
IPSJ SIG Technical Report

Prediction of gene structures from RNA-seq data using
dual decomposition

Tatsumu Inatsuki1 Kengo Sato1,a) Yasubumi Sakakibara1,b)

Abstract: Numerous computational algorithms for predicting protein-coding genes from genomic sequences have
been developed, and hidden Markov models (HMMs) have frequently been used to model gene structures. For eukary-
otes, more complex gene structures such as introns make gene prediction much harder due to isoforms of transcripts
by alternative splicing machinery. We develop a novel gene prediction method for eukaryote genomes that extends the
traditional HMM-based gene prediction model by incorporating comprehensive evidence of transcripts by using RNA
sequencing (RNA-seq) technology. We formulate gene prediction as an integer programming problem, and solve it
by the dual decomposition technique. To confirm the utility of the proposed algorithm, computational experiments on
benchmark datasets were conducted. The results show that our algorithm efficiently and effectively employs RNA-seq
data in gene structure prediction.

1. Introduction
Numerous computational algorithms for predicting protein-

coding genes from genomic sequences have been developed, and
hidden Markov models (HMMs) have frequently been used to
model gene structures. Protein-coding genes can successfully
be predicted for prokaryotes since no intronic sequences are in-
cluded. In contrast, for eukaryotes, more complex gene structures
(such as introns) make gene prediction much harder due to iso-
forms of transcripts by alternative splicing machinery. Because
of this, adequate accuracy of gene prediction has not yet been re-
alized for higher organisms, such as human, that have complex
gene structures.

In this study, we develop a novel gene prediction method for
eukaryote genomes. The method extends the traditional HMM-
based gene prediction model by incorporating comprehensive ev-
idence of transcripts by RNA-seq technology. We formulate gene
prediction as an integer programming problem whose objective
function is the sum of the HMM-based score for gene structures
and the number of RNA-seq reads that support the gene struc-
ture. The algorithm calculates an optimal gene structure that
maximizes the objective function subject to several constraints
that should be satisfied by the predicted gene structure and the
observed RNA-seq reads. In contrast to traditional HMM-based
gene prediction algorithms, dynamic programming techniques
cannot be applied to this optimization problem because of the
additional constraints imposed for RNA-seq reads. We therefore
use dual decomposition, which iterates over the following steps.
(1) The constraints on RNA-seq reads are relaxed by Lagrangian
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relaxation. As a result, the original optimization problem is de-
composed into two independent sub-problems: HMM-based gene
structure prediction and supported read-maximization. These
sub-problems can efficiently be solved by the Viterbi algorithm
and coefficient comparison. (2) The consistency of RNA-seq con-
straints is maintained by imposing score penalties on inconsistent
predictions. To confirm the proposed algorithm, we conducted
computational experiments on benchmark datasets. The results
show that our algorithm with RNA-seq data predicts gene struc-
tures significantly more accurately than do other methods.

2. Methods
2.1 Preliminaries

As several existing works do, we construct a gene model as an
HMM in which emission symbols correspond to nucleotides and
hidden states correspond to internal gene structures such as ex-
ons and introns. We employ m kinds of gene structures, denoted
G = {g1, g2, . . . , gm}. Let Gexon and Gintron be the subsets of G
that contain gene structures corresponding to exons and introns,
respectively.

Let Σ be the set of four DNA bases (adenine (A), cytosine (C),
guanine (G), and thymine (T)) and let Σ∗ denote the set of all finite
DNA sequences, which consist of bases in Σ. Given a DNA se-
quence x = x1, . . . , xn ∈ Σ∗ consisting of n bases, let Y(x) be the
space of all possible gene structures of x. An element y ∈ Y(x) is
represented as an n ×m binary-valued matrix, where yil = 1 indi-
cates that the base xi is assigned to the gene structure gl ∈ G as
shown in Fig. 1. We define the problem of gene structure predic-
tion as follows: given a DNA sequence x, predict a gene structure
y ∈ Y(x).

