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Gram-Schmidt Algorithm and OpenMP
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Abstract: The Golub-Kahan-Lanczos algorithm with reorthogonalization (GKLR algorithm) is an algorithm for com-
puting a subset of singular triplets for large-scale sparse matrices. The reorthogonalization tends to become a bottleneck
of elapsed time, as the iteration number of the GKLR algorithm increases. In this paper, OpenMP-based parallel im-
plementation of the classical Gram-Schmidt algorithm with reorthogonalization (OMP-CGS2 algorithm) is introduced.
The OMP-CGS2 algorithm has the advantage of data reusability and is expected to achieve higher performance of the
reorthogonalization computations on shared-memory multi-core processors with large caches than the conventional
reorthogonalization algorithms. Numerical experiments on shared-memory multi-core processors show that the OMP-
CGS2 algorithm accelerates the GKLR algorithm more effectively for computing a subset of singular triplets for a
sparse matrix than the conventional reorthogonalization algorithms.

1. Introduction
Let A be a real m × n matrix and rank(A) = r (r ≤ min(m, n)).

Then A has the r singular values σ1, . . . , σr ∈ R, which satisfies
σ1 ≥ · · · ≥ σr > 0, and their corresponding left and right singular
vectors ui ∈ Rm, vi ∈ Rn (1 ≤ i ≤ r). A subset of singular triplets,
i.e. the l largest singular values σ1, . . . , σl and their correspond-
ing singular vectors, is often required in low-rank matrix approx-
imation and statistical processings such as principal component
analysis and the least-squares method. In such applications, the
target matrix is often large and sparse, and l is often much smaller
than both m and n. It is difficult to perform the computation of
singular triplets directly from a large-scale sparse matrix because
of the computational cost and need for large amounts of memory.

The Golub-Kahan-Lanczos (GKL) algorithm [3], [4] is one of
the Krylov subspace methods and generates approximate bidiag-
onal matrices from the target matrix. However, the GKL algo-
rithm usually loses the orthogonality of the Krylov subspace be-
cause of the computational error. To improve the orthogonality,
let us incorporate a reorthogonalization process into the GKL al-
gorithm. Such an algorithm is referred to as the GKL algorithm
with reorthogonalization (GKLR algorithm) [1]. Although the
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GKLR algorithm is stable because of the reorthogonalization, the
reorthogonalization tends to become a bottleneck in terms of the
computational cost and the elapsed time as the iteration number
increases. However, since the reorthogonalization of the GKLR
algorithm is mainly implemented using the matrix-vector multi-
plications, even in parallel computing, the reorthogonalization is
not effectively accelerated and then the overall elapsed time of the
GKLR algorithm is not effectively reduced.

In this paper, to accelerate the reorthogonalization of the
GKLR algorithm more effectively in parallel computing, we
present a parallel implementation of the classical Gram-Schmidt
algorithm with reorthogonalization (CGS2 algorithm) [2], which
is parallelized using the OpenMP [7]. Hereafter, this implemen-
tation of the CGS2 is referred to as the OMP-CGS2 algorithm.
This parallelization technique enables to use the cache of CPUs
effectively and then the computation is expected to be accelerated
more effectively than the conventional reorthogonalization algo-
rithms, which are parallelized in terms of the BLAS operations.

The rest of this paper is organized as follows. In Section 2, we
describe the GKLR algorithm. In Section 3, a conventional re-
orthogonalization algorithms and the OMP-CGS2 algorithm are
presented. Section 4 provides performance evaluations of the
OMP-CGS2 algorithm on multi-core processors. We end with
conclusions and future works in Section 5.

2. GKLR algorithm
The Golub-Kahan-Lanczos [3] (GKL) algorithm generates

new bases pk ∈ Rn and qk ∈ Rm, iteratively (k = 1, 2, . . . ). The
pk is an orthonormal basis of the Krylov subspaceK(A⊤A, p1, k),
and the qk is an orthonormal basis of the alternative Krylov sub-
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Algorithm 1 GKLR algorithm
1: Set an n-dimensional unit vector p1

2: q = Ap1, α1 = ∥q∥2, q1 = q/α1

3: P1 = [p1],Q1 = [q1]
4: do k = 1, 2, . . .
5: p = A⊤qk

6: p̃ = Reorthogonalization(Pk , p)
7: βk = ±∥ p̃∥2, pk+1 = p̃/βk

8: q = Apk+1

9: q̃ = Reorthogonalization(Qk , q)
10: αk+1 = ±∥q̃∥2, qk+1 = q̃/αk+1

11: Pk+1 =
[
Pk pk+1

]
, Qk+1 =

[
Qk qk+1

]
12: end do

space K(AA⊤, Ap1, k). In the GKLR algorithm [1], each time
a new basis is added with the expansion of the Krylov subspace,
the new basis are reorthogonalized against the existing bases.

