizing, index-
ing, and accessing the broadcast data items. Despite these issues, broadcasting is a scalable and efficient method for
disseminating data to mobile clients. In this paper, we describe related techniques and compare and contrast them with
respect to response time and energy efficiency.

Keywords: public data, data broadcasting, scalable data dissemination, mobile computing, green computing

1. Introduction

Every day, mobile technology becomes faster, smaller, and
more ubiquitous. Smartphones, smartwatches, and other intel-
ligent devices can accomplish a wide variety of tasks that make
our jobs and lives more efficient and convenient. The appeal of
these intelligent devices often lies in their ability to connect to the
outside world. From weather forecasts to Twitter feeds, mobile
devices provide users with access to information anytime, any-
where.

While mobile devices are shrinking in form factor, the amount
of data available to users is growing. For example, Twitter users
tweet over 400 million times per day [26]. At 140 bytes per tweet,
this amounts to well over 100 terabytes of data since the site’s cre-
ation in 2006. Despite this volume, users expect rapid access to
recent tweets and, on occasion, older posts.

Resources available to mobile devices are constrained in sev-
eral ways. These devices rely on batteries or harvest small
amounts of energy from their surroundings [10]. Without access
to a long-term power source, they must leverage energy-efficient
hardware and software to conserve energy resources. Extend-
ing battery life by choosing a low-power processor may outweigh
the computational benefits that would otherwise be gained using
higher performance processors [6].

While data should be made available to clients in a fashion that
respects their resource limitations, these are not the only criteria
to consider. Users expect long battery life and timely responses to
data requests. That is, the time elapsed between a client’s request
and a server’s response should be short.

1 Missouri University of Science and Technology, Rolla MO 65409, USA
a) mwwcp2@mst.edu
b) sedighs@mst.edu
c) hurson@mst.edu

Additionally, the location and movement of clients within a
mobile computing environment should not significantly impact
the quality of their data access. To some extent, this issue is
unavoidable. Communication hardware incurs some base costs
in terms of energy consumption, regardless of a user’s location
within the environment [19]. By reducing the amount of com-
munication required of the clients, it is possible to reduce energy
costs.

In general, the challenge is to enable mobile clients to access
data while reducing their response time and energy consumption.
The best solution to this challenge depends on the nature of the
application and the mobile computing environment. The type of
data being accessed, as well as the communication model, can
help identify the best way to connect clients with their data.

1.1 Mobile Computing Environment
Mobile computing environments must have some connection

to a data source, such as the Internet, from which to provide
data to clients. In a client-server model, mobile support stations
(MSS) function as the server, connecting mobile devices with the
data they desire. Data requested by mobile devices is retrieved
from a data source by the MSS and passed along to mobile de-
vices. Though it is possible for clients to collaborate and com-
municate with one another [7], [8] to help disseminate data, we
are not concerned with this aspect of mobile computing environ-
ments. Instead, this discussion is concerned with efficiently dis-
seminating data from the MSS to its clients.

Naturally, wireless communication methods are attractive for
mobile computing environments, as it is inconvenient or imprac-
tical for moving devices to be tethered to a network by a cable.
However, the convenience of wireless communication comes at
a cost. Several issues must be considered when constructing a
mobile computing environment.

c© 2015 Information Processing Society of Japan 382



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

Firstly, wireless communication demands energy from energy-
restricted mobile devices. When a device is not communicating,
it can switch its wireless radio to a low-power mode to conserve
energy [20]. However, an active wireless radio consumes a large
amount of energy to send and receive data. An actively commu-
nicating cellular radio in a smartphone can consume five times
the base energy consumed by the phone itself [22]. Additionally,
as a device travels away from a MSS, its connection becomes
weaker, and the mobile device must use more energy to commu-
nicate. Due to signal amplification, devices with weak signals
can consume up to six times more energy than devices with ac-
cess to stronger signals [22]. This energy consumption may drain
a mobile device’s energy resources more quickly.

Secondly, mobile devices typically have limited computational
resources. Slower processors are often chosen to reduce energy
consumption [5] and improve battery life. Complex algorithms
increase the response time for users, as well as energy consump-
tion of the processor and other hardware components.

1.2 Data Dissemination Methods
The mobile computing environment should enable mobile

clients to retrieve desired data from a data source in a fast and
energy-efficient manner. The nature of the application and the
information exchanged in a mobile computing environment de-
termines how best to disseminate data. In a client-server envi-
ronment, an MSS disseminates data from a data source to mobile
hosts. Thus, it is partly the responsibility of the MSS to pro-
vide client devices with fast and energy-efficient access to the
data they desire. However, the method used to propagate data to
clients should be selected with consideration of the type of data
desired by the clients. Data requested by mobile clients falls into
one of three categories [15]:
Private Data Data that is intended to be accessed by a single

user. Personal schedules and address books are examples of
private data. The number of devices that read from and write
to the data source is very small.

Shared Data Data that is shared among a group of users. It is
possible for many users to read and write shared data. So-
cial media sites, like Twitter and Facebook, use shared data.
Many users are permitted to retrieve and update data from
the data source.

Public Data Data that is publicly available to a wide audience.
Very few users update the data source, but many users sub-
scribe to it. Traffic and weather information are public data.
Authorized users at news outlets or other institutions update
information, and subscribers retrieve their updates.

Data can be disseminated in several ways [3]:
On Demand In an on-demand environment, the server re-

sponds to requests made by clients. A strictly on-demand
service is purely pull-based. That is, clients submit requests
to the server asking for information, and the server directly
responds to the requesting client.

Broadcasting In a broadcasting environment, the server re-
peatedly broadcasts data to all clients in its transmission
range. It is a purely push-based environment. Clients do not
submit requests for information. Instead, they only down-

load desired data from the server transmissions.
Hybrid A hybrid environment combines features of on-demand

and broadcasting environments. For example, clients may be
allowed to submit requests for information that influences
the content of future broadcasts.

