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Abstract: Outlier detection is one of the methods for improving the performance of machine learning models. Since
outliers often affect the performance of the learning models negatively, it is desired to detect and remove outliers be-
fore model construction. In this paper, we try to improve the performance of the decision boundary making (DBM)
algorithm via outlier detection. DBM has been proposed by us for inducing compact and high performance learning
models that are suitable for implementation in portable computing devices. The basic idea of DBM is to generate data
that can fit the decision boundary (DB) of a high performance model, and then induce a compact model based on the
generated data. In our study, a support vector machine (SVM) is used as the high performance model, and a single
hidden layer multilayer perceptron (MLP) is used as the compact model. Experimental results obtained so far show
that DBM performs well in many cases, but its performance still is not good enough for some applications. In this
paper, we use SVM not only for obtaining the DB, but also for detecting the outliers, so that better MLP can be induced
using cleaner data. We use a threshold δoutlier to control the number of outliers to remove. Experimental results show
that, if we select δoutlier properly, the DBM incorporated with outlier detection outperforms the original DBM, and it is
better than or comparable to SVM for all databases used in the experiments.
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1. Introduction

For a given pattern recognition problem, we often assume that
data in different classes are separable provided that a proper set
of attributes or features is given. In practice, however, because
of measurement errors, some data may appear in the territories of
different classes. These data are called outliers, and should be ex-
cluded from the training set. Machine learning models obtained
based on training sets containing a lot of outliers may take many
resources (e.g., hidden neurons in a multilayer neural network)
to fit the outliers, but may fail to fit unknown patterns well. In
other words, outliers can degrade the generalization ability of the
resulted model.

Since outliers are often close to the decision boundaries (DBs),
we may detect and delete the outliers based on the DBs before
constructing the learning model. However, if we do not have a
model, we do not know where the DBs are. Thus, outlier detec-
tion and learning have a chicken-and-egg relation.

To detect the outliers efficiently, several methods have been
proposed in past publications. In Ref. [1], Amidan et al. pro-
posed a Chebyshev theorem based method. In this method, the
authors used the Chebyshev theorem to define and detect the out-
liers, and they confirmed that the performance could be improved
by removing the outliers. Ferdowsi, H. et al. proposed a machine
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learning model based method for outlier detection. Specifically,
they used a neural network (NN) [12] to identify the outliers [4].
Geebelen, D. et al. used a support vector machine (SVM) [15] as
the learning model, and showed that the performance of the SVM
can be improved by removing the outliers [5].

In our research, we have proposed the decision boundary mak-
ing (DBM) algorithm for inducing compact and high perfor-
mance learning models that are suitable for implementation in
portable computing devices (PCDs) [8]. The DBM algorithm is
an improved version of the decision boundary learning (DBL)
algorithm [16], which was proposed by us earlier. The main pur-
pose of our research is to provide a tool that can help the users
to build various aware agents in the PCDs. The aware agents,
which are machine learning models, are expected to improve the
usability of the PCDs by providing useful information proactively
to the users. Compared with desk-top computing machines, the
computing resources of a PCD are usually limited. Thus, to em-
bed various high performance aware agents in the same device,
it is necessary to reduce the implementation cost for each agent.
The DBM and DBL are algorithms for this purpose.

Several methods have been proposed in the publications to re-
duce the cost of learning models. Since the number of support
vectors (SV) of an SVM is usually proportional to the number of
training data [14], some methods have been proposed based on
data reduction [9], [10]. In these methods, however, some im-
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portant SVs may be lost in the data reduction step. Therefore,
theoretically, the performance of the obtained model is upper-
bounded by the SVM induced from the original training data.
Wang, H.W. et al. improved the performance of the algorithm by
using relative distance only for un-balanced data sets [17]. How-
ever, the performance of this method may not be good for bal-
anced training data. Another way to reduce the implementation
cost is to use a new kernel function of the SVM [3]. The ad-
vantage of this method is that the number of SVs can be reduced
without degrading the performance significantly. But for the clas-
sification time, the computational cost with the proposed kernel
is equivalent to other kernels. Therefore, it is difficult to be used
in PCDs.

