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Factorization of Noncommutative Polynomials
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Two factorization methods of a polynomial with noncommutative multiplication are proposed.
One of the methods factorizes a noncommutative polynomial by computing coefficients of factors as
factorization by constructing and solving several equations. We call this the naive method. This is
simple, but does not factorize efficiently. To do this efficiently, an alternative method is proposed,
which is called the constant term method. This factorizes a noncommutative polynomial in one of
two ways according to its constant term. If the constant term of a polynomial is zero, the polynomial
is factorized by classifying its monomials based on the leftmost and rightmost variables and by linear
combinations of polynomials. An irreducible factor is obtained from this factorization. If its
constant term is not zero, first, the constant term is reduced to zero by linear transformations of
variables and an extension of the coefficient field, and then, the polynomial is factorized in the same
manner as when a constant term is zero. After that, by computing the least common multiple, an
irreducible factor over the original domain is obtained from irreducible factors over the extension
field. This method, however, cannot be applied to noncommutative polynomials whose constant
terms cannot be reduced to zero. To factorize such noncommutative polynomials, the former method
is used. It is shown that the latter method is faster than the former. In the two proposed methods,
factorizations over a finite field are not used explicitly, comparing with the factorization algorithms
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for usual commutative polynomials.

i. Introduction

Factorization algorithms of commutative
polynomials have been well researched and
developed. Such algorithms, however, cannot
factorize polynomials whose multiplications are
not commutative ; e.g., polynomials whose vari-
ables represent matrices, In this paper, we
propose two factorization methods for
polynomials with noncommutative multiplica-
tion.

One of the methods factorizes a polynomial by
simply computing coefficients of factors as
factorization by constructing and solving several
equations (Subsection 3.1). We call this the
naive method. This is simple, but does not
factorize efficiently. To do so efficiently, an
alternative one is proposed, which is called the
constant term method (Subsection 3.2). This
method factorizes a polynomial in one of two
ways according to its constant term. When a
polynomial with a zero constant term is given, it
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is factorized into four factors including an ir-
reducible one by classifying monomials of the
given polynomial based on the leftmost and
rightmost variables and by linear combinations
of polynomials (Subsection 3.2.1). On the other
hand, for a polynomial with a nonzero constant
term, the following procedure will be applied :
first reducing a constant term to zero by linear
transformations of variables and an extension of
the coefficient field, then carrying out the factor-
ization over the extension field as a polynomial
with a zero constant term, and finally computing
the least common multiple to obtain an irreduc-
ible factor over the original domain from the
irreducible factors = over the extension field
(Subsection 3.2.2). An irreducible factorization
is obtained by repeatedly applying them (Sub-
section 3.2.3). However, the method for reduc-
ing a constant term to zero cannot be applied to
noncommutative polynomials whose constant
terms cannot be reduced to zero. In order to
factorize these polynomials, we employ the
naive method.

In general, there may exist multiple irreduc-
ible factorizations of a polynomial. In this
paper, we confine ourselves to obtaining one
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factorization because in the worst case, the
number of irreducible factorizations increases
exponentially with respect to the degree of the
polynomial.

This paper is organized as follows. Section 2
presents preliminaries and fundamental results,
Section 3 two factorization methods, Section 4
some examples, and Section 5 conclusions and
comments.

2. Preliminaries

2.1 Definitions

Noncommutative polynomials are similar to
usual polynomials except that variables in a
term are not commutative.

Let a number field % be a coefficient domain
and ¥ a finite set of variables. Since we are
interested in actual implementation and practi-
cal use of algorithms on computers, the opera-
tions such as addition, multiplication, and
factorization of % should be able to be im-
plemented -on computers.
variables, including an empty product represent-
ed by 1, a monomial as the product of an
element of & (called a coefficient) and a term,
and a noncommutative polynomial as the sum of
finite monomials, including an empty sum re-
presented by 0. The sum and product of non-
commutative polynomials are defined in an
obvious manner, e.g., (Xl a:1;) (21bu;) :iZal»bjtl-uj,

12 J »J

where a; and b; are coefficients, # and u; are
terms, and f;u; is also a term. A noncom-
mutative polynomial is also called a string
polynomial or a free associative J -algebra
[Ref. 1), p. 418].

Let # <X > denote the set of noncommutative
polynomials over % with variable set 2. The
set A <¥> is a noncommutative ring, and % as
a commutative subring of %< %> is the center of
HLE>.  This obviously is not a Euclidean
domain, and for the factorization of
polynomials, we cannot employ Berlekamp’s
method® and its various refinements (cf. Ref.
3)) using factorizations over finite fields.

We will assume in the rest of this paper that ‘a
polynomial’ means a noncommutative
polynomial to avoid repetitious expressions.

The degree deg(¢) of a term ¢ is an integer n,
if 1=Xs0)Xo'* Xo(n), where XsyE¥. In par-

Nov. 1993

ticular, deg(¢) =0, if t=1. Although this degree
is also called ‘total degree,” or ‘length,” we will
call it simply ‘degree’ in this paper. The degree
deg(m) of a monomial m is defined as the
degree of its term, and the degree deg(P) of a
polynomial P as the maximal degree of
monomials with nonzero coefficients in P.

A monomial with degree 0 is called a con-
stant term. A polynomial P is said to be zct if
the constant term of P is zero. Otherwise, P is
said to be nzct.

Each of the polynomials P, P,, -+, P, is called
a factor of a polynomial P, if P=P,Py--P, (n
>1). A polynomial is irreducible, if there are
no factors in F<E>— X except itself, or reduc-
ible. A polynomial is said to be factorized, if it
is represented by PP+ P,. When each factor of
a polynomial belongs to H<¥>—X and is
irreducible, then the polynomial is said to be
irreducibly factorized and such factorization is
called irreducible factorization.