On-demand services are appropriate for disseminating private
or shared data [11]. Unicast client-server communication enables
the server to enforce access control rules, and two-way commu-
nication enables clients to request updates to data on the server.
Public data, on the other hand, can be disseminated via broadcast-
ing. In a broadcasting environment, the server repeatedly broad-
casts data for client devices to receive. They can tune in to in-
teresting parts of a broadcast and otherwise leave their wireless
radios in a power-saving state. Although the server must expend
energy to constantly transmit information, clients can save en-
ergy, as they are no longer required to transmit requests for the
data that they seek. Hybrid services are appropriate for public
data and possibly shared data. Items that are sufficiently popular
may be broadcast, while less popular items are sent to individual
clients [21].

Though broadcasting offers several benefits to client devices,
it comes with a number of technical challenges. The server must
decide which data items to include in each broadcast and how
to disclose the location (channel) of each data item to clients.
The client devices must identify methods for efficient retrieval of
broadcast data items. The solutions to these challenges may vary
based on the nature of the data to disseminate and its application.
However, a properly implemented broadcasting environment of-
fers scalability and could extend client battery life while main-
taining short response times.

2. Broadcast Content

Methods that determine the contents of a broadcast fall into
one of three categories: pull-based, push-based, or hybrid. Pull-

based methods construct broadcasts solely based on requests sub-
mitted by users. These methods usually require the server to ac-
cept user requests on one communication channel and broadcast
responses on a second communication channel. Because of this
request/response behavior, pull-based methods may be called on-

demand broadcast [4]. Push-based methods, on the other hand,
do not accept user requests. Instead, these methods use previ-
ous knowledge of user access patterns to determine the content
of broadcasts. Users are passive and tune in to broadcasts to read
requested items as they become available. Hybrid methods com-
bine features of push-based and pull-based approaches. Some
data items are broadcast to clients, while other items must be re-
quested in an on-demand fashion. Based on user requests, hybrid
methods adjust the contents of broadcasts to more efficiently meet
the needs of users.

The use of these methods varies by application. Push-based
methods are appropriate for environments where user access pat-
terns do not change frequently. In these situations, prior, static
knowledge is sufficient for choosing broadcast contents. Hy-
brid or pull-based methods are more appropriate for environments
where user access patterns are less predictable.

Broadcast communication takes place over discrete time slots,

c© 2015 Information Processing Society of Japan 383



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

Fig. 1 Single- and multi-channel broadcasts.

each of which corresponds to one frame of the data. These frames
may vary in size. If a single channel is used, a broadcast is sim-
ply a sequence of frames. When multiple, parallel channels are
used, a broadcast can be viewed as a two-dimensional array. Each
row of the parallel broadcast corresponds to a different channel,
and each column corresponds to a different frame. Figure 1 il-
lustrates the difference between single- and multi-channel broad-
casts. Note that the multi-channel broadcast of Fig. 1 contains the
same number of frames as its single-channel counterpart, but the
total length of the multi-channel transmission is shorter.

2.1 Pull-based Methods
Pull-based methods allow users to request data items from the

server, while better utilizing bandwidth than an on-demand, uni-
cast environment. These methods ensure that every broadcast
data item will be useful to at least one user, so broadcast pages
are not wasted on unrequested items. However, as the number
of requests grows, it becomes increasingly difficult to answer all
requests in a timely manner. While simpler pull-based methods
will eventually respond to user requests, more advanced methods
use information about the requests to decrease average response
time.

The simplest method for determining broadcast responses is by
servicing requests on a first-come first-serve (FCFS) basis. This
treats each request with equal priority, but results in longer aver-
age wait times. Early work in this area considered other simple
heuristics, such as most- requested-first (MRF) and longest-wait-
first (LWF) [28]. When the number of user requests is low, these
heuristics perform similarly. However, as the load increases,
LWF maintains a lower average client response time than FCFS
and MRF. This comes at a computational expense, as LWF incurs
the greatest overhead in compute schedules.

Aksoy and Franklin evaluated these heuristics and showed that
MRF has the shortest average response times for hot data items,
while FCFS gives equal priority to each data item. Using these
observations, they proposed the “R ×W” algorithm to reduce the
response time of requests [4]. The algorithm balances access to
hot and cold data items by maintaining two sorted lists, R and W,
respectively. These lists reflect the number of requests for data
items (R) and the time since the earliest request for data items
(W). Starting at the most-requested item in the R list, the algo-
rithm alternates between R and W, searching for the data item
with the highest R × W value. The algorithm searches until half
of each list has been covered, or until a precomputed limit has
been reached. To improve the runtime of the algorithm, a pa-
rameterized threshold can be added, so that the search stops after
finding a data item with an R×W value greater than the threshold.
The threshold value is initially set to 1, and is updated after each
broadcast according to Eq. (1), where (R×W)(t) is the R×W value

from the previous broadcast. Use of a threshold may cause the al-
gorithm to stop before an optimal R×W value is found. However,
the authors argue that for highly skewed access patterns, the data
item with the highest R × W value tends to be one of the first
data items in the search. By choosing data items that are “good
enough,” but not optimal, broadcast contents can be determined
quickly while still reducing response times.

threshold(t + 1) =
threshold(t) + (R ×W)(t)

2
(1)

R × W aims to reduce the response time of user requests, but
it does not guarantee any duration by which the requests will be
answered. Some applications may require a response to a request
within a short window of time, after which a response would be
rendered obsolete. Xu et al. [29] proposed SIN-α to schedule
broadcasts in response to time-critical requests. SIN-α aims to
respond to as many requests as possible by reducing the request
drop rate. The algorithm chooses broadcast contents by consider-
ing when request deadlines expire and how many requests will be
serviced. It maintains two sorted lists, denoted as the S-list and N-

list, respectively. The S-list records the earliest deadline for data
items, and the N-list records the number of requests submitted for
data items. The lists are traversed to find the data item with the
minimum sin.α value, defined in Eq. (2), where num represents
the number of requests. Requests remain in the lists until they are
serviced or expire. If a request for a cold item has a short dead-
line, it may not have a low enough sin.α value to be serviced, and
the request will be dropped by both the server and the client.

sin.α =
closestDeadline

numα
(2)

2.2 Push-based Methods
Without explicit requests for data, push-based methods must

rely on previous knowledge of user access patterns to decide the
content of broadcasts. This eliminates the need for a communica-
tion channel for user requests, but it requires push-based methods
to broadcast the full contents of a database. Removing the request
bottleneck makes push-based methods highly scalable, although
it limits possible client applications.