In DBM, we focused on the DB of a high performance learn-
ing model. If a low cost model (i.e., a model that requires less
computing resources) can reconstruct the DB of the high perfor-
mance model, the low cost model can have a high performance.
In a probability sense, SVM is known as the optimal machine
learning model. Thus, we choose SVM as the high performance
model, and use a single hidden layer multilayer perceptron (MLP)
as the low cost model.

In using DBM, we first generate data to fit the DB of an SVM,
and then induce the MLP based on the new training data. Experi-
mental results obtained so far show that DBM can often yield low
cost MLPs that are comparable to or even better than SVMs. For
some applications, however, the performance is not good enough.

In this paper, we incorporate outlier detection with the DBM,
expecting to improve the DBM performance further without in-
creasing the implementation cost of the resulted learning model.
Since an SVM is designed to generate a reference DB for DBM,
we can use the same SVM to detect outliers. A direct method is
to define all data that cannot be classified correctly by the SVM
as outliers and remove them before inducing the low cost MLP.
However, this method may remove some important data by mis-
take, and thus degrade the performance significantly. To solve
this problem, we use a threshold δoutlier to control the number of
outliers to remove. This threshold actually defines a new mar-
gin along the DB of the SVM. If δoutlier is properly selected, we
can remove the outliers while keeping important data for fitting
the DB. Experimental results show that, if we select δoutlier prop-
erly, the DBM incorporated with outlier detection outperforms
the original DBM, and it is better than or comparable to SVM for
all databases used in the experiments.

The structure of this paper is as follows. Section 2 introduces
the DBM algorithm in detail. Section 3 explains the proposed
DBM with SVM-based outlier detection. Section 4 and Section 5
provide experimental results on several public databases with sta-
tistical tests. Finally Section 6 shows the conclusions and some
topics for future work.

2. Review of the Decision Boundary Making
Algorithm

The DBM algorithm was proposed to induce compact and high
performance machine learning models. The main idea of DBM is
to reconstruct the DB of a high performance model using a small
model. We use SVM for the high performance model, and MLP

as the small model. To reconstruct the DB, DBM generates new
training data to approximate the DB of the SVM. Then, it obtains
an MLP using the new training data. The DBM algorithm focuses
on support vectors (SV) of the SVM when it generates new data.
There are SVs near the DB of the SVM. Therefore, if we gener-
ate new data around the SVs, we can add new data near the DB.
In the following sub-sections, we discuss and show details of the
DBM algorithm.

2.1 Why Can DBM Produce Models that are Compact and
High Performance?

Although SVM is known as a high performance model in the
machine learning field, the model size of an SVM is often large
because the model size is decided by the number of data in a
training set which is often large in real applications. In general,
the computational cost is related to the model sizes. For SVM, it
is difficult to control the model size and the computational cost.

In comparison, the model size of an MLP is controllable. The
model size of an MLP can be pre-defined. If we set the param-
eters to obtain a small model, the obtained MLP becomes small.
Therefore, it is possible to obtain a compact and high perfor-
mance model by reconstructing a high performance SVM with
an MLP.

2.2 Generating New Training Data
To generate new training data, the DBM algorithm focuses on

the SVs of the SVM. There are many SVs near the DB of the
SVM, which are more important data than others. Therefore, if
we generate new data and put them around these SVs, we may
get new training data that can approximate the DB of the SVM.

We use ε-neighborhood to generate new data around each SV.
The detail of ε-neighborhood based data generation is shown in
Fig. 1. All generated data are in the ε-neighborhood. The ε is a
given parameter. For each SV, the DBM algorithm generates N

new data. Therefore, totally N × NS V data are generated, where
NS V is the number of SVs.

We set conditions for newly generated data to decide whether
the data should be added into the new training set or not. If the

Fig. 1 New data is generated in ε-neighborhood area of the SV.
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Fig. 2 Two conditions of the DBM algorithm are shown in this figure. DBM
does not add new data in [−δDB, δDB] and farther area than that of
SVM.