Polynomials P, and P, are called left and
right factors of a polynomial P, respectively, if
P=P/P,. We will also say that P, left-divides P
and P, right-divides P, and denote the right and
left factors P, and P, by P\P; and P/P,, respec-
tively (ie., Pr=P\P; and P,=P/P, hold).

In order to exclude the uncertainty of
polynomials with respect to a unit multiple of
A, like ‘monic’ of commutative polynomials, we
assume that the coefficient of the leading term of
a polynomial or a factor is 1, if it does not lose
generality. The leading term is defined by an
appropriate ordering, for example, ‘total degree,
then lexicographic’ [Ref. 4), p.71]. The
coefficient of the leading term is also called the
leading coefficient.

We note that a polynomial may have two or
more irreducible factorizations while that of a
commutative polynomial is unique up to a unit
multiple. For example, for X, YcC %, a
polynomial XYX +X has two irreducible
factorizations; (XY +1)X and X (¥YX +1). In
the worst case, the number of irreducible factor-
izations increases exponentially with respect to
the degree. Since we are interested in efficient
algorithms and wish to avoid exponential
computing time, if possible, for practical use, we
will attempt to obtain only one irreducible
factorization.

Replacement will be specified by square
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brackets and slash ‘[/]. For example, an expres-
sion ‘A[B/C] represents replacement of C by
B in A. Subscripts / and 7 usually mean left and
right factors, respectively, of an original
polynomial or a certain polynomial. If those
subscripts are sequentially arranged, they will be
interpreted from left to right. For example, £,
represents a left factor of P, P,, a right factor of
P,, and P,,; a left factor of Py,

As an example of noncommutative poly-
nomials, let % be the rational number field Q,
F={X,Y},P=Y?’X-2XY+2X+3Y,and P,
=XY2?2X+X?+XY+YX+1. Polynomial P,
appeared in [Ref. 5), Expression (5.9)]. Then
Py, P,C QKXY deg(Py) =3, deg(Py) =4, Pris zct,
and P, is nzet. PP=Y?X*Y?X —2XYXY?X
F2X2Y2X H3YXY X+ YAX3+ YEXPY +
Y2XYX - 2XYX?—2XYXY —2XY*X +2X°
+ 2X2Y 4 2XYX + 3YX?*+ 3YXY +4Y%X
—2XY 42X +3Y. 2P+P=XY'X+2Y°X
4+ X?-3XY+YX+4X+6Y+1. Both P, and
P, are irreducible over . However, P, is
reducible over ((i). There are two irreducible
factorizations of P, over Q(i); Pe= (XY +iX
+D(YX—iX+ 1) =(XY—-iX+1D)(YX+iX
+1). This shows that, as in the case of com-
mutative polynomials, irreducibility depends on
the coefficient domain.

2.2 Euclidean algorithm

We define a common multiple and a common
divisor of polynomials. If PyPr= PiaPre, PuPri
and P,y P, are called common right multiples of
P, and Py, or common left multiples of P, and
P,,, where P, Py, Py, and P., are polynomials.
If there are some polynomials P;; and Pj; such
that P,=P, P, and P,=P,P,, P, is called a
common right divisor of polynomials P, and P;.
A common left divisor is similarly defined.

A least common left multiple Iclm (P, Py) is a
common left multiple of P, and P, and a right
factor of any common left multiple of P, and P.
A greatest common right divisor gerd (P, Py) is
a common right divisor of P; and P, such that
any common right divisor of Py and P; is a right
factor of gerd (Py, P,). A least common right
multiple lcrm, and a greatest common left
divisor geld are similarly defined. They have the
following property.

Proposition 2. 1 Each of lclm, lerm, geld, and
gerd is unique up to a unit multiple.
Proof. We carry out the proof for only lclm
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and gerd.

Suppose there exist two lelm’s of polynomials
P, and P,, say P, P, and P,P.. Because PP
right-divides PP, and vice versa by the
definition of Iclm, P;; Py=uP;,P; for some ue ¥

Suppose there exist two gerd’s of P, and P,
say P, and Pr,. Similarly as above, Py, right-
divides P,, and vice versa, and so P = uP,; for
some uE X . O
Each of lclm, lerm, gerd, and geld is unique by
our convention.

When there exist polynomials Py, P, Pri,
and P, such that P, Py=P;P,s, Cohn® found
a Euclidean algorithm which computes the least
common left and right multiples lclm (Pry, Pra)
and lerm ( Py, Pr2), and the greatest common left
and right divisors geld (Py, Pr2) and gerd (P,
P,,). The algorithm is given in [Ref. 1), p. 419]
and shown in Fig. 1. In the algorithm of Fig. 1,
the relation =0 can be used instead of #,=0 in
Step 2.1, and we can find such Q that w=0w
+ R’ and deg(w) >deg(R’) instead of Step 3.1.
If only lerm(Py, Pw) or geld(Py, Pp) are
required, the variables v, w, z, and z’ need not
be calculated. Conversely, when only lclm ( Py,
P,,) and gerd(Pr, Prs) are required, the vari-
ables w, t,, w, and w’ need not be calculated.

2.3 Coefficient domain and irreducibility

In this subsection, we describe irreducibility
of polynomials over % and over an extension
field of A .

Let @ be a root of a minimal polynomial P,
with degree d, over } and J the minimal
splitting field of P,. There are dn conjugates of
a. Let a, a, ..., a1 denote the conjugates of
@, and C be {a, a1, .... Gam-1}-

Let P be a polynomial over #n, which is
irreducible over . Then P may be reducible

Algorithm : Euclidean algorithm

Input. Polynomials Py, Piz, Pr1, and Pry such that Py Py = PaPra.
Output. gcd(Pu, P), lerm(Py, Piz), gerd(Pra, FPrz), and lelm(Pry, Ppa).
1. (Initialization) -

1.1 (w1, u2,21,v2) = (P, P2, Pr1, Pra)

1.2 zewe1l; 2w 0,

2. (Check)

2.1 if vy = 0 then

2.2 return  lerm(Py, Po) = Puw ;  geld(Pr, Pia) = us ;

lelm(Pry, Pra) = 2Py gerd( Py, Pr2) = v
3. (Division)

3.1 Find Q and R such that
uz = u1Q + R and deg(w1) > deg(R) ;
3.2 (w,w', 2,2/, 01, u2,v1,v2)

(W - wQ,w, 2,z — Q2 Uz ~ u1Q, U1, 2,01 — QU3)
3.3 goto 2. ;

Fig.1 Euclidean algorithm.
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over #n (eg., P, in the example of Subsection
2.1). Suppose that P is factorized as P=P,P,,
where P, and P, are the left factor and irreduc-
ible right factor of P over ¥, respectively.
Then, each polynomial P.[e;/e] for a;€C is
also an irreducible right factor over J,.