Flat broadcasting is the simplest method for determining the
content of a push-based broadcast. Given information about
client requests, the server takes the union of all requested data
items and repeatedly broadcasts the results [1]. Without any orga-
nization or repetition of data items, the average wait time for any
data item is half of the broadcast length. All data items are broad-
cast with the same priority. Thus, every client can eventually re-
trieve their desired data. However, it is unlikely that all data items
will be equally popular among clients. Some items will be re-
quested more frequently than others. Broadcast disks [2] attempt
to reduce response time by repeating popular items in broadcasts.
By broadcasting additional copies of popular data items, clients
have more opportunities to retrieve the information they desire.
Data items are grouped into several, separate “disks”, where the
size and speed of a spinning disk reflects the popularity of the
items on that disk. For example, a disk with hot items is smaller
and spins faster than a disk with cold items. As the disks spin,
data items are read from each disk and are interleaved to create

c© 2015 Information Processing Society of Japan 384



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

a broadcast. Data items from faster spinning disks appear more
frequently in broadcasts, allowing users faster access to hot data.

To further reduce the average response time for broadcast
disks, one can tune several system parameters including disk
sizes and angular velocities. Liaskos et al. [18] mathematically
modeled clients and their use of broadcast disks, facilitating an-
alytical determination of optimal system parameters. Simula-
tion results showed that analytically calculated parameters out-
performed those found heuristically. However, the model as-
sumes that the server has extensive historical knowledge of client
requests in order to compute the probability density function that
models client behavior. Incomplete knowledge or deviations from
the model may result in poor performance in terms of response
time.

2.3 Hybrid Methods
Hybrid methods combine features of both push-based and pull-

based methods. Like push-based methods, clients can retrieve
data items from the air without submitting a request to the server.
However, if a requested item is not available via broadcast, clients
can directly retrieve it from the server through a unicast commu-
nication channel. The requests for data items can then be ana-
lyzed to dynamically change the contents of broadcasts. By in-
cluding the most popular data items in broadcasts, the goal is to
satisfy a large number of client requests while reducing the num-
ber of requests that must be submitted to the server. Unlike push-
based methods, it is not necessary to broadcast all items in the
database. Clients seeking unpopular data items have an alternate
communication channel for retrieving data, at the expense of ad-
ditional energy expenditure.

Stathatos et al. [24] developed a hybrid environment that treats
broadcast content like a global cache. Like typical cache mem-
ory, clients first check the “air cache” for a data item. If there is
a cache miss, a request is submitted to the server so that the item
can be retrieved directly. Based on these cache misses, the server
determines which data items are broadcast. The authors use the
states of water as an analogy for the states of data items. That is,
data items can be frozen, liquid, or vapor.

As requests for a data item arrive, the temperature of that data
item increases. If the temperature surpasses a certain threshold,
it transitions from frozen to liquid. Similarly, at a higher tem-
perature threshold, a data item transitions from liquid to vapor.
Data items in the vapor state are popular enough to be included in
broadcasts. Liquid and frozen items are still obtainable, but they
must be requested directly. Eventually, vapor data items may be-
come less popular, but the lack of requests for these broadcast
items makes it difficult to determine their popularity. By gradu-
ally cooling down data items, those in the vapor state will become
liquid and cease being broadcast. If they are popular enough to
become vapor again, incoming requests will heat them back to
that state. The temperature at which a data item becomes vapor is
configurable, allowing for adjustment of the number of broadcast
data items.

Similar to the cutoff between vapor and liquid/frozen data
items, Guo et al. [9] suggests partitioning data items into those
that are broadcast and those that are not. In this scheme, incom-

ing requests are used to compute the access probability for each
data item in the database. A threshold, K, is then used to partition
the data items into two sets according to their access probabilities.
The server broadcasts the K data items with the highest probabil-
ity of being accessed. Based on the probabilities, the cutoff point
K is computed, so that the optimal expected access time can be
achieved.

3. Indexing Objects

Indices provide a fast way to determine the location, e.g., chan-
nel and frame, of one or more data items on a multi-channel
broadcast. Given a key, an index can provide the address of the
data described by that key. In file systems and databases, indices
are used to speed up search. Indices can quickly reduce the size
of a key’s search space, which results in fast address retrieval.

Broadcasts can also utilize indices. Indices enable mobile de-
vices to determine the temporal location of items requested by a
user. That is, a device can determine when and on which channel
a requested item will be broadcast by the server. Using this infor-
mation, the device can decide when to switch its wireless radio to
a power-saving mode and, if necessary, when to switch channels
to fetch upcoming data items.

3.1 Signature-based Indexing
A signature-based index is an abstract representation of data in

a broadcast [17]. Broadcasts are broken into records, which are
used to create signatures. Each value stored in a record is hashed
and combined to form the signature for that record. To determine
whether a record contains a given value, a device hashes the value
and compares it with the signature. If the hash is contained within
the signature, then the value may be in the corresponding record.
There is a possibility for false positives. However, if the hash is
not contained within the signature, then the value is definitely not
in the corresponding record.

The records used to create signatures vary in size depending
on the placement of indices in the broadcast. Indices may be in-
terleaved according to a simple, integrated, or multilevel scheme.
The simple scheme creates a signature for each data frame. Each
data frame follows its signature frame. The integrated scheme
creates signatures for groups of frames. Like the simple scheme,
signature frames precede their group of data frames. Finally, the
multilevel scheme creates multiple levels of signatures - the up-
per level is an integrated signature, and the lower level is a simple
signature. Simulations have shown that the multilevel scheme of-
fers the shortest tune-in time but the longest access time, while
the integrated scheme offered the shortest access time but the
longest tune-in time [17]. Additionally, all three schemes offered
improved tune-in time and access time over broadcasting without
indices.