generated data are put around SVs randomly, some data may be
far away from the DB, and they are not important for approxi-
mating the DB. To reduce these data, we set a condition given in
Eq. (1), where g(X) is the output value of the SVM for the datum
X, which is generated in the neighborhood of the SV P. If Eq. (1)
is true, the generated datum X is not put into the new training
set. Another condition is to limit data not to be too close to the
DB of the SVM. If there are too many data around the DB in the
new training set, the DB formed by the training data might be too
complex for a small MLP to learn. The DB should be smooth to
obtain small MLPs. To create a smooth DB, we set a margin be-
tween the DB and the generated data in Eq. (2), where δDB is the
given parameter which is in [0, 1). If Eq. (2) is true, the generated
data X is not added. An example of two conditions is shown in
Fig. 2.

|g(X)| > |g(P)| (1)

|g(X)| < δDB (2)

Finally, a new training set is obtained by putting the given train-
ing data, the SVs of the SVM, and the newly generated data to-
gether. It is a fact that, the SVs of SVM are a subset of the given
training data. These data will appear twice in the new training set.
In previous experiments, it has been found that the new training
set led to the better performance when the SVs were included. It
is reasonable to assume that the SVs made contributions to such
enforced performance. Therefore, SVs are repeated in the new
training set.

2.3 The DBM Algorithm
There are 2 phases in the DBM algorithm. The first phase is the

learning phase, while the second is the classification phase. The
two phases are shown in Fig. 3. In the classification phase after
the learning phase, the DBM algorithm needs only the MLP ob-
tained in the learning phase. The MLP can be obtained on servers
by the DBM algorithm in the learning phase, and it can be used
on mobile devices in the classification phase.

Fig. 3 Brief flows of the DBM algorithm. There are 3 steps in the learning
phase, and 1 step for classification step.

The steps of the learning phase are described in Algorithm 1.

Algorithm 1 Learning phase of the DBM algorithm
Ensure: Obtain an MLP using given training data Ω.

1: Obtain an SVM based on Ω

2: US V = {S V1, S V2, . . . , S VNS V } (S Vi is an SV of the SVM)

3: New training set Ωnew = US V + Ω

4: for all P in US V do

5: for i = 1 to N do

6: Create a vector V that each element is random value in [ε, −ε]
7: Xnew = P + V

8: if |g(Xnew)| < δDB or |g(Xnew)| > |g(P)| then

9: continue

10: end if

11: Set label of Xnew by sgn(g(Xnew))

12: Ωnew = Ωnew + Xnew

13: end for

14: end for

15: Obtain an MLP using Ωnew

3. Decision Boundary Making Using SVM-
Based Outlier Detection

In this paper, we try to improve the performance of the DBM
algorithm by using an SVM-based outlier detection method.
Some previous experimental results have shown that in some
cases the performance of the DBM is lower than SVM. One rea-
son is that there might be outliers in the new training set. To
generate better models, the outliers should be deleted.

The outlier is a noisy datum having a negative impact on the
performance of the model. It means that the obtained models
based on training data with outliers could have poor performance.
By removing the outliers from the training data, the models could
have higher performance. The main problem is how to define the
outlier properly. If the definition is not correct, some important
data might be detected as outliers, and the performance of the
model will be degraded.

The SVM-based outlier detection method is more efficient than
other methods for the DBM algorithm. In the learning phase of
the DBM algorithm, we obtain an SVM first, and then generate
new training data to approximate the DB of an SVM. We can
use the SVM directly for detecting the outliers. Therefore, us-
ing SVM-based outlier detection in DBM will not increase the
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Fig. 4 An example of SVM-based outlier detection. An outlier lies on the
wrong side of its own area.

computational cost at all.
The SVM-based outlier detection defines a datum as an out-

lier if the given label is different from the labels classified by the
SVM (See Fig. 4). In this definition we assume that the DB of
the SVM is a perfect boundary for classification. After detecting
outliers, we usually delete these outliers from the training set, and
then obtain a new model using the training set without outliers.

3.1 The Improved SVM-Based Outlier Detection
We set a parameter δoutlier to improve the SVM-based outlier

detection method. If outliers are identified by using the DB of
SVMs only, sometimes important data may be falsely classified
as outliers and be removed. Since the DB of the SVM is not
perfect, data close to the DB can be wrongly classified with a cer-
tain probability. To prevent from removing important data, we
define the outlier as Eq. (3), where d(X) ∈ {−1,+1} is the label
of the data X, and δoutlier is a real number specified by the user.
If Eq. (3) is true, datum X is identified as the outlier. Figure 5
shows an example of the improved SVM-based outlier detection.

g(X) ∗ d(X) < −δoutlier (3)

The SVM-based outlier detection is implemented in the DBM
algorithm to identify outliers from given training data. In the new
training set of the DBM algorithm, there are the given training
data that are not outliers, the SVs of the SVM, and the newly
generated data.

