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Abstract: We developed a new application to quantitatively evaluate the sequence conservation of ligand-binding
sites by integrating information pertaining to protein structures, ligand-binding sites, and amino acid sequences. These
data are visualized onto protein structures via a Jmol or PyMOL interface. The visualization is very important for
structure-based drug design (SBDD). Key features of this application are the visualization of slight differences in spe-
cific ligand-binding sites and ConservationScore comparable among ligand-binding sites. Furthermore, we conducted
an experiment to visualize the calculation and comparison of the ConservationScore of four viral proteins as well as
an experiment to visualize the differences between proteins belonging to the human β adrenergic receptor family. This
application is available at http://www.bio.gsic.titech.ac.jp/visco.html .

Keywords: amino acid sequence conservation, ligand-binding site, visualization, structure-based drug design
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1. Introduction

In recent years, the amount of data on three-dimensional pro-
tein structure has significantly increased owing to advances in
determining three-dimensional protein structures using meth-
ods such as X-ray crystallography or nuclear magnetic reso-
nance [1], [2]. For this reason, structure-based drug design
(SBDD) based on these protein structures is considered as an ef-
fective method [3]. However, simulations used for SBDD, such
as molecular docking or molecular dynamics, inadequately con-
sider the diversity of target proteins because there are still fewer
available protein structures than amino acid sequences.

To design antibacterial or antiviral drugs, the sequence diver-
sity of a target protein is the key, because the diversity of proteins
is the reason for the origin of drug resistance [4]. If the target
site is variable, drug-resistant bacteria or viruses will soon appear
and the new drug will have no effect. Furthermore, designing
candidate drug molecules must avoid those with adverse effects.
When we use SBDD methods to design molecules than do not
bind off-target proteins, it is important that knowledge pertaining
to the sequence conservation of ligand-binding sites between tar-
gets and off-targets. Therefore, differences between targets and
off-targets will improve selectivity [5].

Some applications are available to visualize, particularly the
conserved amino acid sequences among many sequences on pro-
tein structures, such as AL2CO [6], ET viewer [7], VENN [8],
and ConSurf [9], [10]; however, these applications are optimized
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to visualize the conservation of an entire protein structure. Thus,
these applications cannot adequately represent slight differences
between ligand-binding sites.

In the present study, we developed a new application to quanti-
tatively evaluate the amino acid sequence conservation of ligand-
binding sites and to visualize them on a protein surface. To pre-
dict the sequence conservation of specific ligand-binding sites,
this application integrates data pertaining to sequences, struc-
tures, and ligand-binding sites. We also developed a novel
method for the evaluating sequence conservation of specific
ligand-binding sites.

2. Methods

2.1 Overview
This application employs the python-based command-line tool

(Fig. 1), wherein the user provides inputs of three-dimensional
structure of a protein, a list of residues that form ligand-binding
site, and a multiple amino acid sequence alignment. This appli-
cation integrates these data, calculates ConservationScore, and
provides output data to Jmol [11] or PyMOL [12].

2.2 Calculation of ConservationScore
The ConservationScore is calculated on the basis of the con-

servation rate of each amino acid residue. In this application, we
define pmax(i) as the conservation rate of an amino acid residue,
where i is the number of residue that form the ligand-binding site.
pmax(i) is described as

pmax(i) = max
x∈A

pi(x) (1)

where pi(x) is the probability of the appearance of amino acid x

in the i -th residue and A is the set of amino acids. pmax(i) takes
a value from 0 ≤ pmax(i) ≤ 1 and is important because that it
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Fig. 1 Flowchart.

can be compared with another amino acid without considering
species differences or the number of amino acid sequences.

We defined C(s) as the ConservationScore of a ligand-binding
site, where s is a ligand-binding site. C(s) is described as

C(s) =

⎡⎢⎢⎢⎢⎢⎣
∏

i∈s

{pmax(i)}2
⎤⎥⎥⎥⎥⎥⎦

(1/|s|)
(2)

This equation defines C(s) as the geometric mean of {pmax(i)}2.
This score takes a value of 0 ≤ pmax(i) ≤ 1, and it is important
because it can be readily compared with another ligand-binding
site without considering the number of residues.

2.3 Data Selection
The user provides inputs of the result of a multiple sequence

alignment for use in many analyses. The sequence database and
range of sequence similarity changed completely so that users can
visualize the differences among individuals of the same species,
related species, or species that belong to different families.

This application accepts a list of residue numbers or a list of
lists of residue numbers as ligand-binding sites. If a protein com-
prises ≥ 2 ligand-binding sites, the list of lists of residue numbers
can be used. Residue numbers are stored in a PDB file. User may
use external tools such as Sitemap [13], FINDSITE [14], Con-
Cavity [15], or COFACTOR [16] to find ligand-binding sites in-
stead of visual inspection or ligand-bound structures.

3. Experiment

To demonstrate the results of our application, we performed
experiments using drug target proteins.

3.1 Visualization and Calculation of the ConservationScore
of Viral Proteins

The names and structure IDs of target proteins are listed in
Table 1. Ligand-binding sites were determined using Sitemap on
“evaluate a single binding site region” mode and selecting the lig-
and in the A-chain monomer of the crystal structure [13] except
for the human immunodeficiency (HIV) protease. The ligand-

Table 1 Target proteins.

