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On the Convergence Speed for Some lterative Methods

TAKAHIKO MURAKAMI '

We derived two types of iterative methods, each containing two parameters. Then we established
that these methods converge globally and monotonically to the zeros of both a polynomial with only
real zeros and an entire function of genus 0 and 1 (and in certain cases of genus 2) with only real

zeros under some assumptions.
method, Halley’s method and our methods.

1. Introduction

We will consider some iterative methods for
the computation of numerical solutions of two
types of nonlinear scalar equations.

One type of the said equations is given by the
following form:

£0=(x=&)=0 (LD

where #>1 and &= (k=1 r—1).
The other is given by the following form :

f(.X)ExP eXp(a+bx~cx2)k1j:1(1w;x;)ex/ak
=0 (1.2)

where p is a non-negative integer; a, b and ¢
are real with ¢ =2 0; and all @, are real with

2 ak772< o0,
k=1

Here, especially we will deal with Ostrowski’s
method,»? Halley’s method® and our methods
containing two parameters.

In Ref. 1), pp. 110-115 and Ref. 3)-5), it has
been shown that the said methods converge
globally and monotonically to the solutions of
both Egs. (1. 1) and (1.2) under some assump-
tions. In section 2, it will be shown that both
Ostrowski’s iteration function and Halley’s itera-
tion function are monotonically increasing on a
certain set. In section 3, by using the results
derived in section 2, we will discuss the conver-
gence speed in the methods mentioned above.

2. Preliminaries

At first, we will introduce Ostrowski’s itera-
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In this paper, we discuss the convergence speed in Ostrowski’s

tion function, Halley’s iteration function and our
iteration functions.

Let hEh(x):%,-((xxf)) and X=X(x)=nh f’:(;c))

Then, Ostrowski’s iteration function can be re-
presented in the form:

P

O(x)=x T

Halley’s iteration function can be represented in
the form :

@z(x)zx—*

(2. 1)

k-

T
1 ——E—X
Our iteration functions can be represented in the

forms :

(2.2)

(0+ -%—~>X+1
o) =x—gxri g+ 1"
(B, 6 : parameters), (2.3)
@4(){'):)(7_‘ a+ J b

h
a+vyb—yb (a+/b)X
(a, b : parameters) (2.4)
We will need later the following lemma :
Lemma 1. If a,>0 (k=1,--, r) and r=2,
then the following inequality
7
holds : (;1 @) < (;i‘,lakz)s.
Proof. Applying the Cauchy-Schwarz inequal-
ity, we have the following:
7 4 7 7 7
(2 ad)=(Z ala)< 2 a2 a < (2 a?)’.
k=1 k=1 k=1 k=1 k=1
(2.5)
From Lemma 1, we have :
Lemma 2. If a,>0 (k=1, ) and i a2< o,
k=1

then the following inequality holds :
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Eorr<(Zar
Next, taking the logarithmic derivative of
f(x) in Eq. (1. 1), differentiating it again and
putting f'=/(x), f'=f"(x) and f"=f"(x), we

have
J ]

f‘kzl .
<f > [P0 _ 3
Tdx\ f f? = (x— Ck)z
(2. 6)
From Eq. (2. 6) we have
PRSP S ‘
=1—Ah kgl =) 2.7)
Furtheunore
AN i _
dx(f/ LIL~I X. (2.8)
Differennatmg Eq. (2. 7), we have
ax dh & 1
Fraa dx%(x-‘ Gy
RS gy

Therefore it follows from Egs. (2. 7) and (2. 8)
that
dX 273
—2(1—X)*+2h ZW
(2.9)
Next, taking the logarithmic derivative of
f(x) in Eq. (1.2) and differentiating it again,
we have
I _r ) (__; 1 >
7 +b cx+2 "ak+ak
,(L)':I 2“21’1 "
f f
_Dr o
2 +2c+ Z (x @ )2

From Eq. (2. 6)" we have

—_1 ZL o 1 ’
X=1 h{x2+26+§1m} 2.7)

Differentiating Eq. (2. 7)’, we have
dx _ ., dh 1
7}{- 2}2 dx{ " +2C+ Z_(x a’h)z}

+2h2{_&4 2 (x "a,k)a}
From Egs. (2.7)” and (2. 8)

hﬁ:—z(1~X)2+2h3{

(2.6)’

d gw(} e )3}
(2.9)

Let the set {x: f(x)f"(x)+0, and x is real} be

denoted by E. Then we have:

Theorem 1. Let f(x) be given by the form in

Eq. (1.1). Then @i(x) is a monotonically
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increasing function on E.
Proof. Differentiating @,(x) in Eq. (2. 1), we

have
oo g1 dh 1 dX
@l(x)—l \/I—X dx 2(1_X)3/2 ”
Using Eqgs. (2.8) and (2.9), we have

0 =1~ S ey
(2. 10)

On the other hand, from Eq. (2. 7) we have
oy of & 1 _;}3/2
e 3 (g

Hence it follows that

4 1
A _ ATl
(1 _ X)B/Z ()C §k5§ = {Zy 1 }3/2
E(x— &)
(2.11)
Applying Lemma 1 to Eq. (2. 11), we have
I 4 1
=& G-or !
for VxEE. (2.12)

Finally, it follows from Egs. (2. 10) and (2. 12)
that @i(x)>0. Thus Theorem 1 is completely
proved. Furthermore we have :
Theorem 2. Let f(x) be given by the form in
Eq. (1.2). Then @ (x) is a monotonically
increasing function on E.
Proof. Differentiating @(x) and using Egs.
(2.8) and (2.9)’, we have

Oi(x)=1— a hX)s/z{ rt+ 2 (x—a )3}

(2. 10)"

It now follows from Eq (2. 7) and ¢=0 that

(2.11)"
Since Zlm<oo for Yx€E, we use

Lemma 2 to have

{p—i—lxlz‘x*al}z |
{(P 2P+ x| ® ETX’—QIT}Z

3
<{p+x 21 (X a'k)z}
for Vx&E. (2. 12)
Consequently, it follows from Egs. (2. 10),
(2. 11)” and (2. 12)’ that @i(x)>0. Thus Theo-
rem 2 is completely proved.
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Next we have :
Theorem 3. Let f(x) be given by the form in
Eq. (1. 1). @y(x) is a monotonically increasing
function on E.
Proof. Differentiating @,(x) in Eq. (2.2), we
have

@é(x)=1~ 11 Zfz - 11 2
l~7X 2<1—§—X>
dXx
Wi
Using Egs. (2.8) and (2.9), we have

3 3
R

s e

K 7 1
TRy |

D(x)=

Next, we show that the following inequality
holds :

Sy 3 x4

4 2

Let

(2.13)

g =2 X=X +1—(1—

From g’(X):%ﬁjY(l —y/1—X), we have
g(X)>0 (X>0)and g'(X)<0 (X<0).
From g(0)=0, we have
g(X)=0 (Xx<1).
Hence Eq. (2. 13) holds.
From Egs. (2. 12) and (2.13) and
(1 _ )3/2
Y] >0,
(1-3%)
Theorem 3 is completely proved.
Furthermore, we have:
Theorem 4. Let f(x) be given by the form in
Eq. (1.2). Then @y(x) is a monotonically
increasing function on E.
This theorem can be proved in the same way
that we proved Theorem 3.

X)SIZ.

(2.14)

3. Convergence Speed

We will consider the iterative methods for
Egs. (2.1), (2.2), (2.3) and (2.4). These
methods can be represented in the following
forms :

Ostrowski’s method :

Xn+1= ml(xn) (n:O, 1, ') (3 1)
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Halley’s method :

Yne1= @Z(y") (n‘:Oa 1: '“)' (3 2)
Our methods :

Znn=0(z,) (n=0,1, ) (3.3)

Wos1=Qu(wy) (=0, 1, ). (3. 4)

We will need later the following lemmas :
1 1\? 1 1
Lemma 3 If —2~<6 +~-2~> <8 —7(0+—2—>,
then
( 7 +i>X +1
BX*+6X+1

l

il/\

g_l—

- v 1 _X
where the sign of equality holds only for X =0.
Lemmad If —/ b <a=0, then

I atyb

Lm%g‘a+¢b—wa+J31X

(x<1)

J—"“ (xX<1)

where the sign of equality holds only for X =0.
Here, in Ref. 4), it has been shown that
Lemma 3 holds.
As to Lemma 4, in Ref. 5), it has been shown
that if —y & <a=0, then
0<— at Vb
a+ J b—Jb (a+Vb)X

<

= Jl-—Jf— (X <1).
Therefore, it suffices to show that if —y b <a=
0, then

a+J/b—yb (a+/b)X
é(awh/T)(lw%;X) (X<1). (3.5)
In order to show that Eq. (3. 5) holds, putting

P(X)=(a+m<1—%X>
~{a+Vbo—Jb (a+/b)X},

we must show that P(X) is non-negative for X
<1.
Now, since

P(X)=+(a+/b)
{ /b _ 1}
Vo—Vb (a+/b)X ’
P(X)<0 (X<0)and P(X)>0
(X >0).
Hence, P(X)= P(0)=0.
Thus Lemma 4 is completely proved.
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Let f(x) be given by the form in Eq. (1.1).
Then it follows from Rolle’s theorem that f"(x)
has »—1 real zeros ¢, so that

G=GS G (k=1 r— 1).
Especially, if £, < &uy1, we have &< &< &upr.