3.2 The Algorithm of DBM Using SVM-Based Outlier De-
tection

The new DBM algorithm using SVM-based outlier detection
is described in Algorithm 2.

Fig. 5 δoutlier defines the range of noisy data (outliers) that influence per-
formance of machine learning models. Vectors within the range of
δoutlier area are detected as outlier data.

Algorithm 2 Learning phase of the DBM algorithm
Ensure: Obtain an MLP using given training data Ω.

1: Obtain an SVM based on Ω

2: Detect outliers from Ω by using Eq. (3) as

Uoutlier = {Xoutlier1, . . . , XoutlierNoutlier } (Noutlier is the number of outliers).

3: US V = {S V1, S V2, . . . , S VNS V } (S Vi is an SV of the SVM)

4: New training set Ωnew = US V + Ω − Uoutlier

5: for all P in US V do

6: for i = 1 to N do

7: Create a vector V that each element is random value in [ε, −ε]
8: Xnew = P + V

9: if |g(Xnew)| < δDB or |g(Xnew)| > |g(P)| then

10: continue

11: end if

12: Set label of Xnew by sgn(g(Xnew))

13: Ωnew = Ωnew + Xnew

14: end for

15: end for

16: Obtain an MLP using Ωnew

Table 1 Features of public databases from Ref. [2].

Number
of

Classes (Nc)

Number
of

Features (Nf )

Number
of

Data (Nd)

Australian 2 14 690
Breast cancer (Breast) 2 10 683
Diabetes 2 8 768
German 2 24 1,000
Indian L Patient (ILP) 2 10 582
Ionosphere 2 34 351

4. Experiments on Comparing Performance of
SVM, MLP, and DBMs with and without
Outliers

In this section, we compare the performance of SVM, MLP,
and DBMs with and without Outliers by experiments with statis-
tical tests using some public databases taken from the machine
learning repository of the University of California at Irvine [2].
Table 1 shows the parameters of each database.

For each database, 360 times of 5-fold cross validation was
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Table 2 Machine specs and environments.

Machine Apple iMac 21.5-inch, Late 2013
OS Mac OS X 10.9.
CPU Intel Core i5 2.7 GHz
Memory 8 GB
Program Language C++
Compiler Apple LLVM version 5.0

conducted. The number of training data is Nt = [Nd × 4
5 ], and

the number of testing data is Nd − Nt for each database. For the
result, we calculate the recognition rate (RR) for testing data, and
it is averaged over 360 × 5 runs. The RR is calculated as Eq. (4).
We normalize the given training data by using rescaling method.
The computer system configuration and environment used in the
experiment are shown in Table 2.

RR =
Number of correct data in test data

Number of test data
(4)

4.1 Experimental Design
In this paper, we proposed the DBM algorithm incorporated

with the SVM-based outlier detection method. We confirm
whether the performance of the proposed algorithm can be im-
proved by removing outliers from the new training set. To com-
pare the performance, we define four methods’ abbreviations as
follows:
• SVM: SVM with RBF kernel (κ(x, z) = exp (−||x − z||2)).
• MLP: MLP obtained using the original training data.
• DBM0: MLP obtained using the DBM with outliers (origi-

nal DBM algorithm).
• DBM1: MLP obtained using the DBM without outliers (de-

tected by the SVM-based method).
For the given training data, we normalized the training data

by using rescaling normalization. The rescaling normalization
converts the range [min(coli),max(coli)] to [Fmin, Fmax] for each
feature, where coli is a set of i-th features in given training
set, min(X) and max(X) return the minimum and maximum
values from set X, and Fmin and Fmax are given parameters
(Fmin < Fmax). In our experiment, the rescaled range was fixed to
[−1,+1].