3.2 Tree-based Indexing
It is often convenient to organize data based on the relation-

ship between its values. Organized data is easier to navigate and
can accelerate searches. In many cases, a tree is a useful data
structure for capturing relationships between data. Tree-based in-

dexing does this for broadcasts; each leaf in the index tree points

c© 2015 Information Processing Society of Japan 385



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

to a data item in a broadcast.
Tree indices are useful for providing a global view of a broad-

cast based on the tree’s index key. This feature makes tree indices
suitable for reducing tune-in time. By indexing signature-based
indices with a sparse tree, it is possible to maintain the bene-
fits of signature-based indices, while achieving shorter tune-in
times [16]. Clients search the sparse index to retrieve an approx-
imate location of their desired data. Signatures can then be used
to further determine which records to inspect.

As with signature-based indices, there are several ways to place
tree-based indices within a broadcast. It makes sense to periodi-
cally include an index within a broadcast channel for the benefit
of clients that join mid-broadcast. (1,m) indexing and distributed
indexing interleave index information within each broadcast [13].
(1,m) indexing inserts a complete index every 1

m of a broadcast
cycle, totaling m copies of the same index. However, this method
replicates information and increases response time as a result.
Distributed indexing trims out some of the duplicate index infor-
mation before adding indices to the broadcast. Analysis suggests
that (1,m) indexing offers improved power consumption at the
cost of slower response times, while distributed indexing offers
faster response time at a higher energy cost.

The placement of indices within parallel channel broadcasts
has also been studied. Three different schemes varying in degrees
of replication have been tested using a tree-based index inspired
by the B+ tree [27]. Non-replicated indexing splits the tree into
several smaller, disjoint index trees. Each sub-tree is broadcast on
its own channel, so the client may need to check several channels
to retrieve the correct index. Partially-replicated indexing splits
the tree into several smaller index trees, but a sub-tree may in turn
refer to other sub-trees. Each sub-tree is broadcast on its own
channel, and the links between sub-trees maintain the structure of
the original tree. Fully replicated indexing duplicates the original
index tree on all index channels. As long as the client is able to
determine the correct index channel to use, the non-replicated in-
dex offers the lowest index access time of the three. When this
is not possible, partially-replicated indexing offers good perfor-
mance, while providing clients with information about the other
index channels.

3.3 Hash-based Indexing
Several indexing techniques, including signature-based index-

ing, take advantage of hash functions. MHash is a hash func-
tion developed specifically for indexing and organizing broadcast
contents [30]. It accepts two parameters: the item’s key, k, and
its sequential identifier, l. The sequential identifier allows an item
to be repeated in a broadcast. The hash function is used by the
server to determine the location of a specific data item within the
broadcast. Hash collisions are handled by sorting the colliding
items by their access probability. The item that is most likely to
be accessed is placed in the broadcast frame indicated by the hash
function. The other colliding items are placed in open frames in
order of decreasing access probability.

To access data from a broadcast, the client must know the hash
function, the length of the broadcast cycle, and the maximum
number of times a broadcast item can be repeated. Using this

information, the client can calculate the possible locations of de-
sired data items. Simulation results show that MHash outper-
forms distributed tree indexing in terms of energy consumption,
tune-in time, and access time.

4. Access Conflicts

Wireless radios on many devices are only able to read only a
single channel at a time. This fact leads to some difficulty when
accessing data items from a parallel broadcast. Namely, it leads
to access conflicts.

Two data items are said to be in conflict if a device cannot read
both of them during the same pass through a broadcast [12]. As
shown in Fig. 2 (a), conflicts can arise when multiple requested
data items are broadcast simultaneously on different channels. A
device must choose one channel to read, fetching the data item on
that channel and leaving the other conflicting items unread. These
unread, requested items can still be acquired by reading repeated
transmissions of the same broadcast.

Conflicts can also be caused by channel switches. Channel
switches are not instantaneous; that is, a non-zero amount of time
is required to switch between channels. At the end of a frame, it is
not possible to switch channels quickly enough to be tuned in to
a different channel before the next frame has begun. As shown in
Fig. 2 (b), a portion of the next data item may have been transmit-
ted while a device’s radio is in the process of switching. The lost
portion of the data item renders the remaining portion useless.
Thus, it is impossible to read two consecutively transmitted data
items that are in different channels. In other words, any two con-
secutively transmitted data items are in conflict, unless they are in
the same channel. As is the case with simultaneously broadcast
data items, adjacent data items on different channels can be read
during subsequent transmissions of the same broadcast.

Fig. 2 Requested data items in conflict.

c© 2015 Information Processing Society of Japan 386



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

5. Data Retrieval

5.1 Single-channel Broadcast
Retrieving data from a single-channel broadcast is a straight-

forward process. Based on data item locations specified by an in-
dex, devices tune in to a broadcast when requested items are avail-
able on the air. When unrequested items are being broadcast, de-
vices are free to switch their radios into an “idle” or “sleep” mode
to conserve energy. This process of fetching data items from a
single-channel broadcast is simple, but single channel broadcasts
have several drawbacks. Namely, a large number of data items
invariable results in a long broadcast. Longer broadcasts increase
response time and may require more energy, as wireless radios
may remain in an active state for longer periods of time.

5.2 Multi-channel Broadcast
Like single-channel broadcasts, devices retrieve data items

from parallel broadcasts using an index to determine their loca-
tions within a broadcast and tuning in to retrieve them. How-
ever, parallel broadcasts may require a device to tune its radio
to several different wireless channels to obtain data items. To
ensure all requested items are retrieved, a device must be able
to compute schedules that dictate when to switch between wire-
less channels and when to read requested items [12]. Addition-
ally, these schedules must be able to resolve conflicts between
requested data items.

Several algorithms exist that can compute channel switching
schedules for retrieving data from parallel broadcasts. Based on
the set of requested data items, these algorithms generate a set of
access paths that indicate when a device should tune in to differ-
ent channels and read data items. In the remainder of this paper,
we present one simple and several more sophisticated algorithms
for generation of access schedules.
5.2.1 Row Scan

One naı̈ve algorithm that computes access paths through paral-
lel broadcast channels is known as row scan [15]. Row scan pro-
duces simple schedules that iterate through available broadcast
channels. It only considers which channels contain requested data
items, creating an access path through each channel that contains
a requested item (see Fig. 3). As the device iterates through each
channel, according to the schedule, it is free to read requested
items from the current channel when they are available.