2.2 Scoring model
A scoring function f is a function that assigns real-valued
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Fig. 1 The binary valued matrix y ∈ Y(x) that represents the assignments
of gene structures for each nucleotide. Each gray circle represents
yil = 1, that is, xi is assigned gl.

scores to pairs consisting of a DNA sequence x and a gene struc-
ture y ∈ Y(x). Our aim is to find a gene structure y ∈ Y(x) that
maximizes the scoring function f (x, y) for a given DNA sequence
x. The scoring function f consists of two parts: a gene-model-
based scoring function fgene and an evidence-based scoring func-
tion fevidence.

The gene-model-based scoring function fgene is defined as

fgene(x, y) =
n∑

i=1

m∑

l=1

μilyil +

n∑

i=2

m∑

l=1

m∑

k=1

νlkyi−1lyik, (1)

where μil is a parameter of the preference of the gene structure
gl at xi, and νlk is a parameter of the preference of transition of
the gene structures from gl to gk. Since each base is assigned
to exactly one gene structure as shown in Fig. 1, the following
constraint must be satisfied:

m∑

l=1

yil = 1 (for 1 ≤ ∀i ≤ n). (2)

To calculate μil, we employ three types of 5-mers for local fea-
tures around xi: those centered at xi (i.e., xi−2 . . . xi+2), those
centered at xi−2 (i.e., xi−4 . . . xi), and those centered at xi−4 (i.e.,
xi−6 . . . xi−2). We define the corresponding parameters of the lo-
cal features on a gene structure gl as μ(0)

xi−2 ...xi+2 ,l
, μ(−2)

xi−4 ...xi ,l
, and

μ(−4)
xi−6 ...xi−2 ,l

, respectively, and use these to calculate μil as follows:

μil = μ
(0)
xi−2 ...xi+2 ,l

+ μ(−2)
xi−4 ...xi ,l

+ μ(−4)
xi−6 ...xi−2 ,l

. (3)

If transcriptional evidence such as RNA-seq reads is available,
we can use them to improve the accuracy of predicting gene struc-
tures. To that end, we define an evidence-based scoring function
fevidence that evaluates the degree of fitness of a gene structure
y ∈ Y(x) against observed transcripts. We consider two types of
gene structure evidence from observed transcripts. The first type
is split positions of mapped transcripts, as obtained by a spliced
aligner such as TopHat [10] or STAR [5], which is represented by
an n × n triangular matrix S = (S i j)i< j, where S i j = 1 if at least
one transcript mapped onto x is split at xi and x j, and S i j = 0
otherwise. The second type of evidence is mapped bases of tran-
scripts, represented by an n-dimensional vector R = (Ri), where
Ri = 1 if at least one transcript mapped onto x covers xi, and
Ri = 0 otherwise. We define fevidence as the weighted sum of the
number of evidence items that support a gene structure y ∈ Y(x):

fevidence(x, y, s, r) = α
∑

1≤i< j≤n

σi j si j + β
∑

1≤i≤n

ρiri, (4)

xi xi

sij=1

xk

Fig. 2 The constraints (6)-(8) mean that if S i j supports the gene structure
y, i.e. si j = 1, then xk for i < k < j must be assigned to one of the
intron states and both ends xi and x j must be assigned to one of the
exon states.

ri=1

xi

Fig. 3 The constraint (10) means that if Ri supports the gene structure y, i.e.
ri = 1, then xi must be assigned to one of the exon states.

where si j is a binary-valued variable that indicates whether the
split transcripts at xi and x j support the gene structure y. Simi-
larly, ri is a binary-valued variable that indicates whether the tran-
scripts that cover xi support the gene structure y. Here, α ≥ 0 and
β ≥ 0 mean the contribution ratio of the two types of evidence,
and σi j and ρi specify the weight for each evidence. We used
α = 30, β = 0.1, σi j = 1.0, and ρi = 1.0 for all i, j in our experi-
ments.