For SVMs, we used free software S V MLight given in Ref. [7].
This paper used the radial basis function (RBF) kernel as the ker-
nel function. For other parameters, we set the cost-factor to 1;
leave-one-out estimates was 0; maximum size of quadratic pro-
gramming subproblems was 100; number of variables entering
the working set in each iteration was 99; error for termination
criterion was 0.001; number of iterations was 1,000; value of rho
for XiAlpha-extimator and for pruning leave-one-out computa-
tion was 1.0; and search depth for extended XiAlpha-extimator
was 0.

In MLP learning, we used the back-propagation algorithm [12]
to train the model. For the BP algorithm, the learning rate was
fixed to 0.5. The maximum number of learning epoch was 1,000.
The number of input neurons of the MLPs was Nf . The number
of hidden neurons was fixed to 10. The number of output neurons
was Nc, which were 2 classes for all databases in this experiment.

For DBM parameters, we set to ε = 0.1, δDB = 0.1, and
N = 10. For DBM1, we changed the parameter δoutlier from 0.0

Table 3 Best recognition rates with standard deviations and 95% confidence
intervals in each method. The bold font values present the best
recognition rate in all methods. DBM1 is the best method in 5 out
of 6 databases.

Database Methods RR (%) SD (%) Confidence Interval (%)

Australian

SVM 84.630 2.744 [84.503, 84.757]
MLP 82.332 3.005 [82.193, 82.471]

DBM0 84.324 2.721 [84.199, 84.450]
DBM1

84.591 2.808 [84.461, 84.720]
(δoutlier = 0)

Breast

SVM 96.109 1.537 [96.038, 96.180]
MLP 95.952 1.606 [95.878, 96.026]

DBM0 96.249 1.513 [96.179, 96.319]
DBM1

96.417 1.446 [96.350, 96.484]
(δoutlier = 0)

Diabetes

SVM 76.120 3.182 [75.973, 76.267]
MLP 72.970 3.362 [72.815, 73.125]

DBM0 75.850 3.159 [75.704, 75.996]
DBM1

76.127 3.120 [75.983, 76.271]
(δoutlier = 0)

German

SVM 69.945 2.887 [69.811, 70.078]
MLP 71.274 2.927 [71.138, 71.409]

DBM0 72.978 2.945 [72.841, 73.114]
DBM1

73.205 2.962 [73.068, 73.342]
(δoutlier = 0.2)

ILPD

SVM 71.243 3.677 [71.073, 71.413]
MLP 68.181 4.390 [67.978, 68.384]

DBM0 70.024 4.058 [69.837, 70.212]
DBM1

71.261 3.614 [71.095, 71.428]
(δoutlier = 0.2)

Ionosphere

SVM 89.530 3.567 [89.365, 89.695]
MLP 90.814 3.523 [90.652, 90.977]

DBM0 91.534 3.290 [91.382, 91.686]
DBM1

91.885 3.166 [91.739, 92.031]
(δoutlier = 0.4)

Table 4 The number of training data with the number of outlier data (for
DBM1) for each method. The results were obtained using the same
δoutlier values as in Table 3. The Nld means the number of learning
data. Numbers of training data of DBMs are usually big.

SVM, MLP DBM0 DBM1
Nld Nld Nld Noutlier

Australian 552.0 3541.0 3501.8 43.9
Breast-cancer 547.0 1865.8 1851.2 15.9
Diabetes 615.0 2616.7 2499.0 116.8
German 800.0 6959.6 6765.9 194.3
ILPD 466.0 2315.2 2185.4 133.0
Ionosphere 281.0 2375.7 2374.8 1.6

to 0.5 with step size 0.1. For statistical tests, we set 5% for sig-
nificance level of all results.

4.2 Analysis and Discussion on Performance Comparison of
SVM, MLP, and DBMs with and without Outliers

Table 3 shows the best RRs, standard deviations (SDs), and
confidence intervals with NS V (for SVM), and δoutlier (for DBM1)
of experimental results for each method. The bold values mean
the best RRs in all methods in each database. Table 4 reveals the
number of learning data Nld and the number of outliers Noutlier

(for DBM1) of the experimental results. The results were ob-
tained using the same δoutlier values as in Table 3. The Nld for
SVM and MLP is the same as given in Table 4 because these two
methods just use the given training data. Table 5 indicates the
results of multiple comparison of each method for all databases.
We show the results using “+” and “−”. The “+” means there is
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Table 5 Results of statistical tests in each method for all databases. The
“+” means there is a significance, and the “−” means there is no
significance. DBM1 results are significantly different from DBM0.