Let C’” be a set of @’s such that all P,[a;/
a]’s are distinct for @;& C’. There are (dn/n)
conjugates a;’s, including @, such that P,[a;/a]
= Pr[a;/a], where n is the number of elements
of C’. By the fundamental theorem on symmet-
ric polynomials, P is equal to the lclm of all
P.la;/a]’s of ;€ C’. Tt follows that C’ is a
minimal set among subsets of C such that
1C1mdiEC’(P7'[af/a]) =P

Symmetrically, P=Ilcrmg,ecr (Ple/a]) also
holds, where C” is a set of conjugates of @ such
that all irreducible left factors Pfa/a]’s are
distinct for ;& C”. This C” is a minimal set
such that the equality holds.

In Subsection 3.2.2, we will compute an ir
reducible factor over % from the Iclm of irreduc-
ible factors. over Hn. This corresponds to
finding C’.

3. Factorization

In this section, we present two factorization
methods.. First, in Subsection 3.1, the naive
method is presented. Next, in Subsection 3.2, the
constant term method is presented.

3.1 Naive method

The naive method is a trivial one and its
implementation ‘is simple.

Let P be a polynomial with degree d;+d,,
and P; and P, left and right factors of P with
degrees d, and d,, respectively (P=P,P,). Let
P:Zditi, P[:Z}bjuj, and Przgckvk, where

a;, b;, and ¢, are coeflicients, #;, u;, and v, are
terms, and the values of @; and # are known. By
our convention, the leading coefficients of P, P,,
and P, are equal to 1. A polynomial P is
factorized by solving the following equations for
b; and c¢y:

a;== Z bjck. (31)

L= U0k
Expression (3.1) is referred as a decomposition
equation of degrees (d,, dr) or simply a decom-

position equation.
The degrees of terms u; and v, are less than or
equal to d; and d,, respectively, and these terms
are chosen from left and right parts of ¢, ie., the
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sets of »; and v, are determined by {u;} ={¢|;=
1’ for some term ¢/, a;+0, deg(¢) < d}, and {v}
={t|t;=1't for some term ', a;=+0, deg () < d,}.
In order to solve the decomposition equations,
we can employ, for example, computation of the
Grobner basis and factorization of commutative
univariate polynomials over #. If there are
solutions of the decomposition equations of
degrees (d;, dr) over X, it indicates that P is
factorized into the left and right factors with
degrees d; and d,, respectively. If P is factorized
into P, and P, such that the degree of P, is
minimized, then P, is an irreducible left factor
over #. By repeatedly finding such left factors,
P will be irreducibly factorized.

We note, in this method, the need to construct
and solve the decomposition equations for every
degree in order to irreducibly factorize a
polynomial. In the worst case, for an irreducible
polynomial, we must construct the decomposi-
tion equations, attempt to solve them, and then
fail to solve them for every degree. Finally, it is
found to be irreducible. The rest of this section
is devoted to the constant term method which
avoids such inefficient factorizing.

3.2 Constant term method

The constant term method is composed of two
parts. One part, described in Subsection 3.2.1, is
for polynomials with zero constant terms, and
the other, described in Subsection 3.2.2, for those
with nonzero constant terms. Irreducible factor-
ization of the constant term method is described
in Subsection 3.2.3.

3.2.1 Factorization of zct polynomials

Let P be a zet polynomial.

In this subsection, we show how to factorize P
into four factors as P= P, P,.P,P,, where Py,
is irreducible over % and zct. In Fig. 2, the
configuration . of this factorization is shown;
each rectangle represents a factor, and numbers
in square brackets represent the steps of the
factorization procedure described below.

Step 1: We first factorize P as P= P,P,, where

(nzct) Py
Py Py (zct)
Py (act) P, (nzct)

Py (zct, irreducible)

[3]
2]
(1]

P=

Fig.2 Configuration of the factorization of a zct
polynomial.
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P, is nzct and of the maximal degree (deg(P,)
>0 and deg(P,) =>0). The uniqueness of P; and
P, is shown below.

Lemma 3.1 The factors P, and P, are
unique up to a unit multiple.

Proof. If there were two such right factors as
P., then there would exist the Iclm of these
factors. It is nzet again and its degree is greater
than that of original factors, which is a contra-
diction. O

Thus, they are unique by our convention.

We classify P according to the leftmost vari-
ables. Let P::XE CiXiPl' (P,:#:O, .%'lg j{, e
H —{0]), where the leading coefficient of each
P; isequal to 1. Each P; is uniquely determined.
Since P is zct, P, is a right factor of each P,. We
will find P, from P/s.

Lemma 3.2 If P; defined above is nzct and
right-divides P, then such P; is equal to P,.
Proof. Trivial by Lemma 3.1. 3

Lemma 3.2 shows that P is factorized into
P, (=P/P;) and P.(=P;) if the maximal degree
is 1 in the monomials with the leftmost variable
X; of P;. As a special case, P is factorized into
P, and P, by finding P, if deg(P,) =1.

If P; is zet or does not right-divide P, P, is a
right factor of P; again, and the degree of P; is
decreased by one comparing with that of P.
Now, suppose that each P; is zct or does not
right-divide P. As an induction hypothesis, we
assume that a zct polynomial can be factorized
into a zct left factor and an nzer right one with
the maximal degree among nzct right factors,
where the degree of the zct left factor is less than
that of P,.