To make the variables s and r consistent with the gene structure
y, the following constraints must be satisfied:

si j ≤ S i j (for 1 ≤ ∀i < ∀ j ≤ n) (5)

si j ≤
∑

l: gl∈Gintron

ykl (for 1 ≤ ∀i < ∀k < ∀ j ≤ n) (6)

si j ≤
∑

l: gl∈Gexon

yil (for 1 ≤ ∀i < ∀ j ≤ n) (7)

si j ≤
∑

l: gl∈Gexon

y jl (for 1 ≤ ∀i < ∀ j ≤ n) (8)

ri ≤ Ri (for 1 ≤ ∀i ≤ n) (9)

ri ≤
∑

l: gl∈Gexon

yil (for 1 ≤ ∀i ≤ n) (10)

Here, the constraints (5) and (9) indicate that supporting tran-
scripts can be enabled only for observed transcripts. In other
words, not all the observed transcripts have to support the gene
structure. The constraints (6)–(8) represent a condition of sup-
porting transcripts where one of the intron states must be assigned
into spliced regions from the (i + 1)th base to the ( j − 1)th base,
and that one of the exon states must be assigned to both ends,
the ith and jth bases (Fig. 2). The constraint (10) assigns one of
the exon states to the base covered by the supporting transcripts
(Fig. 3).

2.3 Dual decomposition
Our aim is to find a gene structure y ∈ Y(x) that maxi-

mizes f (x, y, s, r) = fgene(x, y) + fevidence(x, y, s, r) under the con-
straints (2) and (5)–(10). This is an integer programming prob-
lem for which no efficient algorithm is yet known. If we drop the
constraints (6)–(8) and (10), maximization of fgene and fevidence

can be solved separately and efficiently. This means that the con-
straints (6)–(8) and (10) make the problem of gene structure pre-
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diction with transcriptional evidence extremely complex. To cir-
cumvent this difficulty, we deal with these constraints using La-
grangian relaxation [11], which is an efficient technique to solve
large and complex problems as appeared in the field of bioinfor-
matics [1], [2], [12], [13]. First, we define the Lagrangian dual by
moving the constraints (6)–(8) and (10) to the objective function
f (x, y, s, r), as follows:

L(λ) = max
y,s,r

{
fgene(x, y) + fevidence(x, y, s, r) (11)

+
∑

i< j

∑

i<k< j

λ(1)
i jk


∑

l: gl∈Gintron

ykl − si j



+
∑

i< j

λ(2)
i j


∑

l: gl∈Gexon

yil − si j



+
∑

i< j

λ(3)
i j


∑

l: gl∈Gexon

y jl − si j



+
∑

i

λ(4)
i


∑

l: gl∈Gexon

yil − ri


}
.

Here, λ(1)
i jk ≥ 0 (1 ≤ i < k < j ≤ n), λ(2)

i j ≥ 0 (1 ≤ i < j ≤ n),

λ(3)
i j ≥ 0 (1 ≤ i < j ≤ n), and λ(4)

i ≥ 0 (1 ≤ i ≤ n) are Lagrangian
multipliers. We can then rewrite Eq. (11) as:

L(λ) = max
y

{ n∑

i=1

m∑

l=1

µ′ilyil +

n∑

i=2

m∑

l=1

m∑

k=1

νlkyi−1lyik

}
(12)

+ max
s

∑

1≤i< j≤n

σ′i jsi j + max
r

∑

1≤i≤n

ρ′iri

where

µ′il =



µil +
∑

j′<i<k′ λ
(1)
j′ki′ (for gl ∈ Gintron)

µil +
∑

j′>i λ
(2)
i j′ +

∑
j′<i λ

(3)
j′i + λ(4)

i (for gl ∈ Gexon)
µil (otherwise)

(13)

σ′i j =ασi j −
∑

i<k< j

λ(1)
i jk − λ

(2)
i j − λ

(3)
i j (14)

ρ′i =βρi − λ
(4)
i . (15)