Method Australian Breast Diabetes German ILPD Ionosphere
DBM1 vs. DBM0 + + + + + +

DBM1 vs. SVM − + − + − +

DBM1 vs. MLP + + + + + +

DBM0 vs. SVM + + − + + +

DBM0 vs. MLP + + + + + +

SVM vs. MLP + + + + + +

significance, and no significance if the result is “−”. For the statis-
tical tests, we confirm normality by using Shapiro-Wilk test [13].
There is no normality for all results by confirming values of
Shapiro-Wilk test results. Therefore, we use Mann-Whitney U
test [11] with Holm-Bonferroni method [6] for paired compari-
son.

DBM1 results are the best in 5 out of 6 databases from Ta-
ble 3. For the Australian database, the best result is SVM, but
the SVM’s RR is almost the same with DBM1. From Table 5,
there is no significance between SVM and DBM1. It indicates
that the DBM1 performance is equivalent to the SVM in the Aus-
tralian database. The DBM1 performance is also equivalent to
SVM in Diabetes and ILPD databases. For other databases, the
RRs of DBM1 are higher than SVMs. From the comparison of
RR results between DBM0 and DBM1 in Table 3, DBM1’s RRs
are about 0.2–1.2% higher than the DBM0, and these results are
significant different in all databases from Table 5. Therefore, the
SVM-based outlier detection method is an effective method for
improving the performance of DBM algorithm. Especially for
ILPD database, the DBM0’s RR is less than the SVM. There is
significance among them from Table 5. However, to implement
the SVM-based outlier detection into DBM algorithm, the perfor-
mance of DBM1 is the same as that of SVM. We can achieve the
main purpose of this paper, i.e., improving DBM performance,
by removing outliers.

For the numbers of learning data, we can see differences among
methods from Table 4. In the DBM algorithm, it generates new
data, and then the number of new training data increases. How-
ever, the numbers of training data of DBM0 and DBM1 are
greatly increased to approximate the DB of SVMs. If the num-
ber of training data is too huge, learning times become extremely
long. To reduce the new training data without removing effective
data, we will consider a new algorithm to remove insignificance
data in the next step.

5. Experiments on Investigating Effective Pa-
rameter δout lier

In this section, we set a new parameter δoutlier to improve an
SVM-based outlier detection method. The parameter δoutlier can
be used to control the boundary of outliers. In this section, we
conduct experiments using some different values for δoutlier, and
discuss about results. For the experimental environments, i.e.,
machine specs and databases, etc., are the same as Section 4.

5.1 Experimental Design
To obtain better performance, we confirm the effectiveness of
δoutlier by using some values, and discuss the results. The method

Table 6 Averaged recognition rates of DBM1 for each δoutlier setting. The
bold font values mean the best recognition rate in all settings.
δoutlier = 0 or δoutlier = 0.2 is the best result in most cases.

Database δoutlier RR (%) SD (%) Confidence Interval (%)

Australian

0 84.591 2.808 [84.461, 84.720]
0.1 84.588 2.849 [84.457, 84.720]
0.2 84.490 2.753 [84.363, 84.618]
0.3 84.477 2.824 [84.347, 84.608]
0.4 84.426 2.763 [84.298, 84.554]
0.5 84.490 2.782 [84.362, 84.619]

Breast

0 96.417 1.446 [96.350, 96.484]
0.1 96.399 1.430 [96.333, 96.466]
0.2 96.404 1.440 [96.337, 96.471]
0.3 96.353 1.481 [96.284, 96.421]
0.4 96.353 1.471 [96.285, 96.421]
0.5 96.312 1.494 [96.243, 96.382]

Diabetes

0 76.127 3.120 [75.983, 76.271]
0.1 76.108 3.153 [75.963, 76.254]
0.2 76.046 3.074 [75.904, 76.188]
0.3 75.931 3.235 [75.781, 76.080]
0.4 75.890 3.088 [75.748, 76.033]
0.5 75.890 3.089 [75.747, 76.032]