Algorithm 1 shows the pseudocode of the GKLR algorithm.
Lines 6 and 9 show the reorthogonalization process, respectively.
At the beginning of the k-th iteration for k = 1, 2, . . . in Algo-
rithm 1, the k × k approximate matrices

Bk =



α1 β1

α2 β2

. . .
. . .

αk−1 βk−1

αk


(1)

are obtained and the following equations hold

APk = QkBk, (2)

A⊤Qk = PkB⊤k + βk pk+1e⊤k , (3)

where ek is the k-th column of the k × k identity matrix. Note that
if the l largest singular values of Bk sufficiently approximate those
of A, we can stop the iterations of the GKLR algorithm. Let σ(k)

j ,

s(k)
j ∈ Rk, and t(k)

j ∈ Rk ( j = 1, . . . , k) be a singular value of Bk,
the left singular vector, and the right singular vector correspond-
ing to σ(k)

j , respectively. If σ(k)
j approximates σ j well, then u j and

v j corresponds to u(k)
j and v(k)

j defined as the following equations,
respectively:

u(k)
j = Qk s(k)

j , v(k)
j = Pk t(k)

j . (4)

In order to improve the accuracy of singular vectors, Eq. (4) is
implemented to the combination with the QR factorization [6].

As seen in Algorithm 1, the GKLR algorithm must be paral-
lelized in terms of the computations on each line. In general, we
parallelize them in terms of each the BLAS operations.

To improve the orthogonality of the basis of the Krylov sub-
space and the accuracy of the resulting singular vectors, the re-
orthogonalization is inevitable for the GKLR. However, the com-
putational cost of the reorthogonalization is larger than the other
processes of the GKLR, as the iteration number increases. Thus,
it is important to accelerate the reorthogonalization in the GKLR.

3. Reorthogonalization algorithms
In this section, at first, we consider three conventional re-

orthogonalization algorithms for the GKLR algorithm. These al-
gorithms are parallelized in terms of the BLAS operations in re-
cent days. Secondly, we present the OpenMP-based parallel im-
plementation of the CGS2 algorithm for shared-memory multi-
core processors and describe the advantage of this implementa-
tion with respect to the data usability.

In the followings, we discuss the computation of xi ∈ Rm,
the reorthogonalized vector of ai ∈ Rm (2 ≤ i ≤ n), where
satisfies ⟨xi, xk⟩ = 0 for j , k. In addition, let Xi−1 be
Xi−1 =

[
x1 · · · xi−1

]
(2 ≤ i ≤ n). Note that Xi−1, xi, and

ai correspond to Pk, p̃, and p on line 6 in Algorithm 1, and also
correspond to Qk, q̃, and q on line 9 in Algorithm 1.

3.1 BLAS-based parallel implementation algorithms
3.1.1 CGS2 algorithm

The classical Gram-Schmidt (CGS) algorithm [4] is a well-
known reorthogonalization algorithm. The reorthogonalization
of ai using the CGS algorithm is formulated as follows:

xi = ai −
i−1∑
k=1

⟨xk, ai⟩xk. (5)

Eq. (5) is composed of the level 1 BLAS operations, such as
inner-dot products and AXPY operations. Using the matrix-
vector multiplications, Eq. (5) is also replaced as

xi = ai − Xi−1X⊤i−1ai. (6)

In general, the level 2 BLAS operations, such as the matrix-vector
multiplications, achieve the higher performance in parallel com-
puting than the level 1 BLAS operations. Thus, the CGS algo-
rithm is conventionally implemented using matrix-vector multi-
plications.

However, the orthogonality of the vectors computed by the
CGS algorithm deteriorates if the condition number of the orig-
inal vectors is large. To improve the orthogonality, CGS algo-
rithm with reorthogonalization (CGS2 algorithm) [2] is proposed,
which repeats the CGS algorithm twice.
3.1.2 MGS algorithm

Another variant of the CGS algorithm is the modified Gram-
Schmidt (MGS) algorithm. The MGS algorithm is composed
of the level 1 BLAS operations, such as inner-dot product and
AXPY operations. However, compared with the CGS, the MGS
improves the orthogonality. Furthermore, the computational cost
of the MGS is half as high as that of the CGS2.
3.1.3 Compact WY algorithm