If P; is zct, P; is factorized into such left and
right factors, say P, and P;, respectively, by the
hypothesis (P;=P;P;,). If P; is nzct, let Py=1
and P, =P,

Lemma 3.8 There is a relation between P,
and P;’s as follows:

Pr:gcrdXiE?z(Pz‘r) . (32)
Proof. Since P, is a right factor of each P;,,
P, is aright factor of gerdx,ey,(P;r). The degree
of P, is'the maximal in the nzct right factors of
P. We have therefore Pr=gcrdyey,(Pir). [

In particular, if P;, right-divides P, then P;,=
P, and P is factorized into P,(=P/P; ) and
Pr(:PM’)-
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If P;,=P;,, for any X;, and X,(E %), then
every Py, is equal to P,. So, we assume that P;,,
=Py, for some X;, and X,,. If the gerd of P,
and P, can be computed, we can compute
expression (3.2). When there do not exist Py
and P;; such that Py P;,, = P,P,,,, the Euclidean
algorithm mentioned in Subsection 2.2 cannot
be applied to them due to its condition. Never-
theless, the following discussion shows the possi-
bilities of its computation.

For P;, and P,,, we choose a and b=}
which satisfy the expression

aPi1r+bPi27’ (33)

is zct and its leading coefficient is equal to 1. We
obtain nzct right factor, say Pj, with the maxi-
mal degree among nzcr right factors from expres-
sion (3.3) by the hypothesis. Factor P; also
contains P, as a right factor. In contrast with P,
let P/ be the left factor of expression (3.3) (ie.,
aP;;+ bPy,= P[P]). Then both gerd’s of
P; and Pyr, and of P/ and P;,, are equal to that
of P;, and P, as follows.

Lemma 3.4 Both gerd (P, P,,,) =gerd (P;,y,
P,;) and gerd (P7, Py,y) =gerd (Py,,, Piyr) hold.
Proof By the construction of P/, gerd (Py,,,
P,;) is a common right factor of P} and P;,,.
Gerd (P7, Pyyy) is also a common right factor of
P, and P,,,. It follows that gcrd (P;,,, Piy) =
gerd (P, Pi»). In the same manner, gerd (P,
P;,,) =gerd (Psy, P,r) holds.

If P; right-divides both P;,, and P,,,, P;=gcrd
(Pir, Pyr). Otherwise, suppose that deg(2;,,)
>deg(Psr). Since deg(Py) <deg(P;,), we can
finally obtain the gerd of Py, and P,,, by apply-
ing the above argument to P,,, and P;.

As we have indicated above the computation
of gerd (Pi,r, Pyy), Py is obtained by expression
(3.2), and P, is obtained by P/P,. Consequent-
ly, any zcf polynomial is factorized into a zct left
factor and an nzcr right one with the maximal
degree among nzct right factors.

In Fig.3, we show the algorithm ‘nzrf’
obtained from the above argument, whose name
stands for ‘nzct right factor.” The input of nzrf
is a zct polynomial P and nzrf returns the nzct
right factor P, with the maximal degree among
nzct right factors of P. The variable Q repre-
sents a list of P;’s. Functions car and cdr return
the head element of a list and the rest, respective-
ly. A function ct returns a constant term of a
polynomial. The input of the subalgorithm
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Algorithm : Factorization algorithm 1 ( narf )

Input. Zct polynomial P.
Output.  Nzct right factor P, with the maximal degree.
1. (Initialization)
11 Qe {P|P= ¥ aXiP,Pi#0,% CX,c €Xx~{0},
Xi€x,
Leading coefficient of P;is 1} ;
1.2 P —car (Q); Q « cdr (@) ;
1.3 if ct(P;)=0then
1.4 P, « nzrf(P);
2. (Check)
2.1 if P right-divides P then
2.2 return P, ;
3. (Gerd)
3.1 P! car(Q); Q « cdr(Q);
3.2 if ct(P]) =0 then
3.3 Pl e nzrf(Pl) ;
3.4 P, gerd' (P, P s
3.5 goto 2.

Subalgorithm : Special gerd algorithm ( gerd' )

Input. Nzct polynomials Py and Ps.

Output. Greatest common right divisor of P and P,.
4.1 If deg(P1) < deg(P;) then (P1, Py) — (P, P1);
4.2 If P, right-divides Py then

4.3 return Py ;

4.4 P, — nzrf(aPy + bPy)

where aPy + bP; is zct, its leading
coefficient is 1, and a,b € ¥
4.5 return gerd' (Py, B,) 5
Fig.3 Factorization algorithm nzrf for a zet
polynomial.

gerd’ is two nzet polynomials and their greatest
common right divisor is returned. At Step 4.4 in
this algorithm, when nzrf is applied to aP,+
bP,, deg(P) >deg(aP,+ bP,) holds. At Step 4.5,
when gerd’ is recursively called, deg(Py) >deg
(P,;) holds. We described above that first all
P,’s are obtained and then their gerd is comput-
ed. The algorithm, however, examines whether
the gerd of two polynomials right-divides P in
order to omit unnecessary computation at Step
2‘ N

Step 2: We now show how to find a right
factor of P, say P,, with the maximal degree
among the right factors which contain just one
zcet irreducible factor. Let Py be a left factor of
P, in contrast with P, such that P;=P,P,,. If
there is one zct irreducible factor in P, P, will
be equal to I. Otherwise, any right factor of
P, will be zct.

The factors P;; and P;, are unique up to a unit
multiple, similarly to Lemma 3.1. This is proven
below.

Lemma 3.5 The factors P, and P, are
unique up (o a unit multiple.

Before proving the lemma above we prove the
lemma below.