German

0 73.035 2.885 [72.901, 73.168]
0.1 73.092 2.879 [72.959, 73.225]
0.2 73.205 2.962 [73.068, 73.342]
0.3 72.591 2.877 [72.819, 73.084]
0.4 72.986 2.964 [72.849, 73.123]
0.5 72.832 2.957 [72.695, 72.968]

ILPD

0 71.253 3.707 [71.082, 71.424]
0.1 71.236 3.613 [71.069, 71.403]
0.2 71.261 3.614 [71.095, 71.428]
0.3 71.230 3.842 [71.052, 71.407]
0.4 71.239 3.759 [71.065, 71.412]
0.5 71.207 3.838 [71.030, 71.384]

Ionosphere

0 91.877 3.191 [91.730, 92.024]
0.1 91.809 3.280 [91.657, 91.960]
0.2 91.741 3.196 [91.594, 91.889]
0.3 91.685 3.302 [91.532, 91.837]
0.4 91.885 3.166 [91.739, 92.031]
0.5 91.699 3.281 [91.548, 91.851]

Table 7 Percentages of number of outliers for each δoutlier setting of DBM1.
The percentages of Diabetes, German and ILPD databases are more
than other databases. The percentage of German database greatly
decreases when δoutlier is 0.3.

DBM1 Noutlier/Number of given training data (%)
δoutlier 0 0.1 0.2 0.3 0.4 0.5

Australian 7.96 7.11 6.38 5.64 4.94 4.31
Breast 2.91 2.31 1.78 1.51 1.37 1.12
Diabetes 18.99 16.92 15.08 13.31 11.54 9.67
German 28.17 27.09 24.29 5.38 2.07 1.03
ILPD 28.65 28.59 28.55 28.37 28.15 27.68
Ionosphere 1.67 0.90 0.71 0.64 0.59 0.53

for comparison is below:
• DBM1: MLP obtained using the DBM without outliers.
To confirm the effective parameter δoutlier, we changed the val-

ues from 0.0 to 0.5 with step size 0.1. Other parameters for SVM
and MLP were the same as used in the Section 4.

5.2 Analysis and Discussion on Effectiveness of the Parame-
ter δout lier

Table 6 reveals RRs with SDs and confidence intervals of
DBM1 for all δoutlier settings. The best RR values are bold font
in each database. Table 7 shows percentages of the number of
outliers in number of given training data for each result. And Ta-
ble 8 indicates the results of paired comparisons to confirm sig-
nificances between each δoutlier setting. The “+” shows there is a
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Table 8 Results of statistical tests in each DBM1 setting for all databases.
The “+” means there is a significance, and the “−” means there is
no significance.

δoutlier Australian Breast Diabetes German ILPD Ionosphere

0 vs. 0.1 - - - - - -
0 vs. 0.2 - - - - - -
0 vs. 0.3 - - - - - -
0 vs. 0.4 - - - - - -
0 vs. 0.5 - - - - - -
0.1 vs. 0.2 - - - - - -
0.1 vs. 0.3 - - - - - -
0.1 vs. 0.4 - - - - - -
0.1 vs. 0.5 - - - - - -
0.2 vs. 0.3 - - - - - -
0.2 vs. 0.4 - - - - - -
0.2 vs. 0.5 - - - + - -
0.3 vs. 0.4 - - - - - -
0.3 vs. 0.5 - - - - - -
0.4 vs. 0.5 - - - - - -

significance, and the “−” means there is no significance. There is
no normality for all results confirmed by using the Shapiro-Wilk
test, and the results are calculated by the Mann-Whitney U test
with Holm-Bonferroni method.

About the effective value for δoutlier from Tables 6–8, the pa-
rameter δoutlier should be set a small value, and the sensitivities of
the parameter δoutlier are low. In all cases except the Ionosphere
database, the best results are δoutlier = 0 or 0.2. For the Iono-
sphere database, the best δoutlier is 0.4, but the result is almost the
same as the result with δoutlier = 0. To see the significances in
Table 8, there is no significance for these databases except for
the German database. In the German database, the percentages
of the number of outliers from Table 7 rapidly decreases when
δoutlier = 0.3. True outliers in the German database can be de-
tected if δoutlier < 0.3, and the RR with δoutlier ≥ 0.3 is degraded
because the outliers are not deleted from the new training set.
For other databases, RRs are not significantly different. More-
over, in the experiment in Section 4, DBM1 is significantly dif-
ferent from DBM0. In fact, DBM0 is equivalent with DBM1 with
δoutlier = ∞. Thus, if the parameter δoutlier increases a great deal,
the performance of DBM1 becomes low. In other words, the per-
formance of the induced models are not sensitive to the value of
δoutlier, if it is small.

