Vol.34 No.7

Transactions of Information Processing Society of Japan

Regular Paper

Computing Soft Constraints by Hierarchical Constraint
Logic Programming

KEN SATOH * and AKIRA AIBA

We have already formalized soft constraints based on interpretation ordering which is a general-
ization of circumscription. However, this formalization is written in a second-order formula and
therefore is not computable in general. To make it computable, we have to introduce some
restriction. In this paper, we propose a semantic restriction. By semantic restriction, we mean that
we fix the considered domain so that'interpretations of domain-dependent relations are fixed, and soft
and hard constraints contain only domain-dependent relations. If we accept this restriction, the soft
constraints can be expressed in a first-order formula. Moreover, there is already a proposed
mechanism suitable for computing such restricted soft constraints in the literature, that is, hierarchi-
cal constraint logic programming languages (HCLP languages). Firstly, we identify a solution to
constraint hierarchy defined by HCLP languages with the most preferable solution for semantically-
restricted soft constraints. Then, we provide an algorithm for calculating all the most preferable
solutions for soft constraints without any redundant calls a constraint solver. Then, we show
examples of computing soft constraints by using our HCLP language named CHAL (Contraintes

July 1993

Hierarchiques avec Logique).

1. Introduction

In the area of synthesis problems such as job
shop scheduling, circuit design and planning,
there are two kinds of constraints. One kind is
hard constraints in which every solution is
required to satisfy and the other is soft con-
straints which provide preferences over
solutions.#'? Most systems manipulating soft
constraints use evaluation functions to represent
these soft constraints. However, it is hard to
debug evaluation functions if obtained solutions
are unsatisfactory. One possible solution to this
problem is to manipulate soft constraints in a
logical manner.

We have proposed a logical foundation of soft
constraints in Ref. 10) by using a meta-language®
which expresses an interpretation ordering. The
idea of formalizing soft constraints is as follows.
Let hard constraints be represented in first-order
formulas. Then an interpretation which satisfies
all of these first-order formulas can be regarded
as a possible solution and soft constraints can be
regarded as an order over those interpretations
because soft constraints represent criteria over
possible solutions to choose the most preferable
ones. We use a meta-language which represents
a preference order directly. This meta-language

TInstitute for New Generation Computer Technology
*Currently, Fujitsu Laboratories Ltd.

1555

can be translated into a second-order formula to
provide a syntactical definition of the most
preferable solutions.

Although this framework is rigorous and
declarative, it is not computable in general
because it is defined by a second-order formula.
Therefore, we have to restrict a class of con-
straints so that these constraints are computable.

Since the above interpretation ordering is a
generalization of circumscription, one might
think that restrictions for computing circum-
scription can be helpful. However, previous
proposals of restricting circumscription are
domain-independent, that is, syntactical such as
separable axioms® for ordinary circumscription
or stratified axioms® for prioritized circumscrip-
tion. Although these techniques are applicable
in any domain, these restrictions are not so clear
at identifying useful applications.

In this paper, we propose another restriction
based on semantics. By semantic restriction, we
mean that we fix the considered domain so that
interpretations of domain-dependent relations
are fixed, and soft and hard constraints consist of
only domain-dependent relations. This restric-
tion is fairly reasonable because when we solve
any actual problem with soft constraints such as
design and planning, we usually know the
domain of the problem. If we accept this restric-
tion, the soft constraints can be expressed in a
first-order formula. Moreover, there is already a

1556 Transactions of Information Processing Society of Japan

proposed mechanism suitable for computing
such restricted soft constraints in the literature,
that is, hierarchical constraint logic program-
ming languages (HCLP languages).?

In the following section, we show a relation-
ship between semantics of soft constraints in Ref.
10) and constraint hierarchy defined by HCLP
language. By this relationship, we use HCLP to
compute the most preferable solutions specified
by semantically-restricted soft constraints.

Then, we show an algorithm to compute all
simplified constraint sets of the most preferable
solutions from constraint hierarchy without any
redundant calls of a constraint solver and show
examples of computing soft constraints by our
HCLP language CHAL. Proofs of Theorems
are found in Appendix B.

2. Constraint Hierarchy and Soft Con-
straints

In this section, we define HCLP and then,
show a relationship between constraint hierar-
chy defined by HCLP and the soft constraints
proposed in Ref. 10).

2.1 HCLP

We follow the definition of HCLP in Ref. 2)
but extend it by introducing a complex form of
soft constraints which allows disjunctions.
HCLP language is a language augmenting CLP
language with labeled constraints. An HCLP
program consists of rules of the form:

e —by, e, by
where 4, by, .-+, b, are predicates or constraints
or labeled constraints. A labeled constraint is of
the form:

label C
where C is a complex constraint in which only
domain-dependent functional symbols can be
allowed as functional symbols and label is a
label which expresses strength of the complex
constraint C.

A complex constraint is a disjunction of con-
Jjunctions of domain-dependent constraints of
the form:

((a, aiz, ooy Cin); (Ca, Coz2, **
(le, Cmz, *°°, Cmnm))
where 1<m and 0<n, and ¢ expresses a dis-
junction and ‘,” expresses a conjunction and ¢;; is
an atomic constraint whose constraint symbol is
domain-dependent.
The operational semantics for HCLP is simi-

. Can)Q el

July 1993

lar to CLP except manipulating constraint hier-
archy. In HCLP, we accumulate labeled con-
straints to form constraint hierarchy by each
label while executing CLP until CLP solves all
goals and gives a reduced required constraints.
Then, we solve constraint hierarchy with
required constraints.

An assignment of variables is a mapping from
each variable in constraints to an element of the
considered domain. We say an assignment @
satisfies a constraint if the substitution of the free
variables in the constraint makes the constraint
true. An assignment of variables is partially
ordered by the “better” comparator as follows.

Let ¢ and o be assignments and C§ (and C2)
be a set of constraints in the strongest level of the
hierarchy satisfied by ¢ (and), and CZ (and C2)
be a set of constraints in the second strongest
level of the hierarchy satisfied by 4 (and o), ---,
and C¢ (and C¢) be a set of constraints in the
k-th strongest level of the hierarchy satisfied by
@ (and ¢).

0 is better than ¢ w.r.t. the constraint hierar-
chy if there exists i (1<i<k) such that for
every j (1<j<i—1), ¢g(CH=g(Cj) and
g(C§ <g(Cy), where g expresses some values
(possibly in the form of set) and = expresses an
equivalence relation over the value of ¢ and <
expresses a strict partial order over the value of
g.

If g returns the set itself and = is an equiva-
lence on sets and < is a strict subset relation c,
then we say that @ is locally-predicate-better?
than ¢ w.r.t. the constraint hierarchy.

If g returns the number of elements in the set
and = is = and < is <, then we say that @ is
unsatisfied-count-better? than ¢ w.r.t. the con-
straint hierarchy.