Lemma 3.6 Let P, and P; be zct irreducible
factors of  a polynomial P such that PP, is
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also a factor of P. Then, there do not exist
polynomials P and P; with degree one or more
such that P,P,=P;P] except P,=P] and P,=
Py

Proof. Suppose such P; and P; exist. By Ref.
5), Corollary 3 of Theorem 4.1, P;=f1(a, ...,
Ani1), Pr:fn(an, e 1), Pl,:fn(al, vees an), and
Pi=fy11(ans1, ..., @) hold for some integer n
and polynomials @, ...; @,+1. We show:below
such »n and a, ..., @,+; do not exist by induction.

For n=1, assume both fi{a) and fila, a)
are zct. Both expanded formulas are @; and
a az+ 1, respectively. If a; is zet, aa+ 1 is not zct.
Therefore, both f; (@) and f;(ai, ) are not zct.

Next, as induction hypothesis, we assume both
fi-1(ay, ..., a;i-) and fi(ay, ..., a;) are not zct.
Then, both ﬁ(ab vish ai) and f;+1(a1, eens ai+1)
are not zct as shown below. Suppose both are
zct. This means that fiy (@, ..., @+1) =fi (@, ...,
a;) i+ fior (@, ..., @i-1) 1s zct and its first part
fila, ..., ;) ai1 is also zet. Tt follows fioy(a,
..., Q;—1) is zct, which is a contradiction. |
Proof of Lemma 3.5. Suppose there exist
two polynomials, say P, and Py, as P, Each
of them includes one zcz irreducible right factor.
By Lemma 3.6, the zet irreducible factor of Py
is equal to that of P If Py Piys, then lclm
(Pir1, Pira) exists and its degree is greater than
max (deg(P;r1), deg(Prr2)). Although the Icim
satisfies the condition to be P, this is a contra-
diction.

By the uniqueness of P, that of Py is trivial.

]

We describe below how P, is factorized as P
=P, P;,. We classify P, according to the right-
most variables. Let Pi= >} ¢;PuX;(P;=*0, ¥

XEX,
C %, ;=X —{0}), where the leading coefficient
of each P, is equal to 1. Fix an arbitrary
variable X;(€%,) and the corresponding
polynomial P,. This P, contains Py, as a left
factor, because any right factor of P, is zct.

If the maximal degree of the terms with the
rightmost variable X; in P is equal to 1, then
Py; must left-divide P,, P;,=Py;, and P, =P\Py,.
In particular, P; is factorized into P, (=Py;) and
P, (=P\P;) by finding P.’s, if deg(P,)=1.
As an induction hypothesis, we now assume that
a polynomial, any right factor of which is zct,
can be factorized into left and right factors such
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that the right one is of the maximal degree
among the right factors which contain one zct
irreducible factor, if the degree of such right
factor is less than deg(P,,).

In the case when Py is nzct, there exists just
one zct irreducible factor in P,. Hence, P,=
P, and P;=1 hold.

In the case when P, is zct, nzrf can be
applied to Py.

Lemma 3.7 The expression Py/nzrf (Py)
contains Py as a left factor.

Proof. Polynomial P, contains P, as a left
factor.

When P,=1, this lemma is trivial. So, we
assume in the rest of this lemma, P, is zct. If
PPy is nzet, Py/nzrf (Py) is equal to Py by
Lemma 3.5. Otherwise, there exist zct factors
placed to the right of Py in Py. So, Py/nzrf
(Py) contains Py, as a left factor again. ]

If Py/nzrf (P;) left-divides P, then P is
equal to P,/nzrf (Py;). Otherwise, by the
hypothesis, P,;/nzrf (P) can be factorized into
the left and right factors such that the right one
is of the maximal degree among the right factors
containing one zct irreducible factor. It follows
that: Py, is found by inductively repeating the
above argument until it is found that either P,
contains only one zct irreducible factor, or the
left factor, corresponding to 2,/ nzrf (Py), left-
divides P, Then, P, is obtained by P\Py.
Consequently, any P; can be factorized into Py
and P

In Fig.4, we show the algorithm ‘zrf”
obtained from the above argument. This
requires a zcf polynomial P, whose any right
factor is zct, and returns P, and Py,.. This name
stands for ‘zcz right factor’ in contrast with nzrf .

Step 3: We will obtain nzct left factor, say
Py, and zct irreducible right factor, say P, of
Py (Py =P Pyr), by applying to Py, the algo-
rithm nzlf which is reversal of the left and right
sides of nzrf. This nzlf stands for ‘nzct left
factor’ in contrast with nzrf.

In Fig. 5, we show the algorithm ‘decomrl’
obtained from the above argument.  This
requires a zct polynomial P and returns a list of
four factors (P, P, Pirr, Pr), where Pr, Py,
Py, and Py are the nzet right factor of the
maximal degree, the zet irreducible factor, the
nzet factor placed to the left of P, and the
remaining left factor, respectively. The labels 1.,
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Algorithm : Factorization algorithm 2 ( zrf )

Input. Zct polynomial P; whose any right factor is zct.

Output. Left and right factors of Py such that the right factor is
of the largest degree among the right factors
which contain one zct irreducible factor.

1. (Initialization)

1.1 Pio — P
2. (Classification)
2.1 fix P! such that P, = ¥ ¢ P/X;,
Xi€x
¢ € X — {0}, and leading coefficient of P/ is 1. ;
3. (Checkl)
3.1 if ct{P!)# 0 then
3.2 return (1, Py) ;
4. (Check2)
4.1 Py — P[[nzrf(P!) ;
4.2 if Py left-divides Py then
4.3 return (Py, P\ Pu) ;
44 P Py
4.5 goto 2. ;

Fig. 4 Factorization algorithm zrf for a zet
polynomial.

Algorithm : Factorization algorithm 3 ( decom1 )

Input. Zct polynomial P.
Output. List of four factors such that 2nd one from the right is zct
and irreducible.

