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Abstract: In the classification task, the number of labeled samples is one of the important factor for ac-
curacy, however, gathering such data is hard work since it requires diagnosing task in the field of medical
engineering, In order to overcome this problem, we introduce a semi-supervised learning (SSL) classifier for
computer aided diagnosis (CAD) for idiopathic interstitial pneumonias (IIPs). The semi-supervised learning
requires a lot of unlabeled training data, which does not require diagnosing cost, as well as labeled data. In
this study, we show the low performance classifier, which has only chance level classification performance,
would be improved to achieve around 90% accuracy performance by SSL. We also propose a pre-processing
method of gray-scale transformation for appropriate application to the SSL. Without proper gray-scale trans-
formation, the SSL might cause decreasing performance however, we find our pre-processing procedure make
increasing the performance in almost all the cases.

1. Introduction
In the medical diagnosis, the classification task is important

for the diagnosis quality. For classifying and detecting the id-
iopathic interstitial pneumonias (IIPs), high-resolution computed
tomography (HRCT) image is regarded to be effective since IIPs
affected part looks diffused in the lung [1][2][3][4][5]. Unfortu-
nately, determining the border of the site is difficult work, because
the IIPs on HRCT images show a lot of varieties in the mean-
ing of texture patterns. The quality of diagnosis is influenced by
the ability of physician, and improving the quality is desired for
proper treatment of IIPs. In order to decrease the burden of physi-
cians, development of the computer aimed diagnosis (CAD) sys-
tem is desired for objective diagnosis in these decades [1][6][5].
The CAD systems are designed to provide a classification func-
tion for second opinion using machine learning techniques.

In the field of machine learning, the supervised learning is usu-
ally used for such classification task. and it requires pairs of input
patterns and its corresponding labels for its learning. For improv-
ing the classification performance of such supervised learning
system, a lot of labeled learning data is required, however, the
obtaining cost of such data is expensive since it requires physi-
cians diagnoses to get the proper labels. On the contrary, the cost
for obtaining unlabeled data, which does not require physicians
diagnosis, is lower than that of the labeled. The semi-supervised
learning (SSL) uses massive unlabeled learning data as well as
the labeled in order to improve the performance of classification
accuracy [7].
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The IIPs sites in the HRCT images are usually diffused in the
lung, so that, we can obtain these unlabeled data easily by slightly
shifting of the labeled region of interests (ROIs). Our purpose is
to improve the accuracy performance of the CAD system for IIPs
classification using the SSL by use of such unlabeled data. In this
study, we try to develop and evaluate a classifying engine for IIPs
in the CAD system.

2. Method
2.1 Semi-Supervised Learning system

In this study, we denote the input feature as a vector x, and its
desired label as t. The supervised learning data are denoted as
pairs of the features and labels, {xn, tn}, where n means the index.
On the contrary, we use xu as the unlabeled input feature, and
denote the unlabeled data as {xu

m} where m means the index.
The fig.1 shows the schematic diagram of a simple SSL, which

is called “self-training” architecture proposed by Yarowski [8][9].
In the SSL, at first, a supervised classifier is trained by only use
of labeled data {xn, tn}. In the next step, the supervised classifier
predict labels for the unlabeled features {xu

m} with beliefs, which
mean the confidences for the labels of the classifier. Thus, the
unlabeled data can be regarded as the labeled {xu

m, t
u
m}, where tu

m is
the label by the supervised classifier. After that, we drop off the
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Fig. 1 Schematic diagram of the SSL architecture (Yarowski, 1995)[8], [9]
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low belief data by thresholding. The SSL classifier is trained by
both the labeled data for supervised learning and classified unla-
beled data with high beliefs.