See another definitions of ¢ and = and < in
Ref. 2).

Then, a solution w.r.t. the required constraints
and the constraint hierarchy is defined as an
assignment § which satisfies the required con-
straints and has no assignment ¢ such that ¢
satisfies the required constraints and ¢ is better
than 4.

2.2 Relationship with Most Preferable

Solutions

Now, we relate solutions w.r.t. required con-
straints and a constraint hierarchy with the most
preferable solutions for soft constraints with

Vol. 34 No. 7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1557

priority defined in Ref. 10). We treat free vari-
ables in constraints as individual constants and
regard an assignment for these variables as an
interpretation and the order defined by “better”
comparator as an order over these interpreta-
tions.

Here, we consider only two kind of orders;
the orders defined by locally-predicate-better
comparator and unsatisfied-count-better compar-
ator. But, we can easily modify the results below
for other comparators defined in Ref. 2).

2.2.1 Localiy-Predicate-Better Comparison

Let A be the axioms of the considered domain
D and C}(x), -+, Ch,(x) be constraints in the
strongest level of the hierarchy and CZ(x), -+, Ca,
(x) be constraints in the second strongest level
of the hierarchy, -, and CF(x), -, C m,(x) be
constraints in the k-th strongest level of the
hierarchy where x is a tuple of all free variables
in these constraints. We introduce a tuple of
new constants, X, by which we replace free
variables so that we treat free variables as indi-
vidual constants.

Let M’ and M be interpretations with the
domain D each of which satisfies A and differs
from the other interpretation in at most the
assignments of X. Since M’ and M differs in at
most the assignments of individual constants,
there is one-to-one correspondence between an
interpretation and the above assignment of free
variables. Now, we define an order over inter-
pretations by the above constraint hierarchy in
meta-language defined in Ref. 10) for locally-
predicate-better comparator.

We write the relation expressing that M’ is
more preferable than M as M’'<F°M* and
define the relation as follows:

MI< P M LM< M) A= (M < M)
where M’<,M is an abbreviation of (M’'<j
M) A (M’ <3M) A A (M'<5M) and M'<}
M is defined as follows: ’
(AZIAT((MEC/(X))=(M'E,C/(X))))
DA (M E,CHX))D(M'EF,Ci(X))))

*@ is an assignment function for free variables used for
satisfaction relation [4.
**ereafter, we use A, D, = and = as meta-logical
connectives for “conjunction,” “implication,” “equiva-
lence” and “negation.”

<

This relation intuitively means that interpreta-
tions which satisfy G!(X), ---, C ,(X) as much
as possible is preferable and if there are interpre-
tations which satisfy the same constraints in the
first place, then interpretations which satisfy C?
(X), +--, C £,(X) as much as possible are prefer-
able and, --- if there are interpretations which
satisfy the same constraints up to the (k—1)-th
place, then interpretations which satisfy C*(X),
-+, C £ (X) as much as possible are preferable.

Let A be the axioms of the considered domain.
Then, the most preferable solutions w.r.t.
required constraints and the order <¥° is a
model M which satisfies 4 and the required
constraints and there is no model M’ such that
M’ satisfies 4 and the required constraints and
M’ <¥°M. From the equivalence between an
order defined by locally-predicate-better compar-
ator and the order <¥°, the most preferable
solutions w.r.t. required constraints and the
order < ¥* are equivalent to the solutions w.r.t.
required constraints and constraint hierarchy for
a locally-predicate-better comparator.

We can give a syntactic definition of the most
preferable solutions from the result in Ref. 10).
Let 4 be the axioms of the considered domain
and RC (X) be a conjunction of required con-
straints where X be a tuple of the newly
introduced constants and x be a tuple of vari-
ables.

ANRC (X) A
—3x(RC (x) A (x<X) A—(X<x))
(Ple)
where x<X is an abbreviation of (x<'X) A+
A (x<*X) and x<'X is an abbreviation of the
following formula:

</\ Z\';(Cf(X)scz(x))):

(At ocio).

Adapted from the result in Ref. 10), we can
show the following theorem.
Theorem 1 M is a most preferable solution
w.r.t. RC(X) and the order <¥° if and only
if M is a model of the formula (Pips).
Example 1 Let A be axioms for addition and
multiplication of integers and RC (x,y)=(x
« y=8), Gl(x,y)=(x=4) and Ci(x,y)=
(y=4).
This means that x=4 and y=4 should be
satisfied as much as possible but there is a

1558 Transactions of Information Processing Society of Japan

priority of x=4 to y=4. In this case, since RC
(x,y) is x » y=8, x=4 can be satisfied but y
=4 will be ignored. We show that this result
corresponds with the result from the formula
(Pas) .
(Pus) becomes™:
AN(X » Y=8)A—TaTb
({a = b=8) A
(X=4)D(a=4))A((X=4)=(a
=4))D((Y=4)D(b=4))) A
—(((a=4)D(X=4)) A (((a=4)=(X
=4)) D((b=4) D (Y =4)))))
which is equivalent to:
AN(X » Y=8)AVaVb
—((a » b=8) A
(X=4)D(a=4) A ((X=4)=(a
=4))D((Y=4)D(b=4))) A
—(((a=4)=(X=4)) A ((b=4)
=(Y=4)))).
The above formula must always be true for every
assignment for @ and 5. Suppose we assign 4 to
a and 2 to b. Then, the above formula is
equivalent to:
AN(X = Y=8)A—((4 » 2=8) A
(X=4)D(4=4)) AM(((X=4)
={@=4)D{(Y=4)D2=4))A
—(((4=4)=(X=4)) A ((2=4)
=(Y=4))))
which is equivalent to:
AN(X » Y=8) A—(({X =4)
D(YF4))A—(X=4AY=4))
which is reduced to:
AN (X =4) A (Y =2)
which corresponds with the result from the
constraint hierarchy. []

Although the general definition of the most
preferable model is written in a second-order
formula, the above formula is a first-order for-
mula, that is, computable. It is because each of
the above constraints is a logical combination of
domain-dependent constraints with a fixed inter-
pretation and therefore, only parameters in the
above formula are individual constants in con-
straints. ‘

From the point of view of soft constraints, we
can regard this restriction as a semantic restric-
tion because we fix the considered domain and
use only dorﬁain-dependent constraints. This

*We replace free variables (x, y) in constraints by new
individual constants (X, Y).

July 1993

restriction is fairly reasonable because when we
solve actual problems with soft constraints such
as design and planning, we usually know the
domain of the problem.

Now, we show a relationship between the
most preferable models and maximal consistent
sets w.r.t. required constraints and constraint
hierarchy for a locally-predicate-better compar-
ator. This is the key relation to calculate the
most preferable model in HCLP languages.