1. (nzrf)

11 P, « nzrf(P); P « P[P, ;

2. (zrf)

2.1 (Pu, Py) « 2rf(By) ;

3. (nzlf)

3.1 Prrt  nzlf(Py) § Pier = P\ Prot ;
3.2 return (Pu, FPirt, Prery Pr) 5

Fig.5 Factorization algorithm decoml for a zct
polynomial.

2., and 3. in Fig. 5 correspond to the steps in this
subsection and the numbers in square brackets
of Fig. 2.

3.2.2 Factorization of nzct polynomials

Let fc be a natural homomorphic mapping
from noncommutative polynomials ¥< %> to
commutative ones %[ %], which simply inter-
prets addition and multiplication operators of
HLE> as those of H[X].

Some polynomials are mapped into % by £,
for example 3X?Y —XYX—2YX?+1. Since
such polynomial will be not easy to factorize by
the method mentioned in Subsection 3.2.1, we
apply the naTve method mentioned in Subsec-
tion 3.1. Otherwise, as we will show below, the
polynomial can be converted into a zct one by
linear transformations of some variables and the
extension of the coefficient field, and it is applied
the factorization method mentioned in Subsec-
tion 3.2.1. An irreducible factor over ¥ is
constructed from the factors over the extension
field by computing the Iclm. As a result, three
factors over % will be obtained, whose central
one is irreducible over #.

In Fig. 6, the configuration of this factoriza-
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€EX (S 4 cxX

P,y (nact, (4]
" Irreducible over ¥)

Vt~ Pl P:(nzct)
Qg Py RO
T T
I | [
' ! (Q'f or Q(sct))
P, (nact) P Pl 2
e (zct) (nzct) (2]
(nsct) (sct, irreducible
B, Py P, %) Plnuct) (1)
(decoml)

P =

Fig.6 Configuration of the factorization of an nzct
polynomial.

tion for an nzct polynomial is shown. The
lowest rectangle with thick lines represents a
given polynomial to be factorized. Each rectan-
gle represents a factor. Numbers in square
brackets represent the steps of the factorization
procedure described below. Dotted lines repre-

sent the correspondences between factors. Sym-

bol ‘€) ’ in a rectangle indicates that the
coefficients of the corresponding factor belong to
K.

Step 1: If an nzet polynomial is not mapped into
X by f., a polynomial including univariate
monomials is obtained from the nzct polynomial
by linearly transforming some variables X; into
X +c;(;EX). We assume, without loss of
generality, that there exist univariate monomials
in a given nzet polynomial P. Let Px be a
univariate polynomial, including a constant
term, in P and X its variable. Since Px is
univariate, Px is equivalent to a commutative
polynomial over %. Therefore, it is possible to
factorize Px over #. Let Pxo be an irreducible
factor over % of Px and a a root of Pxo. From
the practical viewpoint, Pxo should be chosen to
minimize the degree of Pxo. Suppose that P is a
polynomial over % (). Then by a linear trans-
formation of X into X +« in P, a polynomial
PlX+a/X] over X (@) will be zct. To sim-
plify notation in the rest of this subsection, we
denote a transformation of X into X +a by an
overline of a polynomial, like P instead of P[X
+a/X]. Applying the algorithm decom!
mentioned in Subsection 3.2.1 to P over ¥ (a),
the factors Py, Poi, Piur, and P, will be
obtained, where Py, Py, Pir, and P, over X

Nov. 1993

(@) correspond to Py, P, Pir, and P, defined
in Subsection 3.2.1. In particular, when an
irreducible polynomial Py, is linear, it can be
factorized using linear transformation of a vari-
able only over ¥ .

We note that the constant terms of nzct
polynomials which are mapped into # by fe
cannot be reduced to zero by linear transforma-
tions of variables. Indeed, no univariate
monomials will appear in such polynomials
whose variables are linearly transformed. This
is the reason why the constant term method
cannot be applied to them.

It is shown below how an irreducible factor
over X is obtained from an irreducible factor
over ¥ (@). We will retain the notations of C,
C’, dn, and {a, ..., Qun—1} in Subsection 2.3, but
Py, denotes the minimal polynomial of ¢ and
H » the minimal splitting field of Pxo.

Spep 2: There is one zct irreducible factor in
P,r Pr. In some factorization, such factor is
P.,r. We, however, obtain the rightmost zct
irreducible factor from Py P, using nzrf and

nzlf . Let Pyr=nzlf (Pyr Py), Pl=nzrf (Pyr

E\P?wz)?ﬁd Pl = (P PA\Pirt) [ P; lie.,
Py Py =Py Py Py holds, both Py and Py
are nzct, and P74 is the rightmost zet irreduc-
ible factor of P, Pr.
Step 3: The factor P; is a right factor of P over
K. This is shown below.
Theorem 3.1 The factor Py is a right factor
of P over ¥ .
Proof. This is proven by showing that Py P
Pl Pir belongs to K< ¥ >, because P belongs to
HLE>. Suppose PuPi Py Py does not belong
to A<%>. Then, let Q be the right factor of
PP Pl Py against the maximal-degree left
factor over }. The right factor Q belongs to
HnlZE>, not X<E>. Let Q, be an irreducible left
factor of Q over ¥ ». As mentioned in Subsec-
tion 2.3, an irreducible factor over % is the lcrm
of Qfa:/al’s for a;& C. For the existence of
P/, as an irreducible right factor of Q over #,
there exist a minimal set C, of conjugates and a
conjugate @; of @ such that lerme,ec,(Qi @i/ al)
=Q/Pirr and lerMaecouian (Qd ai/al) = Q.
There also exists a conjugate ax, satisfying Q/

hrrr eI Mysecoutan (Qil @i/ @]) # Q, in the set C
- (CQ U {aj}) . Let

AlzlcrmaiECaU{dk) (Ql[az/a/])\(Q/P/lﬂr) >
and (3.4)
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Bi=lcrMa,ecouas,an (Ol ai/aD\Q.  (3.5)
Then, there exists such a B, that Pl B1=A4,B,
by Ref. 5), Corollary 3 of Theorem 4.1. Since
the constant terms of P, and B; are equal each
other, B; is zct. This contradicts the construc-
tion of P [, which is the rightmost zcz irreduc-
ible factor of P, P,. Therefore, PyuPiyi Pl
P % and Py belong to H<E>. O
Step 4: The irreducible factor, placed to the left
of PJ, over } is obtained by calculating the lclm
over K. Although there are computer utilities
to express all conjugates of @ in terms of an
algebraic number, for example the “Algebraic
Number Fields” package® of REDUCE, we will
consider that a conjugate is not expressed in
terms of an algebraic number. In the rest of this
subsection, we deal symbolically with the conju-
gates rather than algebraic numbers. We
describe below how to obtain an irreducible
factor without expressing conjugates of ¢ in
terms of an algebraic number.