This simple algorithm might be applied to the previous works
for IIPs classification[5]. However, it is hard to evaluate of the
genuine ability of the SSL by use of the complex learning sys-
tem, so that, we apply a simple naive naive Bayes classifier in this
study. Assuming the predicting label as y for the input feature x,
the Bayes classifier calculate posterior probability of P(y | x) by
use of the Bayes’ theorem, that is, we can denote the posterior
probability as P(y | x) ∝ P(x | y)P(y) where P(x | y) and P(y)
mean the likelihood and prior probability respectively. The prior
P(y) is defined as P(y = k) = nk/N where k means the class la-
bel and nk means the number of labeled images belonging to the
class k in the training set. N means the total number of the la-
beled images of training set N =

∑
k nk. The likelihood function

P(x | y = k) is derived the multi-dimensional Gauss distribution
P(x | y = k) ∼ N(x | mk,Σk) where mk and Σk means average of
feature vectors in the class k and corresponding covariance matrix
respectively.

In the SSL, the Bayes posterior probability works as the beliefs
for the unlabeled input feature xu

m. The class label for these unla-
beled inputs are given by the supervised classifier with maximiza-
tion of the posterior probability: tu

m = argmaxkP(tu
m = k | xu

m).
In this maximization process, we obtain the probability value
P(tu

m = k | xu
m) which means the confidence for the classifica-

tion label, so that, we treat this value as the belief for the label
tm = k.

3. Experiments
3.1 Materials

In order to construct the SSL classifier, we prepare 360 la-
beled images and 3600 unlabeled images. In the labeled images,
the number of each class are following: Consolidation(CON):38,
Ground-Grass-Opacity (GGO):76, Honeycomb(HCM):49, Retic-
ular(RET):37, Emphysema(EMP):54, Nodular(NOD):48, and
Normal(NOR):58 cases. We assume the 32 × 32 [pixels] ROIs,
and each ROI is segmented under the direction of a physician,
and diagnosed by 3 physicians.

The acquisition parameters of those HRCT images are as fol-
lows: Toshiba “Aquilion 16” is used for imaging device, each
slice image consists of 512 × 512 pixels, and pixel size cor-
responds to 0.546 ∼ 0.826 [mm], slice thickness are 1 [mm].
The number of patients is 69 males and 42 females with age
66.3 ± 13.4. The number of normal donor is 4 males and 2 fe-
males with age 44.3±10.3. The origin of these image data is pro-
vided Tokushima University Hospital. Fig.2 shows a typical im-
age example of each disease in HRCT image. The left shows an
overview of the axial HRCT images of lungs including lesion, and
the right shows segmented images of typical examples of lesion
from the left image collections. The consolidation (CON) and
ground-grass opacity (GGO) patterns are often appeared with the
cryptogenic organizing pneumonia diseases (COPD). The GGO
pattern is also often appeared in the non-specific interstitial pneu-
monia (NSIP). The reticular (RET) pattern which sometimes in-
cludes GGO patterns is also appeared in the NSIP. The honey-
comb (HCM) pattern has more rough mesh structure rather than

that of the crazy-paving, and it appeared in idiopathic pulmonary
fibrosis (IPF) or usual interstitial pneumonia (UIP).

3.2 Labeled and Unlabeled dataset
From the 360 labeled ROI images, we define the labeled dataset

as followings. The labeled ROI images have been carried out
gray-level transformation in order to diagnose by physician. The
raw HRCT image pixel value, which is counted with Hounsfield
unit (H.U.), is adjusted to describe the physical matters, and
its resolution takes 4096 grades in the range of [−1024, 3071]
[H.U.]. For example, air takes −1024 [H.U.], water takes 0
[H.U.], and over over 500 [H.U] shows bone typically. In or-
der to diagnose the lung, which mainly occupied with air, the full
resolution of pixel value is too much information for diagnose,
so that gray-level transformation is applied as pre-process. The
gray-level transformation for the raw HRCT image pixel value I
is described as piece-wise linear transformation:

q =


0 I <WL − WW

2
255 I >WL + WW

2
255
WW

(
I −
(
WL − WW

2

))
else

, (1)

where q means the 256 grades gray image value. Thus, the gray-
level transformation is controlled by the window-level (WL) and
the window-width (WW) parameters. Typically, these parameters
are defined for diagnosing part such like lung, and sometimes ad-
justed by the physician manually. The labeled data has been pro-
cessed by WL = −600[H.U.] and WW = 1500[H.U] in order to
adjust the pixel values of the ROI images in [0, 255] range.