Firstly, we define maximal consistent ‘set of

constraints.
Definition 1 Let A be the axioms of the
considered domain and RC (X) be a conjunc-
tion of required constraints and CH (X) be a
constraint hierarchy with k levels. A set of
constraints MC (X) is maximal consistent w.r.1.
A and RC(X) and CH(X) Jor locally-
predicate-better comparator if MC (X) satisfies
the following conditions.

1 MC(X) is consistent with A.

2. MC (X) is logically equivalent to RC (X)
ANCH'(X) A+ A\ CH*(X) where CH'(X)
is a conjunction of some constraints in the
i-th level of CH (X).

3. There is no consistent set of constraints
MC’(X) with A which is logically equiva-
lent to RC (X) ACH'(X) A+ A CH*(X)
where CH'*(X) is a conjunction of some
constraints in' the i-th level of CH (X)
and satisfies the following condition:

there exists i (1<i<k) such that
Jor every j (1<j<i—1), CH?(X)
=CH"”(X) and

CH (X)C CH*(X)
Then, a relation between maximal consistent sets
and the most preferable models is as follows.
Theorem 2 Let A be the axioms of the con-
sidered domain and RC (X) be a conjunction
of required comstraints and CH (X) be a con-
straint hierarchy. Let MC(X), MCy(X), -,
MC,(X) be all maximally consistent sets
(which are logically different from each other)
w.r.t. A and RC(X) and CH(X) for locally-
predicate-better comparator.

Then, AN(MC(X)V MCy(X)V-V MC,
(X)) is logically equivalent to the formula
(Pws). In other words, models of AN (MC,
X)VMGCG(X) V- VMC,(X)) are exactly all
the most preferable models.

Example 2 Consider the constraint hierarchy

Vol. 34 No. 7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1559

of Example 1. Then, the maximal consistent
set for the constraint hierarchy is only X =4/
Y =2 which corresponds with the result from
the formula (Pys). [

If we have a satisfaction-complete constraint
solver which can determine whether a set of
constraints is consistent or not, then we neither
need to write the first-order axioms of the
domain nor need to use first-order inference
rules to infer the most preferable models. All we
have to do is to write constraints directly in
HCLP and use the satisfaction-complete solver
to compute all maximal consistent sets by gener-
ating every consistent subset of the constraint
hierarchy and checking if it is maximal.

2.2.2 Unsatisfied-Count-Better Comparison

In this subsection, we show that we can extend
the above results to unsatisfied-count-better
comparators. Actually, however, we can extend
our results to other comparators defined in Ref.
2) in a similar way to the below.

Let A be the axioms of the considered domain
D and C(x), -, C4,(x) be constraints in the
strongest level of the hierarchy and CZ(x), -,
C 2,(x) be constraints in the second strongest
level of the hierarchy, ---, and C#*(x),+, Cm,
(x) be constraints in the k-th strongest level of
the -hierarchy where % is a tuple of all free
variables in these constraints. Same as above,
we introduce a tuple of new constants by which
we replace free variables so that we treat free
variables as individual constants.

We introduce the following axioms in order to
count the number of unsatisfied constraints. For
every constraint C (X), we define C X)=(Ec=
0) and — C(X)=(E,=1) where E. corre-
sponds with the trivial error function® for the
constraint C (X). We also assume axioms for
integers. Let E be a tuple of the above Ecs and
B (X, E) be the above axiom set.

Let M’ and M be interpretations with the
domain D each of which satisfies 4 and B (X,
E), and differs from the other interpretation in
at most the assignments of X and E. Let @p be
a set of all assignment function for variables and
$ be an assignment function which differs from
¢ in at most the assignment of x and ¢x, be an
assignment function which differs from ¢x in at
most the assignment of y*. Now, we define an
order over interpretations by the above con-
straint hierarchy in meta-language defined in

Ref. 10) for unsatisfied-count-better comparator.
We write the relation expressing that M’ is more
preferable than M as M’'<§®°M:

def
M <M =(M'<M)A=(M<M'),

where M’< M is an abbreviation of (M’'<'M)
AWM <EM) A A(M'<*M) and M'<'M is
defined as follows:
(ALY ¢xE OpV $xyE D (
(M'E 40y (x=ZIA ED)AM F 90 (¥
=ZMED))D(MF peyx=y)))) D
(V ¢xe @Dv ¢xy€ @D(
((M/ k: Pxy (x':‘zl”gl Eli))//\(M t: Pxy (y
=3B ED))DM'E mxéy)))
where E; is the trivial error function for the
constraint C/(X).

This relation intuitively means that interpreta-
tions which satisfy C(X), +++, C ,(X) as many
as possible is preferable** and if there are inter-
pretations which satisfy the same number of
constraints in the first place, then interpretations
which satisfy C2(X), -, C2,(X) as many as
possible are preferable and, --- if there are inter-
pretations which satisfy the same number of
constraints up to the (k —1)-th place, then inter-
pretations which satisfy C*(X), -, C = (X) as
many as possible are preferable.

Let A be the axioms of the considered domain
and B (X, E) be the axiom for the error function.
Then, the most preferable solutions w.r.L
required constraints -and the order <¥® i5 a
model M which satisfies 4 and B (X, E) and the
required constraints, and there is no model M’
such that M’ satisfies 4 and B(X,E) and the
required constraints and M’<§*°M. From the
equivalence between an order defined by
unsatisfied-count-better comparator and the
order <%, the most preferable solutions w.r.t.
required constraints and the order <% are
equivalent to the solutions w.r.t. required con-
straints and constraint hierarchy.

We can give a syntactic definition of the most
preferable solutions in a similar way to Section
22.1. Let A be the axioms of the considered
domain and B (X, E) be the axiom set for the
error function and RC (X) be a conjunction of
required constraints where X be a tuple of the
newly introduced constants and x and e be

*A precise definition can be found in Ref. 10).
*%*This means that the number of unsatisfied constraints
is minimum.

1560 Transactions of Information Processing Society of] apan

tuples of variables.
ANB(X,E) ARC (X) A
—3IxJe(B(x,e) ARC (x) A (Kx, &>
<KX ED) AKX Ed<<x, D))
(Pucb)
where <x, e><<X, E> is an abbreviation of

(Kx, > <KX, EY) A+ A (KX, e <*(X, ED)
and <x, e><XX,E) is an abbreviation of the
following formula:

m; 23 mi)

(Aot~ ZE0))o(Ser= Hv).

We can show a similar theorem to Theorem 1.
Theorem 3 M is a most preferable solution
w.r.t. RC(X) and the order < iff and only
Iif M is a model of the formula (Py).
Example 3 Let A be axioms for addition and
multiplication of integers and RC (x, y)=(x
*y=8), G'(x,y)=(x=4), Cix,p)=(y=
2) and Ci(x,y)=(x=2).

This means that x=4 and y=2 and x=2
should be satisfied as many as possible. In this
case, since RC (x, y) is x * y=8<{x=4, y=2>
is maximum in the number of consistent combi-
nations of constraints. We show: that this result
corresponds with the result from the formula
(Pucb) .