Let Pirex be the sum of univariate monomials
with a variable X of P} including constant
term, and dx be deg (Prx). We note that when
all Plx|a:/a]’s for some o;’s (< C) are distinct
even if each @; is expressed in terms of an
algebraic number, then the multiplication of
them is equial to the least common multiple. The
expression dI;[C Plrex| @:/ @] is symmetric for ¢;&

C and belongs to X by the fundamental
theorem on symmetric polynomials. Let J]

a;=C
P x| i/ @)= F¢ where F is a factor in }[X]
and e is the multiplicity of F (e is an large as
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possible). We can find F and e by calculating
the square-free decomposition. Obviously, Px
is a factor of F.

Let n denote the number of elements of C’.
Then, ndx needs to be a multiple of the degree of
F (deg(F)=dxdn/e), and obviously n<d,
holds. Therefore, » is a multiple of d,/e, 1<n
< dy,. If the conjugates are expressed in terms of
an algebraic number, then all coefficients of the
multiplication of n distinct Pymx|a:/a]’s for a
&C’ belong to %4, and each one of the
coefficients is equal to that of F/" with same
degree of X.

We obtain an irreducible factor by finding #
and C’ as follows. First, we obtain a minimal
set C” of n conjugates of @, where »’ is a
multiple of dn/e as small as possible, and the
coefficients of the multiplication of n’ distinct
Purx| @i/ a]’s for @, C” are consistently express-
ed by the coefficients of F¢'/4m  Then, the
relations between elements of % and symmetric
polynomials of conjugates of C” are found. If
the coefficients of the expression Iclmg,echPirr
e/ a], which are symmetric for ¢;< C”, can be
consistently translated into elements of % using
the relations, then the translated expression, say

“rrs 18 an irreducible factor of P over %, and
n" and C” are to be equal to n and C’, respec-
tively. Otherwise, we attempt to find larger C”
and #»’ again in the same manner. We obtain »
and C’ by the existence of an irreducible factor
before n’ > d, holds.

Finally, the left factor P/(P}P7;) of P is
obtained.

Algorithm : Factorization algorithm 4 ( decom?2 )

Input. Nzct polynomial P.

Output. List of three factors such that central one is irreducible.

Assumption.

There is a univariate polynomial Px with a variable X in P.
« is a root of an irreducible factor of Px.

1. (Factorization over ¥{a))

1.1 P PX +a/X];

12 (P, Pt Por, P - decomi () ;
2. (Moving zct factor to the right)

2.1 Pl nalf(P P

22 Bl - nart((Fry PNFLY)
23 Py — (Pos NP/ P 5
3. (Inverse transformation)

3.1 B, — P (X - a/X];
3.2 P! PI{X - a/X);

4. (Translation ¥(a) — ¥)

4.1 Pl

lrrr

— ledmg;ece( Py, [@i/]), whose coefficients are translated into X,

where C' is the minimal set of the conjugates of «
such that the coefficients are translated into X'

4.2 return (P/(F, Pr), il Pr) 5

Fig.7 Factorization algorithm decom2 for an nzet

polynomial.
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Table 1 Examples with computing times.

Degree N
Number of N‘:;"  loed
No. Factorized formula terms L S
“Namber of Constant term [sec]
factors method
8 312.5
1. (XY +3X +2Y)* 73 :
1 9.1
8 325.8
2. (XY +3X +2Y +5)* 88 .
7y 14.6
8 1702.8
3. (XY +3X +2Y)* +7 74 e 2
T 33.4
4 3.1
4. XY X+ X*+ XY +YX +1 5 -
T 1.4
12 236.6
5. X3Y2X%+ X104 XSY +YX5+1 5 .
g 11.4
13
6. (AYXY + XYX)X® 4 Y I 287
T 0.8
7 3XYXWYX?+2YXYXYZ ; 49.4
: —3YW + ZX —6Y +5 1 15
7
8 3XYZXYX? +4XYXZY +TY X?Y T 84.0
T -2Y X —~ XY ~5XZ+3Y2 42X ~3Z+3 T T 79
4
2.9
9. (XY —YX +1)? 7 -
5 32)
6 105
10. (XY - YX +1)2(XY +3) 11 :
3 (4.9)

In Fig.7, we show the algorithm ‘decom2
directly obtained from the above argument.
This decom2 requires an nzct polynomial P and
returns a list of factors (P/(PlwrPyr), Plrrr, Py,
where P74, is irreducible over %. The labels 1.,
2., 3., and 4. in Fig. 7 correspond to the numbers
in square brackets of Fig. 6.

3.2.3 Irreducible factorization

An irreducible factorization over X s
obtained by repeatedly applying the algorithms
decoml and decom?2 mentioned in Subsections
3.2.1 and 3.2.2 to polynomials except the factors
which are mapped into ¥ —{0} by f.. The
polynomials mapped into ¥ —{0} by f. can be
irreducibly factorized using the naive method
mentioned in Subsection 3.1.

4. Examples

In this section, we show some examples of
factorizations over the rational number field Q
with computing times. The algorithms are im-
plemented on REDUCE3.3” by Staff LISP® on
SONY NWS-821.