We do not need more experiments with other settings for
δoutlier. In this experiment, we use only values in [0, 0.5] for
δoutlier. If we use other values for the parameter δoutlier, we may
get different results. However, to use values more than 0.5 for
δoutlier, RRs may decrease because many outliers are not identi-
fied as the outlier. Therefore, we should not use large values for
δoutlier.

We should reduce the size of the new training set without re-
moving important data. In the experiment of Section 5, we dis-
cussed that the size of the new training set may become too large.
Data around the DB may be more important than other data, and
farther data from the DB may be less informative. Therefore, if
we design a boundary to separate whether data are informative
or not, we can reduce the number of new training data. More-
over, DBM generates new data to approximate the DB of SVMs.
In other words, DBM creates a high density training set to form
the DB. High density is necessary, but too high a density is not

needed. If we avoid too high a density by reducing some data,
we can decrease the number of new training data. We will con-
sider methods to reduce the number of new training data without
deleting informative data.

6. Conclusion

In this paper, we have proposed a new DBM algorithm by in-
corporating the SVM-based outlier detection method. This new
DBM algorithm detects outliers from given training data by us-
ing the SVM-based outlier detection method, and remove them
from the new training set. The DBM with the SVM-based outlier
detection generates more efficient new training data than the orig-
inal DBM algorithm. The main objective of this paper is to avoid
performance decreasing in DBM algorithm compared with SVM,
because some results of DBM are lower than SVM in previous
experiments. Experimental results obtained for 6 databases with
statistical tests show that the DBM with the SVM-based outlier
detection is significantly improved compared with the original
DBM. For other methods, the DBM with the SVM-based out-
lier detection is the best or equivalent to SVM in all databases.
Therefore, we can improve the performance of the DBM algo-
rithm with the SVM-based outlier detection to preserve the per-
formance. And the SVM-based outlier detection method is an
effective method for the DBM algorithm.

For the effective parameter δoutlier, we should set small values
and the sensitivity of the model performance is low to δoutlier. We
can get the best recognition rates when we set δoutlier to 0 or 0.2
in most cases of this experiment. From the results of statistical
tests, there is no significance except for the German database. For
other databases, the numbers of outliers are not so different when
δoutlier is in [0, 0.5]. On the other hand, if we set too large values
to the parameter δoutlier, the performance of DBM will decrease
because the DBM with outlier (it means the parameter δoutlier is
∞) is lower performance than the DBM without outliers. There-
fore, we should use small values for δoutlier.

For future works, we will try to reduce the number of new train-
ing sets of the DBM algorithm by removing insignificant data.
From the experimental results, the number of new training data
is too large. Moreover, the new training set becomes extremely
large when we use large databases because the number of newly
generated data is about N×NS V . We need to remove less informa-
tive data for the objective of the DBM algorithm. More data are
not necessarily needed to design compact and high performance
MLPs. To generate more efficient new training data, we will pro-
pose proper methods to remove ineffective data for obtaining a
better DBM performance.

In other works, we will consider incremental methods. In gen-
eral, when new data are added into the training data, we need to
re-design a model using the training data. However, an incre-
mental method can fix the model only using the new data. Thus,
learning costs for new data are very low. If the DBM algorithm
can adapt to new data on PCDs, usability of the DBM can be
higher. We will improve the DBM algorithm to make it suitable
for incremental learning.
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Editor’s Recommendation
The authors propose a method to improve the performance

of the decision boundary making (DBM) algorithm via outlier
detection. The DBM algorithm with compact and high perfor-
mance learning models is suitable for implementation in portable
computing devices. Experimental results show that the improved
DBM incorporated with outlier detection outperforms the origi-
nal DBM, and is better than or comparable to SVM for all the
databases used in the experiments.
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