Firstly, we assume the following axioms for
the error function®.

(X=4)=(E/=0)) A ((X *4)

=(El=1)) A

(Y=2)=(E{=0)) A ((Y*2)

=(E=1))A

(X=2)=(E=0)) A ((X=*2)

= (Ei=1))
We denote the above set as B(X, Y, E}, E}, EH.

Then, (Pu.) becomes:

ANB(X, Y, El,E}, E) A (X » Y=8) A
—3dadbIeTeTe(B(x,y, e, e, e) Ala *
b=8) A

((erter+e3) < (Ef+ Ed+Ef)) A—((EL
+E+E)<(e+ete)))
which is equivalent to:

AN(X = Y=8) AY aV bV eV eV es—

(B(x,y,e,e, &) N(a » b=8) A
((a+e+e) < (El+Ef+E)))

The above formula must always be true for
every assignment for ¢ and b. Suppose we
assign 4 t0 @, 210 5,010 e, 0t0 e and 1 to e;.
‘Then, the above formula is equivalent to:

*We replace free variables (x, ») in constraints by new
individual constants (X, V).

July 1993

ANB(X, Y, E}, E}, E) A (X » Y=8) A
—(B(4,2,0,0,) A (4 » 2=8) A
((0+0+1) < (B} +EL+E})))
which is equivalent to:
ANB(X, Y, El, E}, EDN(X » Y=8) A
((EM+E+EH <),

This means that the number of unsatisfied
constraints must be 0 or 1. However, from B (X,
Y, El, E}, E}), the former case is impossible.
Therefore, B(X, Y, E}, E}, E}) becomes:

((X$4)/\(Y=2)/\(X=2))v((X=4)
/\(Y#2)/\(X=2))\/((X=4)/\(Ij’:2)/\
(X=*2))
which is equivalent to X =4A Y=2 from the
required constraints. This corresponds with the
result from the constraint hierarchy with
unsatisfied-count-better comparator. []

For unsatisfied-count-better comparator, we

can also define a similar notion of maximal
consistent set and show a similar correspondence
to Section 2.2.1.
Definition 2 Ler A be the axioms of the
considered domain and B (X, E) be an axiom
set for the error function and RC (X) be a
conjunction of required constraints and CH
(X) be a constraint hierarchy with k levels. A
set of constraints MC (X) is maximal consis-
tent wrt A and B(X,E) and RC(X) and
CH (X) for unsatisfied-count-better comparator
if MC(X) satisfies the following conditions.

1. MC (X) is consistent with A and B (X,E).

2. MC(X) is logically equivalent to RC (X)
ANCH' (X) A+ ACH*(X) where CH'(X)
is a conjunction of some constraints in the
i-th level to CH (X).

3. There is no conmsistent set of constraints
MC'(X) with A and B (X, E) which is lo
gically equivalent to RC (X) A C T(X)A
“*ANCH*(X) where CH''(X) is a con-
Junction of some constraints in the i-th
level of CH (X) and satisfies the JSollowing
condition:

there exists i (1<i<k) such that
Jor every j (1<j<i—1),
|CH’(X)|=|CH"(X)| and
|CH(X)|<|CH" (X)]

where |CH?(X)| is the number of con-

straints in CH’(X).
Theorem 4. Let A be the axioms of the con-
sidered domain and B (X, E) be an axiom set
Jor the error function and RC (X) be a con-

Vol. 34 No.7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1561

junction of required constraints and CH (X)
be a constraint hierarchy. Let MC,(X), MC,
(X), -+, MC,(X) be all maximal consistent
sets (which are logically different from each
other) w.rt. A and B(X,E) and RC(X) and
CH (X) for unsatisfied-count-better compar-
ator. Then, ANB(X,E) A (MC (X)VMC,
(X) V- VMC, (X)) is logically equivalent to
the formula (Pucy,). In other words, models of
AABX E)AN(MC(X)VMC,(X) V-V MC,
(X)) are exactly all the most preferable
models.

Example 4 Consider the constraint hierarchy
of Example 3. Then, the maximal consistent
set w.r.t - the consiraint hierarchy for
unsatisfied-count-better comparator is only X =
AN Y =2 which corresponds with the result
from the formula (Pucs). []

Same as Section 2.2.1, we can use a
satisfaction-complete constraint solver to com-
pute all maximal consistent sets by generating
every consistent subset of the constraint hierar-
chy ‘and checking if it is maximal in terms of
unsatisfied-count-better comparator.

3. Algorithm to Solve Constraint Hierar-
chy

We show an algorithm for solving constraint
hierarchy in Appendix A. Inputs of the algo-
rithm are a constraint hierarchy and a set of
reduced required constraints and its output is all
maximal consistent sets of constraints simplified
by the constraint solver. Features of this algor-
ithm are as follows.

1. There is no redundant calls of constraint
solver for the same combination of con-
straints since it calculates reduced con-
straints in bottom-up manner.

2. If an inconsistent combination of con-
straints is found by calling constraint
solver, it is registered as a nogood and
used for further contradiction detecting
and any extension of the combination will
not be processed to avoid vein combina-
tions.

3. Inconsistency is detected without a call of
constraint solver if a processed combina-
tion subsumes a registered nogood.

In this algorithm, a quadruple <Cs, UC, RC,
Rest) plays a center role as follows.

1. Cs: A set of constraints which have been

combined already; This set is used to
check maximality of constraints. If a
constraint is disjunctive, the disjunctive
constraint itself is stored in this set.

2. UC: A set of constraints which have been
used already; This set is used to check
whether it is subsumed by any nogood. If
this set is found to be inconsistent, the set
is registered as a nogood. Note that UC is
different from Cs in manipulation of dis-
junctive constraints. If a constraint is
disjunctive, a disjunct actually used in the
disjunctive constraint is stored in this set.

3. RC: Reduced constraint set from UC by
a constraint solver; This set is used for
output. Although this set can be used for
nogood check by using the constraint
solver, a computational cost is more expen-
sive than the cost to use UC. Therefore,
we do not use RC but UC for nogood
check.

4. Rest: A set of constraints which has not
been used yet; This set is necessary to
avoid redundant check for consistency.
Moreover, if a combined combination is
found to be inconsistent, we no longer add
constraints in Rest to the inconsistent
combination so that a vein combination
can be avoided.