Row scan is simple to implement, as its access paths simply
iterate through the broadcast channels. It can be written as a for
loop that switches channels after each broadcast pass. Because
row scan is such a simple algorithm, it requires few CPU opera-
tions to generate a set of access paths. Fewer CPU operations im-
plies that less energy is required to generate the schedule. From
the CPU’s perspective, row scan is an efficient method for gener-

Fig. 3 An example of access paths produced by row scan.

ating access paths.
However, from the wireless radio’s perspective, row scan is an

inefficient approach. Its access paths naı̈vely pass through every
frame of any channel that contains a requested item. As a result, a
device wastes time tuned in to channels populated with many un-
requested data items. If the number of requested items is sparse
enough, it is possible that a device might even tune in to a chan-
nel that contains only one item of interest. The time wasted on
unrequested data items translates into longer response times for
the user and higher energy consumption.
5.2.2 Maximum Cut

Every additional broadcast pass increases response time and
energy consumption for client devices. The maximum cut [25] of
a broadcast refers to the minimum number of broadcast passes
required to read all requested data items. A cut is defined as the
number of requested data items in conflict for a given broadcast
frame (column). That is, the cut for a frame j is the number of
channels containing requested items in frames j and j + 1. This
accounts for conflicts caused by simultaneous broadcast, as well
as those caused by data items in frames that are adjacent in time,
but located on different channels. In the example of Fig. 4, the
largest cut value among all columns is two.

To elaborate, the cut of a frame counts the number of access
paths required to fetch every requested data item in both the cur-
rent frame and the next frame. Each channel containing a re-
quested item in frame j must have its own path. Since switches
are not instantaneous, any channel with a requested item in frame
j + 1 that is not covered by the paths for frame j must also have
its own path. Thus, due to conflicts, every channel that contains
a requested item in frame j or j + 1 must have a dedicated access
path.

The frame with the maximum cut value determines the mini-
mum number of access paths required. In other words, the max-
imum cut provides a numerical minimum number of broadcast
passes required to retrieve all data items. If fewer access paths
are used, then some requested data items will remain unread. So-
phisticated algorithms leverage a broadcast’s maximum cut when
computing access paths to improve response time and energy ef-
ficiency.
5.2.3 Parallel Object Scan

Leveraging a broadcast’s maximum cut, the parallel object

scan (POS) [25] technique determines the minimum number of
access paths required fetch requested data items from a broad-
cast. POS iterates though the frames of a broadcast, simultane-
ously constructing access paths. Though the paths are constructed
simultaneously, they are not used simultaneously. The mobile de-
vice will use each access path one at a time to fetch data items.

Fig. 4 A broadcast with maximum cut of two.

c© 2015 Information Processing Society of Japan 387



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

POS follows a set of rules that attempt to reduce the number
of required channel switches. Before iterating through a broad-
cast’s frames, POS initializes its access paths. Each access path
is set up such that the data items in the earliest frames are read
first. Then, the algorithm begins iterating through the frames of
the broadcast, following several rules. For each access path, at
frame j:, one of the following actions will be taken:
Continue If the data item on a path’s current channel in frame

j + 1 is a requested item, that path should continue reading
the same channel. This way, the requested item in frame j+1
will be read without performing any switches.

Switch If there is a requested data item on channel c in frame
j+2, and no path is currently tuned into channel c, some path
will need to switch to channel c. The path whose current
channel will not encounter a requested item for the longest
time should be switched. The idea is that this path will not be
reading any items anyway, so it is free to switch to another
channel.

Default If a path has not yet been covered by the Continue
or Switch rules, it should continue reading from its current
channel.

These rules are applied in the order listed above. Meaning, if
an access path meets the criteria for the Continue rule, it will
only behave according to that rule. If an access path does not
meet the criteria for Continue, then it will be evaluated accord-
ing to the criteria for Switch. An access path will only perform
the Default behavior if it has not already taken the Continue or
Switch action.

The Continue and Default rules attempt to reduce the num-
ber of channel switches required. Continue does this by retriev-
ing upcoming requested data items using paths already tuned into
corresponding channels, and Default adds no additional switches
when paths are not immediately needed. Switch performs chan-
nel switches when necessary to cover requested data items in
channels into which no access paths are currently tuned. Fig-
ure 5 depicts an example where POS requires fewer paths than
row scan to access all requested data items.
5.2.4 Serial Empty Scan

While POS approaches access path construction by consider-
ing upcoming requested items, serial empty scan (SES) [25] in-
stead considers groups of unrequested data items. SES attempts
to generate efficient access paths by logically rearranging broad-
casts, so that groups of unrequested data items, known as “empty
blocks,” can be eliminated from consideration. Like POS, SES
leverages a broadcast’s maximum cut to minimize the number of
access paths required.

SES begins by creating a logical representation of the broad-
cast. This includes locations of all requested and unrequested

Fig. 5 An example of access paths generated by POS.

items. Channels containing zero requested items are immedi-
ately eliminated from the logical broadcast. That is, the rows
representing those channels are removed from the logical repre-
sentation of the broadcast. Next, the algorithm sets a pointer to
the first frame (column) and identifies the channel that contains
the longest empty block that starts at the pointer. From here, the
pointer is moved to the end of the longest empty block, and the
channel with the longest empty block overlapping the pointer’s
new position is located. This overlapping block is tagged, so that
logical access paths can eventually be transformed into access
paths for the original broadcast. Data items are swapped between
the two overlapping areas, collecting requested data items in one
of the channels and forming a larger empty block in the other.
The pointer is moved further down the broadcast, and the next
overlapping empty block is located. The process of locating and
swapping empty blocks repeats until the pointer reaches the end
of the broadcast. At this point, one logical channel will contain
zero requested data items. This empty row can be eliminated from
the broadcast. This process repeats until the number of remaining
channels is equal to the maximum cut of the original broadcast.
Each logical channel corresponds to a single logical access path.
Based on the tags added to overlapping blocks, the set of logical
access paths is converted into a set of access paths for the orig-
inal, physical broadcast. In the example shown in Fig. 6, SES
produces the same number of paths and channel switches as POS
does in Fig. 5. SES attempts to reduce the number of channel
switches used in its generated set of access paths by searching for
the longest overlapping empty blocks.
5.2.5 Least Switch