For any real x distinct from ¢, and &, we can
define the associated zero ¢(x) of f(x) to be
)=4if x<&, (()=& if x>¢&, Lx)=8
if &<x<&, and {(x)=E if GH<x< Gate

If §o=8(k=2, -, r), then we can define the
associated zero &(x) of f'(x) to be &(x)=& if x

#gl.
In addition, we have sgn(A(x))= sgn(x
—&(x)).

By applying sgn(#(x))=sgn(x— £(x)) to The-
orem 1 in Ref. 4), we have :
Theorem 5. Let f(x) be given by the form in
2
Eq. (I.1). Then, if —é—<e+»;—) g5§~%<9
1
2
Eq. (3.3) z such that f(z)f"(2)=+0, then we
have
24 8(z) (W(2)>0) and z: 1 ¢(z) (A(z)
<0) (=0, 1, ).
Also, by applying sgn (A(x))=sgn(x—¢(x)) to
Theorem 2 in Ref. 5), we have :
Theorem 6. Let f(x) be given by the form in
Eq. (1. 1). Then,if —/b <a=0 and if we take
the real starting value in Eq. (3.4) wy such that
S Ow)f(wp)==0, then we have
wad §(wp)  (A(we)>0) and w, 1 &(w)
(A(wm)<0) (=0, 1, --).

Furthermore, for 8= —%(6 + %)( —%é 0

._<__—i>, Eq. (3.3) coincides with Halley’s

2
method. For b=1, Eq.(3.4) coincides with
Hansen and Patrick’s methods.® For b=1 and a
=0, Eq.(3.4) coincides with Ostrowski’s
method.

Next, as to the convergence speed, we have :

Theorem 7. Let f(x) be given by the form in
2
Eq. (1.1). Then, if %(M%) §B<—%(6

), and if we take the real starting value in

+%> and if we take the real starting values x,,

o and z respectively in Egs. (3.1), (3.2) and
(3.3) such that xo=yo=z, and f(x)f"(x0)
S 7(x)=+0, then we have

Ex0) < xp<zy<yn (1(x)>0) and
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C(;CO) >x2>22> Y (h(x0)<0) (n=1,2,
Proof. Assume /4(xp)>0. Then, from Lemma 3
x1<z1< 1. On the other hand, from Theorem 6,
Theorem 5, the definition of ¢(x), and sgn(A(x))
=sgn(x—¢(x)), we have

¢(xo)=¢(zn)<xi<z<y and A(z)>0.
It now follows from Theorem 1, Lemma 3 and
Theorem 3 that

@1(x;>< @1(21) = Qs(ll)é @2(21)< (Dz(yl)
that is

%< 0(2) S 2= 02) < .
Therefore, similarly, we see that

E(x0)=8(2) < x2< 2,< 35 and h(z5) >0.

Consequently, by repetition of the same dis-
cussion, we have

Ex0) <xXa< 2 < pn.  (n=1,2, ).

Next, if 4(x) <0, the discussion is completely
symmetric. ~ Thus Theorem 7 is completely
proved.

Furthermore, we have :

Theorem 8. Let f(x) be given by the form in
Eq. (1.1). Then, if —/ b < a<0, and if we take
the real starting values xo, Jo and ws respectively
in Egs. (3.1), (3.2) and (3.4) such that x,=y,
=wp and f(x)f (x0)f"(x)=0, then we have
E(x0) < Xn < Wu< pp. (A(%)>0) and
E(X0) > X2 > W > 1. (M(x0)<0) (n=1,2,
).
By using Lemma 4, Theorems 1, 3 and .6, this
theorem can be proved in a way similar to that
of Theorem 7.