Virus Protein name PDB ID

Influenza A virus (FLUV) Neuraminidase 2HU4
Influenza A virus (FLUV) Endonuclease 4M4Q
Human immunodeficiency virus (HIV) Reverse transcriptase 1JLB
Human immunodeficiency virus (HIV) Protease 1SDT

binding site of the HIV protease was determined without deleting
the B-chain, because this ligand-binding site residues within the
interface of a dimer. The definition of ligand-binding site was 6 Å
from each site-point of the Sitemap output.

Amino acid sequences were obtained from Uniref90 [17] using
BLAST [18] in the order of E-value until non-target sequences
appeared as this. Queries for BLAST analyses were those of the
crystal structures. The numbers of sequences were 920, 619, 69,
and 64. Multiple alignments were performed using ClustalW ver-
sion 2.1 with the default settings [19].

3.2 Visualization of Differences in Ligand-binding Sites
among Human G-protein Coupled Receptors (GPCRs)

In this experiment, the target proteins were the human β-
adrenergic GPCRs. The template structure was β2-adrenergic
GPCR (PDB ID 2RH1). The ligand-binding site was determined
using the same method described in Section 3.1. We compared
the sequences of one each of the β1 and β3-adrenergic GPCRs ob-
tained from Uniprot [20]. Furthermore, multiple alignment was
performed as described in Section 3.1.

4. Results and Discussion

4.1 Visualization and Calculation of the ConservationScore
of Viral Proteins

The results of visualization are shown in Fig. 2. Figures 2 (a)
and (b) show the influenza A virus (FLUV) neuraminidase and
were visualized using Jmol and PyMOL, respectively. The results
that follow were visualized using PyMOL. Figure 2 (c) shows the
FLUV endonuclease. Figures 2 (d) and (e) show the HIV reverse
transcriptase and protease, respectively. In the visualized out-
put, the residues in the ligand-binding sites are colored by pmax(i)

c© 2015 Information Processing Society of Japan 10



IPSJ Transactions on Bioinformatics Vol.8 9–13 (July 2015)

Fig. 2 Visualization of viral proteins.

which represents the conservation rate. Residues are depicted by
gradations from blue, white, to red according to pmax(i). This
application visualizes 2–3% of the difference between conserva-
tion rates in ligand-binding sites such as the blue and aqua-blue
residues in Fig. 2 (c).

The results show that the amino acid residues that interacted
with ligands are highly conserved, although some varied even
in the ligand-binding site. In Fig. 2 (b), the ligand is the anti-
FLUV drug oseltamivir (Tamiflu). This result demonstrates that
this application detects the oseltamivir-resistant mutation H274Y.
This mutation in the active site has been selected via site di-
rected mutagenesis, serial passage in culture under drug pressure
in H1N1 and during the treatment of experimental H1N1 infec-
tion in man [21]. Similarly, the ligand of the HIV protease is
indinavir, and this application detects the mutation that imparts
drug resistance (yellow stick) as shown in Fig. 2 (f) [22].

The ConservationScore of each ligand-binding site were 0.813,
0.9079, 0.7692,and 0.9026. These results show that the FLUV
endonuclease and HIV protease are more highly conserved com-
pared with the FLUV neuraminidase and HIV reverse transcrip-
tase.

We were intrigued to find that the ConservationScore is re-
lated to the acquisition of drug resistance. The FLUV endonu-
clease is a highly conserved target among influenza A, B, and
C viruses, although there are no approved drugs [23]. The drug-
resistant mutation of the HIV protease is known; however, the
protease inhibitor indinavir, reduces virus titers for at least some
weeks [22]. In contrast, the FLUV neuraminidase harbors many
resistance mutations and may cause drug resistance only two days
after administration [21]. Similarly, the HIV reverse transcriptase
inhibitor nevirapine, induces resistance after its single dose is ad-
ministered to infants [24].

4.2 Visualization of Differences in Ligand-binding Sites
among Human GPCRs

The results are shown in Fig. 3, and Fig. 3 (b) presents the same
orientation shown in (a), except for the cartoons. The upper part
of the figure corresponds to extracellular domain. Users can eas-
ily manipulate the results using Jmol or PyMOL.

In this example, the user may wish to reveal the region opposite
to the ligand-binding site. This tool can be applied to the variable
regions required to design molecules with enhanced selectivity or
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Fig. 3 Visualization of GPCR.

to the conserved regions required to avoid drug resistance. Here,
the sequence of the extracellular region is variable, although the
sequence of the intracellular region of the ligand-binding site is
completely conserved. Such knowledge may be useful to design
selective agonists or antagonists.

4.3 Conclusion
We developed a new application to quantitatively evaluate the

sequence conservation of ligand-binding sites and to visualize
them by projecting them onto protein surfaces. The technique
is useful for structure-based drug design, and the Conservation-
Score reflects the mechanism of acquisition of drug resistance.
The application of the visualization tools included in this appli-
cation is limited because at least one protein structure is required
to visualize the results. This might be addressed by building a
model structure based on a homologous structure. In addition,
the current ConservationScore does not consider the properties of
the amino acids, such as frequency, size, or electrical property.
One of the possible solution for this problem is to weight each
mutation by the impact to the binding site, which might be real-
ized by using substitution matrices such as BLOSUM [25].
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