If a client device has an advanced wireless radio that is capa-
ble of reading from more than one channel at a time, the data
access problem changes substantially. A multiple input/multiple
output (MIMO) wireless radio can tune in to several channels at
once [14]. A variable number of processes is used to read from
this type of radio. If the number of channels containing requested
items, K, is equal to the number of processes reading from the
air, M, then scheduling is not necessary. A device can simply
tune into those M channels and read every data item in one pass.
Otherwise, a device with a MIMO radio will still need to schedule
its channel accesses.

The least-switch algorithm [23] works in two phases. Phase
one identifies which of the M channels to read by choosing those

Fig. 6 An example of access paths generated by SES.

c© 2015 Information Processing Society of Japan 388



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

channels whose requested items can be read in the shortest time.
Once a process finishes reading all the requested items from a
channel, it switches to the channel that will take the longest to
read all requested data items. The channel that takes the longest
to read (starting from the beginning of the broadcast) determines
the shortest amount of time in which a broadcast can be read. By
switching from the channel with the shortest time to the channel
with the longest, the hope is to reduce the impact of the channel
that requires a longer time to fetch data items. The least-switch
algorithm also attempts to conserve energy by reducing the num-
ber of channel switches required of the client. Depending on the
number of reading processes and the number and locations of re-
quested items, multiple broadcast passes may still be required to
fetch all requested data items.
5.2.6 Best First

Least-switch works by considering the location of the last re-
quested item in a channel. The location of this item indicates
how long it would take to read all requested items from a channel
starting from the beginning of the broadcast. The downside to this
approach is that there may be large gaps between requested items
in a given channel. During this downtime, a reading process may
have the opportunity to switch to another channel, gather infor-
mation, and switch back before the next requested data item is
available.

The best-first approach attempts to address this issue [23]. The
algorithm begins by assigning the M access paths to the channels
that have the earliest requested items. Then, for each column,
the paths that will incur the least cost to fetch the data items will
switch channels to retrieve them. Costs are computed based on
an access path’s current channel and the locations of upcoming
requested items. Finally, paths will switch channels according to
the need for additional broadcast passes.

6. Simulation

Several studies have analyzed the performance of different data
retrieval algorithms to verify their behavior. Specifically, the per-
formance of POS, SES, and a tree-based method [12] were eval-
uated in a simulated broadcasting environment [25]. The tree-

based method utilizes a set of heuristics designed to reduce the
number of broadcast passes needed to read requested items from
a broadcast. It builds a tree of possible paths and prunes away
options by following three prioritized conditions:
1. Eliminate the maximum number of conflicts
2. Retrieve the maximum number of requested items per broad-

cast pass
3. Reduce the number of required channel switches

A database of 4290 NASDAQ securities was used as the data
source in the simulated environment. Broadcasts were con-
structed on parallel channels using N channels and M frames.
Each simulation run consisted of user requests for K random data
items from the broadcast. Performance metrics were calculated
based on the average of 1,000 simulation runs for each configu-
ration. Additionally, the simulated mobile device uses a wireless
radio that is capable of reading from a single channel. Channel
switching methods for MIMO antennae (discussed above in Sec-
tions 5.2.5 and 5.2.6) were not simulated.

The number of broadcast passes (access paths) used by each
algorithm is depicted in Fig. 7. Both POS and SES consistently
require the same number of access paths. These algorithms cal-
culate a broadcast’s maximum cut to ensure that the minimum
number of broadcast passes can be used. Though the tree-based
algorithm attempts to reduce the number of broadcast passes, it
does not always achieve the minimum.

Eventually, the curves for POS and SES saturate at the number
of channels in the broadcast (N). At this point, the maximum cut
is equal to the number of channels, so these algorithms default
to a row scan behavior. The tree-based algorithm, however, con-
tinues to use a greater number of access paths. The access paths
generated by this approach re-read at least one channel to retrieve
data items. The additional re-reads add to the overall response
time of the access paths, which is depicted in Fig. 8.

This effect of defaulting to row scan behavior is apparent in
the resulting number of channel switches, as seen in Fig. 9. As
the number of requested items increases, the number of channel
switches used by POS and SES begins to settle. At this point,
POS and SES construct an access path through every channel, so
exactly N − 1 switches are used. Again, the tree-based algorithm
attempts to reduce the number of channel switches, but it requires

Fig. 7 Number of broadcast passes for 8 and 16 channels.

Fig. 8 Request response times for 8 and 16 channels.

Fig. 9 Number of channel switches for 8 and 16 channels.

c© 2015 Information Processing Society of Japan 389



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

Fig. 10 Energy consumption for 8 and 16 channels.

a drastically greater number of switches as compared to POS or
SES.

Using the average energy consumed by different wireless
modes (active, doze) and channel switches, the energy consump-
tion of the algorithms was computed based on Eq. (3). The
TuneInTime represents the amount of time the device spends ac-
tively tuned in to a broadcast. Thus, the difference between the to-
tal response time (ResponseTime) and the TuneInTime yields the
amount of time the device spent in doze mode. Multiplying by
their respective average power consumption gives the amount of
energy consumed in active and doze mode. Additionally, accord-
ing to Ref. [12], each channel switch expends 10% of the active
mode energy.

Figure 10 shows the energy consumed as the number of re-
quested items increases. Because POS and SES utilize the same
number of broadcast passes, the difference between the energy
consumption of the two can be attributed to differences in chan-
nel switching. Additionally, based on the shape of the curves,
one conclude that channel switching is a major source of energy
consumption for the tree-based heuristic.