The labeled dataset named as L is randomly selected from each
class k (k = 1 · · · 7, which means the class label) evenly, and we
denote the total number of the labeled dataset L as N. This la-
beled dataset L is used for the supervised learning of the Bayes
classifier.

We prepare 3 unlabeled datasets as follows. The first dataset U1

is simply use of the rest of labeled data, which consists of 360−N
images. The dataset U1 is used for control dataset against other
unlabeled. The other unlabeled dataset U2 and U3 come from
the raw HRCT images. These unlabeled candidates are gathered
from the surrounds of labeled ROIs site, and the total number of
collected unlabeled image data becomes 3, 600. In order to use
these images for training data, we should carry out the gray level
transformation 1 as a preprocessing. In our gray level transfor-
mation, we assume the transformation parameters WW and WL
are not given since these parameters, which are adjusted manu-
ally, are not rigid even in the labeled data. Thus, we should infer
these parameters, and details are followings. The pixel of the raw
HRCT image has 16-bit depth in this case and the range of unla-
beled data pixels values are in [−1152, 7281].

The parameters WL and WW for dataset U2 are defined by
these averaged histograms. We optimize the parameters WW
and WL as to maximize the similarity between the labeled and
transformed unlabeled histograms. We denote the average his-
togram of labeled as qL, which can be regarded as a probabil-
ity distribution. We also describe the transformed unlabeled his-
togram as the function of the parameters WW and WL, that is,
qU (WW,WL). Then, we introduce Kullback-Leibler (KL) diver-
gence as a similarity measure between the gray level histograms
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Fig. 2 Typical HRCT images of diffuse lung diseases: The top row shows each overview, and bottom
shows magnified part (ROI) of each lesion. From (a) to (g) represents “Consolidation”, “GGO”,
“Honeycomb”, “Reticular”, “Nodular” “Emphysema”, and “Normal” image respectively.

qL and qU (WW,WL):

KL(qL | qU ; WW,WL) =
∑

qL ln
qL

qU (WW,WL)
. (2)

We adopt WW and WL as the minimization values of the KL(qL |
qU ). From the strategy, we optimize eq.2 and obtain the parame-
ters WW = 1234[H.U.] and WL = −434 [H.U.] for the unlabeled
data.

For comparison, we prepare the other unlabeled dataset name
U3 whose WW and WL are chosen as a typical values to observe
lung-area, that is WW = 1500[H.U.] and WL = −550 [H.U.].

3.3 Feature Extraction and Selection
We introduce a texture analysis proposed by Sugata et al. for

feature extraction [1][10]. From the input HRCT ROI image, we
calculate gray-level histogram, gray-level difference statistics, the
co-occurrence matrix, run length matrix, and Fourier power spec-
trum, at first. After that, from these 5 quantities, we derive 39
texture statistics as the candidates for features[10]. Using whole
statistics candidates as the input features for classifier might cause
the decreasing the performance because of “curse of dimension-
ality”. Thus, we would select the 4 input features as the input for
the classifier. These feature are determined experimentally.

3.4 Evaluation Method
In order to evaluate performance, we adopt leave-one-out

cross-validation (LOOCV) [11][12]. In the LOOCV method, we
choose a ROI image from the labeled dataset L and use other
N − 1 images for supervised learning. After supervised learning,
M unlabeled images from the unlabeled dataset U1, U2, or U3

is used for the self-training method. The preserved ROI image
is used for evaluating the classification performance. This eval-
uation process is applied alternate to the whole labeled dataset
L, and finally the average accuracy is used for the performance
measure.