The Householder transformations [4] are also used for the re-
orthogonalization. Yamamoto et al. [9] proposed a reorthogonal-
ization algorithm using the Householder transformations in terms
of the compact WY representation [8]. Hereafter, this algorithm
is referred to as the cWY algorithm. In this algorithm, we can
rewrite the product of the Householder matrices in a simple block
matrix form. Hence, the cWY can be performed mainly using the
level 2 BLAS operations. This algorithm can achieve the high
orthogonality theoretically and high scalability in parallel com-
puting.
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Algorithm 2 OpenMP-based parallel implementation of CGS2
algorithm
1: function OMP-CGS2(Xi−1(= [x1, . . . , xi−1]), ai)
2: #omp parallel private( j, s)
3: do j = 1, 2
4: #omp single

5: w = ai ▷ Perform serially
6: #omp end single

7: #omp do reduction(+:ai)

8: do k = 1 to i − 1
9: s = −⟨xk , w⟩

10: ai = ai + sxk ▷ Array reduction
11: end do
12: #omp end do

13: end do
14: #omp end parallel

15: return xi = ai

16: end function

3.2 OpenMP-based parallel implementation of CGS2 algo-
rithm

Recalling Eq. (5), the CGS and CGS2 algorithms can be par-
allelized in terms of the summation. Such parallel implementa-
tion is easily realized by adding OpenMP directives for shared-
memory multi-core processors. From these facts, an OpenMP-
based parallel implementation of the CGS2 algorithm can be rep-
resented as shown in Algorithm 2. Note that where w is a vector
where preserves the original vector of ai. Hereafter, this imple-
mentation of the CGS2 algorithm is referred to as the OMP-CGS2
algorithm.

The parallel computation in terms of the summation is repre-
sented as the parallelism of do-loop as shown in line 7. As the
result, the inner-dot product (line 9) and the AXPY operations
(line 10) in terms of the different index k are performed on each
thread. In addition, the array reduction must be implemented for
the summation of ai on line 10. The array reduction in Fortran
code is supported by using the reduction clause of OpenMP.

The advantage of this implementation is the high reusability
of data. Since we compute ai = ai + sxk (line 10) as soon as
s = −⟨xk, w⟩ (line 9) is computed, the reusability of w, xk, and
ai becomes higher on each thread computation. Thus, the OMP-
CGS2 algorithm is expected to accelerate more effectively the
reorthogonalization computation on shared-memory multi-core
processors with large caches than other reorthogonalization al-
gorithms if the vectors w, xk, and ai are stored in the L3 cache of
each CPU.

4. Numerical experiments
In this section, we report results of numerical experiments in

order to evaluate the performance of the OpenMP-based parallel
implementation of the CGS2 algorithm.

4.1 Configurations of numerical experiments
In the numerical experiments, we compare the elapsed time for

computing the l largest singular triplets of the same target matrix
using a code of the GKLR algorithm with different l. Here, l is
the number of required singular triplets; l = 100, 200, 400, 800.

Table 1: Specifications of the experimental environment
1 node of Appro 2548X at ACCMS, Kyoto University

CPU Intel Xeon E5-4650L@2.6 GHz, 32 cores (8 cores × 4)
L3 cache: 20MB × 4

RAM DDR3-1066 1.5 TB, 136.4GB/sec
Compiler Intel C++/Fortran Compiler 14.0.2
Options -O3 -xHOST -ipo -no-prec-div

-openmp -mcmodel=medium -shared-intel

Software Intel Math Kernel Library 11.1.2

Table 2: The number of iterations at the point (kend), where the
GKLR algorithm stops, needed in each of the experiments. l de-
notes the number of required singular triplets.

l 100 200 400 800
Matrix T1 1,000 1,600 2,400 4,000
Matrix T2 1,300 2,000 3,200 4,800
Matrix T3 1,600 2,400 3,600 5,600

We compare the elapsed time for computing subsets of singular
triplets using the following four codes of the GKLR algorithms.
GKLR with MGS is implemented with the MGS algorithm.
GKLR with CGS2 is implemented with the CGS2 algorithm.
GKLR with cWY is implemented with the cWY algorithm. The
reorthogonalization algorithms of the above three code are paral-
lelized in terms of the BLAS routines. GKLR with OMP-CGS2
is implemented with the OpenMP-based parallel implementation
of the CGS2 algorithm.

In the experiments, we use three m × n real sparse matrices
T1, T2, and T3. All of T1, T2, and T3 are set to be 256 non-
zero elements, which are set to be random numbers in the range
(0, 1) and are randomly allocated, in each row. T1, T2, and T3 are
only different in the size of m and n from each other as follows:
m = 16, 000 and n = 8, 000 for T1. m = 32, 000 and n = 16, 000
for T2. m = 64, 000 and n = 32, 000 for T3. In addition, the
condition number is 4.803 × 101 for T1, 4.754 × 101 for T2, and
4.757 × 101 for T3, respectively.