The execution example of the bottom-up al-
gorithm is shown in Fig. 1. In Fig. 1, we only
consider the one level of hierarchy in which
there are five constraints P, @, R, S and T and
we assume that combinations <P, Q> and <Q,
R> are contradictory. The execution proceeds
from the bottom to the top and from the left to
the right. We begin with the bottom circle where
we consider only hard constraints. Then, we
obtain five sets of constraints (the second line
from the bottom) by adding each constraints
and checking each consistency. The lines
between circles express dependency of combina-
tion of constraints which corresponds with a
constraint added from Rest. Then, we proceed
to the third line by adding more constraints. In
the third line, the crossed circles express incon-
sistent combinations. If we find inconsistent
combination, we no longer add constraints in
Rest to the inconsistent combination and we
register the combination (stored as UC) so that
a vein consistency check can be avoided. In this

1562 Transactions of Information Processing Society of Japan July 1993
PQ,R,S,T
PQ,R,S PQ,RT PQ,5T @R 5D Q,R, ST

Fig. 1 Bottom-up algorithm.

example, under-lined sets of constraints are not
checked. After having all consistent sets, we
check if each of them is maximal by comparing
each Cs. If we use locally-predicate-better
comparator, <P, R, S, T> and <Q, S, T> are
solutions and if we use unsatisfied-count-better
comparator, {P, R, §, T is the solution.

Borning et al.? have proposed the algorithm
for constraint hierarchy. Our algorithm is
different from theirs in the following points.

1. Their algorithm does not consider dis-
junctions of constraints in constraint hier-
archy whereas ours can handle them.

2. Their algorithm consider only locally-
predicate-better comparator whereas ours
can be applied to unsatisfied-count-better
comparator as well.

3. Their algorithm uses backtrack to get an
alternative solution and so, it may call the
constraint solver for the same combination
of constraints redundantly.

Although our algorithm has no redundant
calls of a constraint solver, it will call the con-
straint solver 2" —1 times in the worst case where
n is a number of soft constraints. So, we must
ensure that inconsistency occurs at a small com-
bination of constraints or we must prioritize
constraints almost linearly. If we linearize con-
straints completely, then our algorithm will call
constraint solver only # times.

Our algorithm has been implemented already
on PSI (Personal Sequential Inference) Machine
developed in ICOT. By using the algorithm, we
have. implemented an HCLP language called
CHAL (Contraintes Hierarchiques avec Logi-
que), an extension of CAL (Contraintes avec
Logique)™ which is'a CLP language developed
in ICOT. In CHAL, we can use the following

constraint solvers in CAL. One is an algebraic
constraint solver which manipulates multi-
variate polynomial equations based on Buchber-
ger algorithm® to calculate Grébner bases and
the other is a Boolean constraint solver which
extends Buchberger algorithm to handle
propositional Boolean equations®.

4. Examples

Now, we show two CHAL examples of calcu-
lating the most preferable solutions. One is a
meeting scheduling problem solved by Boolean
CHAL and the other is a multi-axis gearbox
design problem solved by algebraic CHAL.

4.1 Meeting Scheduling Problem

In this subsection, we show an example of
solving meeting scheduling problem in Ref. 10)
by using Boolean CHAL.

In a Boolean CHAL program, we express
constraints as Boolean equations and in Boolean
equations, we can use the only constraint sym-
bol, = and the function symbols such as /\
(conjunction), \/ (disjunction), -> (implica-
tion), (-> (equivalence), ~ (negation) and the
constants such as 1 as truth and 0 as falsity and
propositional variables. Note that /\, \/, -,
<~>, "are function symbols in this representa-
tion since we consider the domain of Boolean
value and we use the above symbols as Boolean
functions.

Firstly, we regard the following terms as
propositional variables. ¢(x) represents that the
meeting will be held on day x and p(x), v(x),
m(x) represent that the president, the vice
president and the manager attend the meeting on
day x.

Suppose that we consider a meeting schedule
for Monday, Tuesday and Wednesday, and the

Vol.34 No.7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1563

meetingl :-

bool:(c(mon)\/c(tue)\/c(wed))=1,

hard([mon,tue,wed]),soft([mon,tue,wed]),

bool:p{mon)=0,bool :m(tue)=0.

meeting2 :- meetingl,bool:v(wed)=0.

hard([]).
hard ([X]Y]):-

bool: (c(X)<->p(X))=1,bool: (v(X)->c(X))=1,bool: (m(X)~->c(X))=1,

hard(Y).
soft([]).
soft ([X]Y¥]):-

chal:soft(bool: (c(X)->v{(X))=1,0),chal:soft (bool: (c{X)->m(X))=1,1),

soft (Y).

Fig.2 CHAL program for meeting scheduling.

following hard constraints represented in

Boolean equations exist.

1. The meeting must be held:
(¢ (mon)\/c (tue)\Jc (wed) =1.

2. The president must attend the meeting:
(c(x)->p(x)) =1 for all x=mon, tue, wed.

3. Since p(x) expresses that the president
attends the meeting on day x, if it is true,
¢(x) (the meeting is held on day x) is also
true:
(p(x)->c(x)) =1 for all x=mon, tue, wed.

4. The same thing holds if the vice president or
the manager attends the meeting. We can
expand these constraints as follows:
(v(x)->c(x)) =1 for all x=mon, tue, wed,
(m(x)->c(x)) =1 for all x=mon, tue, wed,

5. The president cannot attend the meeting on
Monday and the manager cannot attend the
meeting on Tuesday:

p(mon) =0 and m (iue) =0

And we consider the following soft constraints.

1. The vice president should preferably
attend the meeting. This soft constraint
means that (¢(x)->v(x))=1 should be
satisfied as much as possible for all x=
mon, tue, wed.

2. The manager also should preferably
attend the meeting. This soft constraint
means that (¢(x)->m(x))=1 should be
satisfied as much as possible for all x=
mon, tue, wed

3. The schedule of the vice president is
prioritized to the schedule of the man-
ager. This priority means that (c(x)->
v(x)) =1 is stronger than (c¢(y)->m(y))
=1 for every x=mon, tue, wed and y=
mon, tue, wed. To do so, we attach the
stronger label to (¢ (x)->v(x)) =1 than to

(c(y)->m(y)) =1 for every x=mon, tue,
wed and y=mon, tue, wed.
In this case, the order over solutions is defined
by the locally-predicate-better comparator.

Then, a Boolean CHAL program which
builds constraint hierarchy of the above example
is shown in Fig. 2. In Fig. 2,

chal: soft(bool: (c(X)->v(X))=1,0)
and

chal: soft(bool: (c(X)->m(X))=1,1)
express soft constraints. The first argument is a
constraint and the second argument expresses the
strength of the constraint. In CHAL, we use a
natural number to express the strength. A soft
constraint with the number 0 is the strongest and
a constraint becomes weaker as the associated
number becomes bigger.

If we ask ?-meetingl, then Boolean CHAL
firstly calculates a set of reduced constraints
from required constraints and then computes all
simplified maximal consistent sets of constraints
by solving constraint hierarchy. In this case,
Boolean CHAL returns only one maximal con-
sistent set which includes ¢ (mon) =0, ¢ (tue) =
0, c(wed) =1 (Fig. 3). Since on Wednesday, all
of three can attend the meeting, Wednesday is
selected for the most preferable date for the
meeting.