We have examined factorization of
polynomials by two methods: (1) the naive
method mentioned in Subsection 3.1, and (2)

the constant term method mentioned in Subsec-
tion 3.2. The naive method uses the computa-
tion of Grobner basis and the factorization of
commutative polynomial over @ in order to
solve the decomposition equations.

Examples are shown in Table 1 with mea-
sured computing times in seconds. For the
convenience of the reader and the size of expres-
sion, all listed polynomials are given in irreduc-
ibly factorized form (over ), but our measure-
ment was made using expanded formulas.
Computing times of the upper and lower sides
correspond to the naive and constant term
methods, respectively. Degrees, the numbers of
terms, and the numbers of irreducible factors of
polynomials are also given in Table 1.

Polynomial No. 1 is zct. It can be irreducibly
factorized by decom I, since all irreducible
factors are zct. Polynomial No.2 is nzct.
Factors of No.2 are equal to those of No. 1
except for the addition of a constant term 5. By
replacing® X by X —5/3, all factors of No.2
turn out to be zct. Thus, an irreducible factor-

* It is also possible to factorize it by replacing ¥ by

Y —5/2. This simply depends on the implementa-
tion of the algorithms.
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ization of No. 2 by the constant term method is
obtained using the operations only over Q.
Polynomial No. 3 is equal to No. 1 except for the
addition of a constant term 7. This, however,
cannot be converted to zct factors only by linear
transformations of the variables over (). There-
fore, when the constant term method is used, No.
3 is first factorized over Q(q), where ¢ is a root
of a minimal polynomial* (3X)*47, which is a
univariate polynomial in No.3. Then, an ir-
reducible right factor (XY +2Y+3X—3a)
over Q(a) is obtained. An irreducible factor
over (), which is equal to No. 3, is obtained
from the least common left multiple lclmy<;<s
(XY+2Y+3X —3q), where @’s are conju-
gates of @ In the constant term method, No. 2 is
factorized 1.6 times slower than No. 1. This
difference is caused by linear transformations of
the variables over (§ of No. 2, while such trans-
formations are not necessary for No. 1. No. 3 is
factorized 3.7 times slower than No. 1. This is
due to the linear transformation of a variable
over Q(a) and the operation of the algebraic
numbers in No.3. The comparisons of the
constant term and naive methods show that the
computing times for Nos. 1, 2, and 3 of the
former are 34.3, 22.3, and 51.0 times faster than
those of the latter, respectively.

Polynomial No.4 is P, in the example of
Subsection 2.1. When the constant term method
is used, the irreducible factor over @ is obtained
by lelm(YX —iX +1, YX +iX +1), where both
YX—iX+1 and YX+iX-+1 are irreducible
right factors of No.4 over Q(i). Concerning
computing time, the constant term method is 2.2
times faster than the narve method. With No. 5,
however, which is obtained by replacing X by
X% in No. 4, the constant term method is 20.8
times faster than the naive one.

Polynomial No. 6 is irreducible. The constant
term method is 310.9 times faster than the naive
one. The great difference of the computing times
is due to the following: (1) In the naive
method, the numbers of the constructing and
solving of the decomposition equations are 12
each, which is equal to the degree minus 1. After
unsuccessful solvings, it is found that it is ir-
reducible. (2) On the other hand, in the con-
stant term method, irreducibility is established

* It is also possible that @ is a root of a minimal
polynomial (2Y)*+7.
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by only a single application of decom 1.
Moreover, the computation without linear trans-
formations of variables and extension of the
coefficient field increases the efficiency. This is a
tucky case for the constant term method.

Polynomials Nos. 7 and 8 are also irreducible.
They should be linearly transformed when the
constant term method is used. The factoriza-
tions of Nos. 7 and 8 using the constant term
method are slower than that of No. 6, but 32.9
and 29.0 times faster than those using the naive
one, respectively.

Some irreducible factors of polynomials Nos.
9 and 10 are mapped into ¥ —{0} by f.. They
cannot be irreducibly factorized using only the
constant term method. The numerical values of
the constant term method in parentheses listed in
Table 1 are the computing times whose factoriza-
tions use the naive method when it is found that
the factorizing polynomials are mapped into %
—{0} by f.. By examining whether it is mapped
into # —{0} by f. or not, it is found that No. 9
is mapped into ¥ —{0} by f., and it is factorized
using the naive method. For No. 10, when the
constant term method is applied, first the right
factor (XY +3) is obtained, and then the left
factor, whose factorized form is (XY — YX +1)2,
is factorized using the naive method. In the
factorization of No. 9, the naive method is 1.1
times faster than the constant term one. On the
other hand, in that of No. 10, the constant term
method is 2.1 times faster than the naive one.
This is due to the effectiveness of the first factor-
ization using the constant term method for No.
10. The constant term method is faster than the
naive one for total factorization time of No. 10.

5. Conclusions and Comments

We have investigated the factorization for
noncommutative polynomials, and developed
two factorization methods: the naive method
and the constant term method. The motivation
of this investigation is first to find the algorithm
of the factorization for noncommutative
polynomials, and next to prove mathematically
the correctness of these algorithms. Therefore,
in the current stage, applicability of this investi-
gation to computer algebra is not evident, but we
are convinced that, in the near future, the devel-
oped methods will be used with the advance of
computer algebra.
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The naTve method is simple, but inefficient.
On the other hand, the constant term method is
efficient, but complicated, since the method
factorizes noncommutative polynomials in one
of two ways according to their constant term.
Nzct polynomials are converted into zct ones by
linear transformations of variables to factorize
them. So, there exists a difference of efficiency
between zct and nzct polynomials. To decrease
such difference, we are now developing the
factorization algorithms without linear transfor-
mations of variables for nzct polynomials which
are not mapped into # by fe. In addition, we
are attempting to modify the constant term
method in order that it need not use the naive
one even if some factors of a polynomial are
mapped into ¥ —{0} by fe.
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