Energy = (ResponseT ime − TuneInT ime) × S leepMode

+ TuneInT ime × ActiveMode

+ Numbero f Switches × 10% × ActiveMode

(3)

According to these simulations, SES and POS perform very
similarly with respect to the number of broadcast passes and
channel switches required to fetch requested data items. Both are
guaranteed to use the minimum number of passes while reducing
the number of switches required. The tree-based method, on the
other hand, does not have these features. At times, paths gener-
ated with the tree-based method exceed the number of broadcast
passes required by row scan (at most N). Although the heuristics
used by the tree-based method are similar to those used by POS
and SES, there are significant energy and response time advan-
tages to using POS or SES instead.

Although the end result of POS and SES are very similar, the
algorithms are quite different. SES likely incurs greater compu-
tational overhead than POS, as it must maintain and manipulate a
logical copy of the broadcast in order to determine access paths.
Additional computation required by SES may lead to longer ex-
ecution time on the mobile device’s CPU, which increases re-
sponse time and CPU energy consumption. Further study is re-
quired to determine the impacts of this overhead on energy con-
sumption and overall response time.

7. Conclusion

Disseminating public data to mobile clients can be a challeng-
ing task. Not only do users want timely responses to their re-
quests, but they expect their devices to maintain long battery
lives. Broadcasting has been proposed as an efficient method to
make available to users the public data that they desire. With
broadcasting, clients do not need to expend energy to send re-
quests for data because data is always available on the air.

However, several issues should be considered when construct-
ing a broadcasting environment. The structure and contents of the
broadcast must be decided, so that clients can easily obtain data
from the broadcast channel or channels. Additionally, indices of
data items should be included in broadcasts so that clients know
when to tune in to fetch data. These indices should provide a
useful amount of information without significantly impacting re-
sponse time. Once clients know the locations of requested items,
they need a way to quickly retrieve them from the air. Sophisti-
cated access algorithms should be able to schedule access to data
items in a way that leverages a device’s available technology and
reduces response time and energy consumption.

Many applications that rely on disseminating data from a server
to clients can benefit from broadcasting. For example, mobile
robots that cooperate to accomplish a common goal might benefit
from broadcasting. Tasks, environmental information, or other
data could be transmitted to an area over broadcast channels.
When a robot needs to refresh information, it can fetch data off
the air instead of expending energy to submit requests.

Additionally, applications that require scaling to a large num-
ber of users can benefit from broadcasting. Natural disasters or
other events that lead to sudden spikes of user activity may cause
on-demand systems to slow down or fail. Broadcasting avoids
this issue, as all communication is downstream from the server to
the clients. As long as clients are within the range of the broad-
cast, they can retrieve data from the air.

References

[1] Acharya, S., Franklin, M. and Zdonik, S.: Dissemination-based
data delivery using broadcast disks, IEEE Personal Communications,
Vol.2, No.6, pp.50–60 (online), DOI: 10.1109/98.475988 (1995).

[2] Acharya, S., Alonso, R., Franklin, M. and Zdonik, S.: Broadcast
Disks: Data Management for Asymmetric Communication Environ-
ments, SIGMOD Rec., Vol.24, No.2, pp.199–210 (1995).

[3] Acharya, S., Franklin, M. and Zdonik, S.: Balancing Push and Pull for
Data Broadcast, SIGMOD Rec., Vol.26, No.2, pp.183–194 (1997).

[4] Aksoy, D. and Franklin, M.: R × W: A Scheduling Approach for
Large-scale On-demand Data Broadcast, IEEE/ACM Trans. Netw.,
Vol.7, No.6, pp.846–860 (online), DOI: 10.1109/90.811450 (1999).

[5] Albers, S., Müller, F. and Schmelzer, S.: Speed Scaling on Parallel
Processors, Algorithmica, Vol.68, No.2, pp.404–425 (2014).

[6] Blem, E., Menon, J. and Sankaralingam, K.: Power struggles: Re-
visiting the RISC vs. CISC debate on contemporary ARM and x86
architectures, 2013 IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA2013), pp.1–12 (2013).

[7] Chow, C.-Y., Leong, H. and Chan, A.: Cache signatures for peer-to-
peer cooperative caching in mobile environments, 18th International
Conference on Advanced Information Networking and Applications
(AINA 2004), Vol.1, pp.96–101 (2004).

[8] Dai, C., Chow, C.-Y., Leong, H.V. and Chan, A.: An analytical study
of cooperative data dissemination in push-based mobile environments,
2013 8th International ICST Conference on Communications and Net-
working in China (CHINACOM), pp.569–574 (2013).

[9] Guo, Y., Das, S.K. and Pinotti, C.M.: A New Hybrid Broad-
cast Scheduling Algorithm for Asymmetric Communication Systems:

c© 2015 Information Processing Society of Japan 390



Journal of Information Processing Vol.23 No.4 382–391 (July 2015)

Push and Pull Data Based on Optimal Cut-off Point, Proc. 4th ACM In-
ternational Workshop on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems (MSWIM ’01), pp.123–130, ACM (online),
DOI: 10.1145/381591.381630 (2001).

[10] Harb, A.: Energy harvesting: State-of-the-art, Renewable Energy,
Vol.36, No.10, pp.2641–2654 (2011).

[11] Hurson, A.R., Jiao, Y. and Shirazi, B.: Broadcasting a means to dis-
seminate public data in a wireless environment—Issues and solutions,
Advances in Computers, Vol.67, pp.1–84 (2006).

[12] Hurson, A.R., Muñoz-Avila, A.M., Orchowski, N., Shirazi, B. and
Jiao, Y.: Power-aware data retrieval protocols for indexed broad-
cast parallel channels, Pervasive and Mobile Computing, Vol.2, No.1,
pp.85–107 (2006).

[13] Imielinski, T., Viswanathan, S. and Badrinath, B.R.: Data on air: Or-
ganization and access, IEEE Trans. Knowledge and Data Engineering,
Vol.9, No.3, pp.353–372 (1997).

[14] Jensen, M. and Wallace, J.: A review of antennas and propagation for
MIMO wireless communications, IEEE Trans. Antennas and Propa-
gation, Vol.52, No.11, pp.2810–2824 (2004).