The conclusion may be withdrawn by adding
another constraint. For example, suppose a new
constraint that the vice president cannot attend
the meeting on Wednesday is added. That is, the
following constraint is added:

v(wed) =0

This is done by asking ?-meeting2, and
Boolean CHAL returns only one maximal con-
sistent set which includes ¢ (mon) =0, ¢ (tue) =
1, c(wed)=0 (Fig.4). This means that Tues-

1564 Transactions of Information Processing Society of Japan

?- meetingl.

After considering soft constraints
solution

m(mon)
n(tue)
m(wed)
p{mon)
p(tue)
p(wed)
¢(mon)
c(tue)
c(wed)
v (mon)
v{tue)
v{wed)

LU { N [N N | NN (U | Y S| N (S (A |

= O O K OO KR OOR OO

solutionend

Fig.3 The solution to ?-meetingl.

?- meeting2.

After considering soft constraints
solution

m(mon)
m(tue)
m(wed)
p(mon)
p(tue)
p(wed)
c(mon)
c(tue)
c(wed)
v(mon)
v(tue)
v(wed)

Honoonouow oo owonouwowm
O = O O OO P OO OO

solutionend

Fig.4 The solution to ?-meeting2.

day is the most preferable meeting date in this
new situation because the schedule of the vice
president has the priority to the schedule of the
manager. This expresses nonmonotonic charac-
ter of soft constraints.

4.2 Gear Design

In this subsection, we show an example in
algebraic CHAL adapted from a design problem
for a multi-axis gearbox. A gearbox is used to
produce various speeds from the main spin.
Figure 5 shows an example of a three-axis gear-
box.

Gears on Axisl (g1, ¢, in Fig. 5) and Axis3
(g7, gs in Fig. 5) are fixed and gears on Axis2
(g3, g1, 05, g6 in Fig. 5) are slidable. Slidable
gears slide along the axis and mesh with fixed
gears. In Fig. 5, each pair of {g, g5, <g2, ga>»
{gs, g2, {ge> gs, can mesh. Since there are two
gear changes between Axisl and Axis2, and two
gear changes between Axis2 and Axis3, there are

July 1993

Azisl - & =—--4 §-

93 Ty

Acis? - ==l M=l W= | -
g7 g8 4,
Am‘33~L

Fig. 5 Multi-Axis gearbox.

totally four output speeds (=2 * 2) by combi-
nations of those gear changes.

Here, we consider the following design prob-
lem for a three-axis gearbox. We specify the sum
of the two intervals between axes and output
speed ratios each of which is produced by the
combinations of two meshing pairs. We assume
that there are standard radii of gears which take
discrete values. We calculate each radius of
gears so that standard gears are used as many as
possible.

For example, suppose that we give the follow-
ing specification for a four-speed gearbox shown
in Fig. 5. We denote a speed ratio by a combina-
tion of two meshing pairs <g;, g;> and {g, g,> as
ratio (Xg:, g7, gr, g>). Then, we specify ratios
as follows.

ratio X g1, g3, <gs, gr>) =1 (a)
ratio (<gz, g4>, <gs, g7>) =2 (b)
ratio (X g1, g0, <gs> go>) =4 (c)
ratio ({gz, 92>, <ge, g>) =8 (d)

And we specify the sum of intervals as 10 and
standard values of radius as 1,2, 3, 4.

Now, we modify this specification into a set of
constraints expressed in equations. Let 7; be the
radius of the gear g;. Since ratio ({g:, g;7, <G,
g>) =p can be translated into an equation 7; *
r=r;* 1 x p, (a),-, (d) are translated into
the following equations.

nx =1 % m* p (D
Py * 7’5:2 * Py * P (2)
nx =4 x rsx 1 (3)
Fox Fg==8 * ry*x IRy (4)

Note that one of the above four equations is
redundant.

From the condition of meshing, the sum of
radii between meshing pair must be equal to the
interval between axes.. We denote the interval
between Axis1 and Axis2 as x; and the interval

between Axis2 and Axis3 as x,. Then, the
following constraints exist.
n+r=x &)
rntrn=x (6)

Vol. 34 No.7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1565

gear :-
ratio(1,2,4,8),distance(10),

pos_val([rl,r2,r3,r4,r5,r6,r7,r8],[1,2,3,4]).

ratio(P1,P2,P3,P4) :-

alg:r1*r5=P1*r3*r7, alg:r2*r5=P2*r4*r7,
alg:r1*r6=P3*r3*r8, alg:r2*r6=P4*r4*rg.

distance(D) :-
alg:x1+x2=D,
alg:ri+r3=x1,alg:r2+rd=x1,
alg:rb+r7=x2,alg: r6+r8=x2.
pos_val({],_).

pos_val([RIRL],VL) :- pos_vall(R,VL,C),chal:seft(C,0),pos_val(RL,VL).

pos_vall(R, [X],alg:R=X).

pos_vali(R, [XIY], (alg:R=X;C)):- pos_vall(R,Y,C).

Fig. 6 CHAL program for gearbox design.

?- gear.

After considering soft constraints

solution
ri =3 .
r2 = 4

r3 =3 .
r4 = 2

6 =2

ré = 16/5 .
r7 =2 .
8 = 4/5 .
x1l =6 .
x2 = 4 .

Fig. 7 The solution to gear design problem.

I+ 1= Xy @)

Fot 1g= Xz (8)
From the specification of the sum of the inter-
vals,

X1+ X= 10 (9)

(1), -, (9) are hard constraints. To use
standard gears as many as possible, we regard
the possible standard values as soft constraints.
In other words, we make the following soft
constraints to be satisfied as many as possible for
every radius 7

(r=1)V (r,=2)V (r,=3) V (r;=4).
In this case, the order over solutions is defined
by unsatisfied-count-better comparator.

Now, we show how the above problem can be
solved by using algebraic CHAL. In algebraic
CHAL program, we can use the only constraint
symbol, = and the algebraic function symbols
such as -+, *, and variables and fractions.

The program in Fig. 6 builds constraint hier-
archy of the above problem.

If we ask ?-gear, then algebraic CHAL firstly

calculates a set of reduced constraints from hard
constraints and then computes all simplified
maximal consistent sets of constraints by solving
constraint hierarchy. The result after consider-
ing soft constraints is shown in Fig. 7. From the
result, we cannot make two radii # and # to be
standard. This is because hard constraints
prevent these gears from being standard gears.
Note that if constraints of possible standard
values for gear were hard constraints, then we
would not get any solution. In CHAL program,
thanks to soft constraints, we can get solutions
such that radii are standard values as many as
possible. In this example, we can make the radii
other than 7 and # to be standard gears.

5. Conclusion

We compare our work with some related

researches.