Next, let f'(x) be given by the form in Eq. (1.
2), and the distinct zeros of f(x) be ordered
consecutively so that 7<7. Then, since the
right hand side of Eq. (2. 6)" is positive, we see

that 1} <(j:)) is monotonically decreasing in the

open interval (7, 71). Furthermore, since lim

X-70+0
§,(<§)l= +co, I{i;}l_o J}T(jc—c)l:—m, we see that
//(x) has exactly one zero 7; in the open interval
(70, 71). Then, for V x& (70, 70) U (75, 71) we can
define the associated zero a(x) of f{(x) to be
alx)=no if p<x<7q, and a(x)=7p if pp<x<
7. In addition, we have sgn(A(x))=sgn(x
—a(x)). By applying sgn(/(x))=sgn(x— a(x))
to Theorem 2 in Ref. 4), we have:

Theorem 9. Let f(x) be given by the form in
Eq. (1.2).
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Then, if i(e+l)2<ﬂs—i(9+—l~) and
? 2 2)=F= 2 27

if we take the real starting value in Eq. (3. 3) z
such that £ (2)f (2)%0 and z is neither less nor
greater than all @, then we have
2 b () (h(z)>0) and z, T () (A(z)
<0) (n=0,1, ).
Also, by applying sgn(A(x))=sgn(x— ¢(x)) to
Theorem 1 in Ref. 5), we have:
Theorem 10. Let f(x) be given by the form in
Eq. (1.2). Then,if —y/b <a<0, and if we
take the real starting value in Eq. (3. 4) wyp such
that £(wo)f"(w)5=0 and wy is neither less nor
greater than all &, then we have
wa b a(wo)  (A(wy)>0) and w, T a(wp)
(h(wp)<0) (n=0, 1, -+-).
Furthermore, we have two theorems analogous
to Theorems 7 and 8. More precisely :
Theorem 11. Let f(x) be given by the form in

) YA
Eq (1.2). Then, 1f7<0r2>§,6’< 2(6

+—%~) and if we take the real starting values xy,

v and z respectively in Egs. (3.1), (3.2) and
(3. 3) such that xo= =2, f (x0)f (x0)f"(X0) #0
and x, is neither less nor greater than all @, then
we have
a(x0) < X0 < 20 < Py
a(xo) > Xn > Zn > P

(h(x5)>0) and
(h(x)<0) (n=1,2,

Theorem 12. Let f(x) be given by the form in
Eqg. (1.2).

Then, if —v 5 < a<0, and if we take the real
starting values xo, yo and wy respectively in Egs.
(3.1), (3.2) and (3.4) such that xo= o= wy,
f{xo)f(x0)f"(%)#0 and x, is neither less nor
greater than all ax, then we have

(%) < xXn < wn<yn (A{x)>0) and
a(x0) > X, > W >ya (A(x)<0)  (n=1,2,
).
By using Lemma 3, Theorems 2, 4, 9 and 10, we
can prove Theorem 11 in a way similar to that of
Theorem 7. Similarly, by using Lemma 4, Theo-
rems 2, 4 and 10, we can prove Theorem 12.

4. Concluding Remarks

(a) Inthis paper, when we find the numerical
solutions of the zeros of a polynomial with only
real zeros or an entire function of genus 0 and 1
(and in certain cases of genus 2) with only real
zeros by using the methods mentioned above, it
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is shown that with regard to the convergence
speed, Ostrowski’s method is the fastest, Halley’s
method is the slowest and our methods are
intermediate.

(b) We consider the case where we find the
numerical solutions of Eq. (1.1) or Eq. (1.2)
by using the method (3.3). Let us denote the
iteration function of Eq. (2.3) by D x, G, B).

Then if for any fixed 86( 3 ) Bo and

are given by —5(6+7) = B< ,81=—7<¢9
+%>, then the following inequality holds.

(6+5)x+1_(6+5)x+1

BXET X 1= BX?+ X 11"
Furthermore, if @s(x, 8, fo) or @sx, 6, B1) is
monotonically increasing function, then it can
be seen that the method (3. 3) for =4, is faster
than that for A= /#; under the same assumptions
as those on Theorem 7 or Theorem 11. We will
continue to consider the convergence speed in
our methods.
(c) We consider the case where Egs. (1. 1)
and (1.2) have complex zeros. Let ¢ be any
real zero of Eq. (1. 1), and £; also be a zero of
Eq. (1. 1) if & is any complex zero of Eq. (1. 1).

o 1R .
Thel’l, if A kgl (.xéé/k)z (x_é,)z >O, 1t can

be seen that both Theorems 5 and 6 hold(see
Remarks (a) in Ref. 4)]

7 1 3/2
Furthermore, if Z = Ck)g /{’gl = Ck)z}
<1, then we have both Theorems 7 and 8.

Similarly, let @ be any real zero of Eq. (1.2)
and @; also be a zero of Eq. (1.2) if @; is any
complex zero of Eq. (1.2).

A 1 }
Then, Ifh{ +2c+kz G—a)

hZ
(x—a)

3 2
>0 and {p-f—x };m(x_ak)g}/{pnthx
3/2
+x? —1—2} <1, then we have both The-
L(X a/)

orems 11 and 12.
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