[15] Juran, J., Hurson, A.R., Vijaykrishnan, N. and Kim, S.: Data organi-
zation and retrieval on parallel air channels: Performance and energy
issues, Wirel. Netw., Vol.10, No.2, pp.183–195 (2004).

[16] Lee, D.L., Hu, Q. and Lee, W.-C.: Power conserving and access ef-
ficient indexes for wireless computing, Information Organization and
Databases, pp.249–263, Springer (2000).

[17] Lee, W.-C. and Lee, D.L.: Using signature techniques for information
filtering in wireless and mobile environments, Distributed and Paral-
lel Databases, Vol.4, No.3, pp.205–227 (1996).

[18] Liaskos, C., Petridou, S., Papadimitriou, G.I., Nicopolitidis, P. and
Pomportsis, A.S.: On the Analytical Performance Optimization
of Wireless Data Broadcasting, IEEE Trans. Vehicular Technology,
Vol.59, No.2, pp.884–895 (online), DOI: 10.1109/TVT.2009.2035357
(2010).

[19] Min, R. and Chandrakasan, A.: MobiCom Poster: Top Five Myths
About the Energy Consumption of Wireless Communication, SIGMO-
BILE Mob. Comput. Commun. Rev., Vol.7, No.1, pp.65–67 (2003).

[20] Polastre, J., Szewczyk, R. and Culler, D.: Telos: Enabling ultra-low
power wireless research, 4th International Symposium on Information
Processing in Sensor Networks (IPSN 2005), pp.364–369 (2005).

[21] Polatoglou, M., Nicopolitidis, P. and Papadimitriou, G.I.: On low-
complexity adaptive wireless push-based data broadcasting, Interna-
tional Journal of Communication Systems, Vol.27, No.1, pp.194–200
(2014).

[22] Schulman, A., Navda, V., Ramjee, R., Spring, N., Deshpande, P.,
Grunewald, C., Jain, K. and Padmanabhan, V.N.: Bartendr: A Prac-
tical Approach to Energy-aware Cellular Data Scheduling, Proc. 16th
Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’10), pp.85–96, ACM (2010).

[23] Shi, Y., Gao, X., Zhong, J. and Wu, W.: Efficient Parallel Data Re-
trieval Protocols with MIMO Antennae for Data Broadcast in 4G
Wireless Communications, Database and Expert Systems Applica-
tions, Bringas, P., Hameurlain, A. and Quirchmayr, G. (Eds.), Lec-
ture Notes in Computer Science, Vol.6262, pp.80–95, Springer Berlin
Heidelberg (2010).

[24] Stathatos, K., Roussopoulos, N. and Baras, J.S.: Adaptive data broad-
cast in hybrid networks, Technical report, DTIC Document (1997).

[25] Sun, B., Hurson, A. and Hannan, J.: Energy-efficient scheduling al-
gorithms of object retrieval on indexed parallel broadcast channels,
International Conference on Parallel Processing (ICPP 2004), Vol.1,
pp.440–447 (2004).

[26] Tsukayama, H.: Twitter turns 7: Users send over 400 million tweets
per day, The Washington Post (2013).

[27] Waluyo, A., Srinivasan, B. and Taniar, D.: A taxonomy of broad-
cast indexing schemes for multi channel data dissemination in mo-
bile databases, 18th International Conference on Advanced Informa-
tion Networking and Applications (AINA 2004), Vol.1, pp.213–218
(online), DOI: 10.1109/AINA.2004.1283913 (2004).

[28] Wong, J.: Broadcast delivery, Proc. IEEE, Vol.76, No.12, pp.1566–
1577 (online), DOI: 10.1109/5.16350 (1988).

[29] Xu, J., Tang, X. and Lee, W.-C.: Time-critical on-demand data broad-
cast: Algorithms, analysis, and performance evaluation, IEEE Trans.
Parallel and Distributed Systems, Vol.17, No.1, pp.3–14 (online),
DOI: 10.1109/TPDS.2006.14 (2006).

[30] Yao, Y., Tang, X., Lim, E.-P. and Sun, A.: An energy-efficient and
access latency optimized indexing scheme for wireless data broad-
cast, IEEE Trans. Knowledge and Data Engineering, Vol.18, No.8,
pp.1111–1124 (online), DOI: 10.1109/TKDE.2006.118 (2006).

Michael Wisely received B.S. degrees in
Computer Science and Computer Engi-
neering from the Missouri University of
Science and Technology in 2012. He is
currently a Ph.D. candidate in Computer
Science at Missouri S&T, where he is a
GAANN Fellow and a Chancellor’s Fel-
low. His research interests include traffic

modeling and distributed computing. Michael is a member of
IEEE and ACM.

Sahra Sedigh Sarvestani received
B.S.E.E. degree from Sharif University of
Technology in 1995, and M.S.E.E. and
Ph.D. degrees from Purdue University, in
1998 and 2003, respectively. She subse-
quently joined the Missouri University of
Science and Technology, where she is cur-
rently an Associate Professor of Electrical

and Computer Engineering. Her research centers on development
and modeling of dependable networks and systems, with focus on
critical infrastructure. She is a Fellow of the National Academy of
Engineering’s Frontiers of Engineering Education Program and
held a Purdue Research Foundation Fellowship from 1996 to
2000. She is a member of HKN and ACM and a senior mem-
ber of IEEE.

Ali R. Hurson received B.S. degree in
Physics from the University of Tehran
in 1970, M.S. degree in Computer Sci-
ence from the University of Iowa in 1978,
and Ph.D. from the University of Central
Florida in 1980. He was a Professor
of Computer Science at the Pennsylvania
State University until 2008, when he

joined the Missouri University of Science and Technology. He
has published over 300 technical papers in areas including mul-
tidatabases, global information sharing and processing, computer
architecture and cache memory, and mobile and pervasive com-
puting. He serves as an ACM distinguished speaker, area editor
of the CSI Journal of Computer Science and Engineering, and
Co-Editor-in-Chief of Advances in Computers. He is a senior
member of IEEE.

c© 2015 Information Processing Society of Japan 391