1. Borning et al.? were the first to propose
the HCLP scheme. However, in Ref. 2),
there is no logical formalization of the
most preferable solutions. In this paper,
we provide a logical formalization of the
most preferable solutions for not only
locally-predicate-better comparator but
also unsatisfied-count-better comparator.
In Ref. 2), they discuss a relation of HCLP
to nonmonotonic reasoning and claim that
HCLP can handle the multiple extension
problems of nonmonotonic logic. How-
ever, our result shows that a constraint
hierarchy defined by HCLP is no more
than a variant of prioritized circumscrip-
tion. This means that HCLP can handle
only multiple extension problems that can
be solved by prioritized circumscription.

2. Baker et al.V give a theorem prover of

1566 Transactions of Information Processing Society of Japan

prioritized circumscription. Since they use
the finite domain closure axioms, they
impose that their considered domain be
finite.

On the other hand, if we use algebraic
CHAL, our domain is a complex number.
So, semantic restriction does not always
impose that the considered domain be
finite.

Finally, we summarize the contributions of
this paper.

1. We show a logical semantics of constraint
hierarchy of HCLP by interpretation or-
dering in terms of not only locally-
predicate-better comparator, but also
unsatisfied-count-better comparator.

2. From this semantics, we point out that a
solution of constraint hierarchy can be
regarded as the most preferable solution
defined by semantically-restricted soft con-
straints. In the semantical restriction, the
considered domain is fixed and only a
logical combination of domain-dependent
constraints can be used.

3. We propose a bottom-up algorithm of
computing all maximal consistent con-
straint sets without any redundant calls of
the constraint solver.

Acknowledgments We would like to thank
Jun Arima from ICOT, Vladimir Lifschitz from
University of Texas at Austin and Yuji Ma-
tsumoto from Kyoto University for instructive
comments on this paper. Special thanks must go
to Hiroyuki Sawada from MEL for tutoring us
about a gear-box design.

References

1) Baker, A. B. and Ginsberg, M. L.: A Theorem
Prover for Prioritized Circumscription, Proc. of
IJCAI'89, pp. 463-467 (1989).

2) Borning, A., Maher, M., Martindale, A. and
Wilson, M. : Constraint Hierarchies and Logic
Programming, Proc. of TCLP89, pp. 149-164
(1989).

3) Buchberger, B.: Grobner Bases: An Algorith-
mic Method in Polynomial Ideal Theory, In
Bose, N. ed., Multidimentional Systems Theory,
pp. 184-232, D. Reidel, Dordecht (1985).

4) Descotte, Y. and Latombe, J.: Making Com-
promises among Antagonist Constraints in a
Planner, Artif. Intell., Vol .27, pp.183-217

July 1993

(1985).

5) Lifschitz, V.: Computing Circumscription,
Proc. of IJCAI8S, pp. 121-127 (1985).

6) Lifschitz, V.: On the Declarative Semantics of
Logic Programs with Negation, In Minker, J. ed.,
Foundations of Deductive Databases and Logic
Programming, pp. 177-192, Morgan Kaufmann
Publishers (1988).

7) Sakai, K. and Aiba, A.: CAL: A Theoretical
Background of Constraint Logic Programming
and Its Applications, J. Symbolic Computation,
Vol. 8, pp. 589-603 (1989).

8) Sakai, K. and Sato, Y.: Application of Ideal
Theory to Boolean Constraint Solving, Proc. of
PRICAIY0, pp. 490-495.

9) Satoh, K.: Formalizing Nonmonotonic Rea-
soning by Preference Order, Proc. of Info Japan
90, Part 1I, pp. 155-162 (1990).

10) Satoh, K.: Formalizing Soft Constraints by
Interpretation Ordering, Tran. Inf. Process. Soc.
Jpn., Vol. 31, pp. 772-782 (in Japanese) (1990),
A shortened English version can be found in
Proceedings of the Ninth European Conference
on Artificial Intelligence, pp. 585-590 (1990).

11) Smith, S.F., Fox, M.S. and Ow, P.S.: Con-
structing and Maintaining Detailed Production
Plans, Investigations into the Development of
Knowledge-Based Factory Scheduling Systems,
Al Magazine, Vol. 7, pp. 45-61 (Fall 1986).

Appendix A: An algorithm for solving con-
straint hierarchy

solve constraint hierarchy (CH, RRC)
% Solve constraint hierarchy CH with a set of
reduced required constraints RRC.
begin
PA:={<{p, RRC>}
% PA is a set of pairs of {Combined Con-
straints, Reduced Constraints).
for every level L in CH from the strongest to
the weakest do
begin
if L=+ ¢ then
begin
for every pair {Cs, RC> in P4 do
NewPA:=
maximal constraints(L, Cs, RC, PA)
PA:=NewPA
end
end
Take every RC of {Cs, RC> in PA to form a
set, SC.

Vol. 34 No. 7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1567

refurn SC
end (solve constraint hierarchy)
maximal constraints(L, Cs, RC, PA)
% Find all maximal subsets in L which is consis-
tent with RC.

begin
QL:={{Cs, ¢, RC, L>}, NGs:=¢.
do
QL, NGs, PA:=
maximal constraintsl (QL, NGs, PA4)
until QL= ¢
return PA

end (maximal constraints)
maximal constraintsl (QL, NGs, PA)
% Produce all extended consistent sets of con-
straints from QL.
% QL: a list of quadruple of the following sets
of constraints:
% <Combined Constraints, Used Constraints,
Reduced Constraints, Rest)
% NGs: a set of contradictory combinations of
constraints with RC.
begin
NewQL:=¢
for every element {Cs, UC, RC, Rest) in QL
do
begin
while (Rest=+¢) do
begin
Take one constraint C from Rest and
delete C from Rest.
% WNote that Rest is decreased by one
element for each while loop
% so that every combination of con-
straints is checked only once.
Add C to Cs to get NewCs
% We extend Cs by adding C.
if C is a disjunction then
for every disjunct D in C do
NewQL, NGs, PA:=
maximal constraints2(D, NewCs,
UC, RC, Rest, NewQL,
NGs, PA)
else
NewQL, NGs, PA:=
maximal constraints2(C, NewCs,
UC, RC, Rest, NewQL, NGs,
PA)
end
end
return NewQL and NGs and PA

end (maximal constraintsl)
maximalﬁconstraintsz(C, NewCs, UC, RC,
Rest, QL, NGs, PA)
% This is the main procedure of calculating
maximal consistent sets of constraints.
begin
Add C to UC to get NewUC.
if there exists NGENGs such that NG&
NewUC then
return QL and NGs and PA
% If we see that a subset of NewUC is
contradictory then
% we do not invoke solve and no longer
extend NewUC.
NewRC:=solve(C, RC)
% If C and RC is consistent then
% solve (C, RC) returns a new set of reduced
constraints
% otherwise it returns inconsistent informa-
tion.
if NewRC =inconsistent then
begin
Add NewUC to NGs.
return QL and NGs and PA
% If we see that NewRC is contradictory
then we register it as nogoods
% and use it for further contradiction detect-
ing and no longer extend NewUC.
end
if Rest==0 then
Add {NewCs, NewUC, NewRC, Rest)> to
QL
if there exists <{Cs’, RC’>&PA such that
NewCs < Cs’ then
return QL and NGs and PA
% If we use locally-predicate-better compar-
ator,
% NewCs < Cs’ is NewCsC Cs’.
% If we use unsatisfied-count-better compar-
ator,
% NewCs< Cs’ is |NewCs|<|Cs’|.
% If there exists a combined constraints in
PA
% which is strictly better than NewCs,
% then NewCs is not a maximal consistent
set.
Delete any <Cs’, RC’>& PA s.t. Cs’< NewCs.
% We delete every non-maximal consistent set
from PA.
Add <{NewCs, NewRC) to PA.
return L and NGs and P4