Finally, all the experiments are run with 32 threads on a ma-
chine shown in Table 1. We use the Intel Math Kernel Library
(MKL) [5] for parallelizing the level 2 and level 3 BLAS rou-
tines. The Intel MKL also provides the level 1 BLAS routines,
but the implementation depends on the dimension of the target
vectors and the performance of them is unstable. Thus, we use
the hand-made level 1 BLAS routines, which is parallelized by
using OpenMP, in the experiments.

4.2 Results of performance evaluation
Figs. 1a, 1b, and 1c graph the experimental results and shows

the number of required singular triplets and the elapsed time for
computing singular triplets of each target matrix T1, T2, or T3 us-
ing the four code of the GKLR algorithm, respectively. From the
figures, GKLR with OMP-CGS2 is faster than the other code in
all the cases. Thus, the OMP-CGS2 accelerates the computation
of the GKLR algorithm more effectively than the other reorthog-
onalization algorithms.

Note that the number of iterations at the point (kend), where the
GKLR algorithm stops, is the same regardless to the reorthogo-
nalization algorithms in each of the experiments. Table 2 summa-
rizes kend needed in each of the experiments.

c⃝ 2015 Information Processing Society of Japan 3

Vol.2015-MPS-104 No.5
2015/7/27



IPSJ SIG Technical Report

0

300

600

900

1,200

100 200 400 800

E
la

p
se

d
 t

im
e 

[s
ec

.]

The number of required singular triplets (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

(a) Cases of T1

0

400

800

1,200

1,600

2,000

100 200 400 800

E
la

p
se

d
 t

im
e 

[s
ec

.]

The number of required singular triplets (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

(b) Cases of T2

0

500

1,000

1,500

2,000

2,500

3,000

100 200 400 800

E
la

p
se

d
 t

im
e 

[s
ec

.]

The number of required singular triplets (l)

GKLR with MGS

GKLR with CGS2

GKLR with cWY

GKLR with OMP-CGS2

(c) Cases of T3

Fig. 1: The number of required singular triplets and the elapsed
time spending in the computation of the l largest singular triplets
for each of the target matrices using the GKLR algorithm with
different reorthogonalization implementation.

4.3 Discussion about cache use in OMP-CGS2
As mentioned in Sec. 3.2, the high performance of OMP-CGS2

arises from the higher reusability of cache in CPU. Here, we dis-
cuss the limit size of the vectors when we perform the reorthog-
onalization by using OMP-CGS2. Let the number of threads in
a CPU be T and the capacity of L3 cache in the CPU be C MB.
The one data of the elements needs 8 bytes when we use a double-
precision floating-point number.

Recalling Algorithm 2, the vectors w, ai, and xk appear at each
of do-loop in terms of k. If all these vectors are stored in the
L3 cache of CPU, we can achieve the higher performance of the
reorthogonalization by using OMP-CGS2. However, xk is not
shared by different threads while w is accessed by all computing
threads. In addition, each thread should access the copy of ai be-

fore reducing arrays. As the results, the number of the vectors
which should be stored in the cache is (T × 2 + 1).

From the above discussion, the dimension of the matrix which
achieves better performance in this environment is determined by
the following inequality:

m × (T × 2 + 1) × 8 ≤ C × 1024 × 1024, (7)

where m is the size of the vectors w, ai, and xk. Then, since
T = 8 and C = 20 from the specification of the CPUs used for
the performance evaluation in this paper, the following inequality
holds:

m ≤ 154202. (8)

Thus, under the condition (8) of the performance evaluation in the
experimental environment in Table 1, the OMP-CGS2 algorithm
is guaranteed to achieve the higher performance than the other
reorthogonalization algorithms.

5. Conclusions and future work
In this paper, we first introduce the GKLR algorithm for com-

puting a subset of singular triplets for target matrices. To accel-
erate the reorthogonalization of the GKLR algorithm on shared-
memory multi-core processors more effectively, we then present
the OpenMP-based parallel implementation of the CGS2 algo-
rithm. The OpenMP-based implementation of the CGS2 algo-
rithm has the advantage of the data reusability. Experimental
results on shared-memory multi-core processors show that the
OpenMP-based implementation of the CGS2 algorithm acceler-
ates the GKLR algorithm more effectively for computing a subset
of singular triplets for a sparse matrix than other reorthogonaliza-
tion algorithms.

Future work is to evaluate the performance of the GKLR al-
gorithms for larger target matrices than those we used in the per-
formance evaluation and to extend and confirm the validity of the
modeling inequality (7) depending on CPUs.
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