For the performance evaluation, we carry out the SSL method
as follows:
( 1 ) We trained Bayes classifier with supervised learning that is

we apply only the labeled data. For LOOCV method, we
pulled out a pair of training datum from labeled dataset.
Then, we calculate the mean vector mk and covariance ma-
trix Σk for the pulled dataset.

( 2 ) We predict the class label for the unlabeled dataset with con-

fident that comes from the posterior probability. The largest
posterior class is to become the predicted class.

( 3 ) By thresholding, we drop out the low confident unlabeled
data. We adopt the threshold value as 0.80 in this experi-
ment.

( 4 ) From the rest of the unlabeled data, which are high confident
unlabeled data, we select M images randomly.

( 5 ) We train the Bayes classifier with both labeled and the M
predicted data again

( 6 ) We evaluate the classifier accuracy by the selected labeled
data pair in the procedure 1 (LOOCV method).

4. Results
We compare the accuracy performances among the added num-

ber of unlabeled data from U1, U2, and U3 whose differences
are gray-level transformation parameters of WW and WL. The
dataset U1 has identical statistical property since it comes from
labeled data. The dataset U2 might have similar property to the
labeled data in the meaning of the KL-divergence. The dataset U3

might have the most different property to the labeled data, how-
ever, it is typical parameters for observing lung areas. Fig.3(a)
shows the accuracy performance against the added number of the
unlabeled images M. The horizontal axis shows the number of
the unlabeled images M in log-scale. The vertical one shows the
accuracy performance. The size of labeled dataset L is N = 35.
Adding small number of unlabeled data (M ∼ 100) increase the
accuracy performance in the every unlabeled dataset U1, U2, and
U3. The number of dataset U1 is 360 − N, so that, the curve ends
in the value with high accuracy performance. The curve using
the U2 saturate around M ∼ 1000 with also high accuracy perfor-
mance. However, the curve using the dataset U3 saturates in the
low accuracy performance, while U1 and U2 increase the accu-
racy performance. In this case, the final accuracy performances
for U1, U2, and U3 datasets are 96.6%, 95.8%, and 61.1% respec-
tively.

Fig.3(b) shows also the accuracy performance under the larger
labeled dataset L that have N = 70. In this case the initial accu-
racy performance, which comes from the supervised classifier, is
higher than the previous result, that is, the accuracy performance
is 84.5% correct. We can see the similar tendency to the previ-
ous result in the meaning of the performance improvement, while
the curve using U3 decrease the its performance. In this case, the
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Fig. 3 Accuracy performance for several unlabeled dataset U1, U2, and U3. The horizontal axis shows the
number of added unlabeled images denoted as M. The vertical shows the accuracy performance.
(a): The left shows the result with the supervised classifier that is trained by N = 35 samples. (b):
The right shows the result for the classifier trained by N = 70 labeled samples.

final accuracy performances for U1, U2, U3 dataset are 97.5%,
96.8%, and 77.5% respectively.

From these results, statistical similarity between the labeled
image and the unlabeled images is important factor to the accu-
racy performance.

5. Conclusion & Discussion
We investigate classification performance of the SSL for the

classification task of the IIPs. We can confirm increasing of
the accuracy performance in several cases while the self training
method is a simple method in the SSL.

We found several important factors for the IIPs classification
by the SSL. One is the statistical quality of the features, that is,
the gray-scale histograms of unlabeled images should have sim-
ilar property to that of the labeled images used in the supervised
learning. The unlabeled dataset U2 optimized for the minimiza-
tion of the KL-divergence between gray-level histograms of la-
beled and unlabeled. This result suggests that unlabeled data that
come from another HRCT device might be available when we
carry out appropriate pre-processing.

Moreover, we evaluate several trials for the another labeled
dataset L, and stable improvement is confirmed by the SSL. When
the initial supervised learning make good accuracy performance,
the SSL improvement does not work well, however, it does not
cause cause adverse affect in this investigation. Thus, we can
consider the SSL is a good framework to improve classification
ability for our task.
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