1568 Transactions of Information Processing Society of Japan

end (maximal constraints2)
Appendix B: Proofs of Theorems

Theorem 1 M is a most preferable solution
wr.l. RC(X) and the order <¥° if and only
if M is a model of the formula (Pys).
Proof: We can easily check that < ¥? is trans-
lated into (x<X) A—(X<x) in (P;,) by using
the translation method defined in Ref. 10).
Then, from Corollary 1 in Ref. 10), the set of all
the most preferable models w.r.t. RC (X) and
<#° is equivalent to the set of models of the
formula (P;,). [J
Theorem 2 Let A be the axioms of the con-
sidered domain and RC (X) be a conjunction
of required constraints and CH (X) be a con-
straint hierarchy. Let MC\(X), MCy(X), -,
MC,(X) be all maximal consistent sets w.r.t. A
and RC (X) and CH (X) for locally-predicate-
better comparator. Then, AN (MC,(X)V MG,
(X) V- VMC,(X)) is logically equivalent to
the formula (Pys). In other words, models of
AN (MCI XYV MCo(X) VeV MC,(X)) are
exactly all the most preferable models.
Proof: Let M be a model of AN (MC(X)V
MC(X)V--VMC,(X)). Then, M is a model
of 4 and a model of one of MC,(X) (1<m<
n). Let CH'(X) be a set of constraints satisfied
in M atalevel / (1</<k). Then, we can write
MCr(X) as RC(X)ANCH (X) A" A CH*(X).
Suppose that there is some model M’ of AA
RC (X) such that M'<¥°M is true. Then, at
some level 7,

/\\5”_11 (M F ¢Czi(x)))//\:ﬂ/\\z=1((M'P: ¢sz
(X)) (M E,CHX)))
is true, and for every j (1<j<i—1),
ANE((M F4,CHX))= (M E ,C/(X)))
is true.

Let CH’*(X) be a set of constraints satisfied
in M’ atalevel] (1</<k). The above means
that, at the level i, CH*(X) C CH’*(X) and for
every j (1<j<i—1), CH’(X)=CH"(X).

Let RC(X)ACH'"(X)A---ACH*(X) be
MC’(X). Then, since M’ is a model of AA
MC’(X), MC’(X) is consistent with 4. There-
fore, it contradicts the fact that MC,(X) is a
maximally consistent set with 4. Thus, M is a
most preferable model w.r.t. AA RC (X) and the
order < #*. Therefore, a model of AN (MC;(X)
VMGCG(X) V-V MC,(X)) is a model of (P,)

July 1993

from Theorem 1.

Let M be a model of (Py,). Then, M is a
most preferable model w.r.t A ARC (X) and the
order <#° from Theorem 1. Let CH!(X) be a
set of constraints satisfied in M at a level / (1<
[<k) and RC(X) ACH'(X)A-+ACH*(X)
be MC (X). Suppose MC (X) is not a maximal
consistent set. Then, there exists a maximal
consistent set of constraints RC (X) A CH*(X)
A+ ANCH*(X) where CH’*(X) is a conjunc-
tion of some constraints at a level / (1</<k)
such that it is consistent with 4 and satisfies the
following condition:

There exists i (1<i<k) such that
for every j (1<j<i—1), CH'(X)=
CH"’(X) and
CH (X)C CH*(X).
Let RC(X)A CH'(X)A-+A CH’* (X) be
MC’(X). Since MC’(X) is consistent with A,
there exists a model M’ of AAMC’(X). Then,
M’ is a model of AARC (X) and at the level i,
AEL((M E,CIHX))D(ME ,C/HX))) A
=AM E ,CHX)) D (M E4C/HX)))
is true, and for every j (1<j<i—1),

AE((M =,C/(X)) =(M'F ,C/ (X))

is true. Therefore, M’'<¥*M is true and it
contradicts the fact that M is a most preferable
model w.rt AARC(X) and the order < ¥°.
Thus, MC (X) is a maximal consistent set and
M is a model of AN (MC(X) VMG (X) V-V
MC,(X)). [
Theorem 3 M is a most preferable solution
w.rt. RC(X) and the order <3 if and only
if M is a model of the formula (P.,).
Proof: We can easily check that < %% is trans-
lated into:

(Kx, &> <<X, E>) A— (KX, E><<(x, e)))
in (Pys) by using the translation method
defined in Ref. 10). Then, from Corollary 1 in
Ref. 10), the set of all the most preferable models
w.r.t RC (X) and <}%* is equivalent to the set of
models of the formula (Pye). []
Theorem 4 Let A be the axioms of the con-
sidered domain and B (X,E) be an axiom set
Jor the error function and RC (X) be a con-
Junction of required constraints and CH (X)
be a constraint hierarchy. Let MC,(X), MG,
(X), -, MC,(X) be all maximal consistent
sets wrt. A and B(X,E) and RC(X) and
CH (X) for unsatisfied-count-better compar-

Vol. 34 No. 7 Computing Soft Constraints by Hierarchical Constraint Logic Programming 1569

ator. Then, ANB X, E)AN(MG(X) VMG,
(X) V- VMC, (X)) is logically equivalent to
the formula (Pye). In other words, models of
AABX,E)A(MC,(X)VMC(X) V-V MC,
(X)) are exactly all the most preferable

Ken Satoh was born in 1959.

Information science from the
University of Tokyo, Japan in
1981. In 1981, he joined Fujitsu
Laboratories Ltd. Since 1987, he
has been a researcher at the
Institute for New Generation Computer Tech-
nology (ICOT).

He received the B.S. degree in’

models.

Proof: In a similar way to the proof of Theo-

rem 2. [

(Received September 9, 1992)
(Accepted April 14, 1993)

Akira Aiba was born in
1956. He received the Dr. Eng.
degree from Keio University in
1986. In 1986, he joined NEC
Corporation. Since 1987, he has
been working for the Institute
for New Generation Computer
Technology (ICOT). He conducted research
and development of constraint logic program-
ming languages CAL and GDCC at ICOT in
the FGCS project. He is currently the deputy
manager of the second research department of
ICOT. His interests include constraint logic
programming and constraint satisfaction. He is a
member of the IPSJ.