This means that we can calculate each term of Eq. (12) inde-
pendently and efficiently. The first term of Eq. (12) can be ef-
ficiently computed using dynamic programming techniques like
the Viterbi algorithm for HMM using the following recursion:

V(i, l) =


µ′il (for i = 1)
µ′il + max

1≤k≤m
[V(i − 1, k) + νkl] (for i > 1) (16)

We can obtain the first term of Eq. (12) as max1≤k≤m V(n, k), and
the optimal gene structure ŷ can be recovered by traceback from
the nth base. The second and last terms of Eq. (12) can be com-
puted simply by finding positive coefficients for si j and ri under
the constraints (5) and (9).

Since the dual objective function L(λ) gives an upper bound
of the primal objective function f (x, y, s, r), we aim to minimize
Eq. (12) with respect to the multipliers to obtain a better upper
bound. The Lagrangian function L(λ) is convex, but not differen-
tiable. Thus, to minimize the dual objective function (12), we can

1: Set λ(1)
i jk = 0, λ(2)

i j = 0, λ(3)
i j = 0 and λ(4)

i = 0.
2: for t = 1 to T do
3: ŷ← arg maxy∈Y(x)

∑n
i=1

∑m
l=1 µ

′
ilyil +

∑n
i=2

∑m
l=1

∑m
k=1 νlkyi−1lyik

4: ŝ← arg maxs
∑

1≤i< j≤n σ
′
i j si j

5: r̂ ← arg maxr
∑

1≤i≤n ρ
′
i ri

6: if ŷ, ŝ, r̂ satisfy the constraints (6)-(8) and (10) then
7: return ŷ, ŝ, r̂
8: end if
9: λ(1)

i jk ← λ(1)
i j − ηt

(∑
l: gl∈Gintron

ykl − si j

)

10: λ(2)
i j ← λ(2)

i j − ηt

(∑
l: gl∈Gexon

yil − si j

)

11: λ(3)
i j ← λ(3)

i j − ηt

(∑
l: gl∈Gexon

y jl − si j

)

12: λ(4)
i ← λ(4)

i − ηt

(∑
l: gl∈Gexon

yil − ri

)

13: end for
14: return ŷ, ŝ, r̂
Fig. 4 The algorithm for predicting RNA structural alignments using dual

decomposition. T is the maximum number of iterations, set at 100.

apply subgradient optimization in which the Lagrangian multipli-
ers λ(1), λ(2), λ(3) and λ(4) are iteratively updated using their sub-
gradients,

∑
l: gl∈Gintron

ykl− si j,
∑

l: gl∈Gexon
yil− si j,

∑
l: gl∈Gexon

y jl− si j,
and

∑
l: gl∈Gexon

yil − ri, respectively. As a result, we can obtain
an algorithm similar to the gradient descent shown in Fig. 4,
where ηt > 0 is a step size for each update. It is known that if
limt→∞ ηt = 0 and

∑∞
t=1 ηt = ∞, then the Lagrangian dual L(λ) al-

ways converges to the optimal value. The update is iterated until a
solution is found or the number of iterations reaches a sufficiently
large predefined maximum number of iterations T (here, we use
T = 100).

The Lagrangian multipliers can be regarded as penalty scores
against inconsistency between the gene-model-based scores and
the evidence-based scores for the constraints (6)–(8) and (10).

2.4 Learning algorithm
To optimize the feature parameters µ and ν, we employ a

max-margin framework called structured support vector ma-
chines [15]. Given a training dataset D = {(x(k), y(k)}Kk=1, where
x(k) ∈ Σ∗ and y(k) ∈ Y(x(k)) are respectively DNA sequences and
their corresponding gene structures, we aim to find µ and ν that
minimize the objective function

L(µ, ν) =
∑

(x,y)∈D

(
max
ŷ,ŝ,r̂

[
f (x, ŷ, ŝ, r̂; µ, ν) + ∆(y, ŷ)

]

−max
s,r

f (x, y, s, r; µ, ν) + C(||µ||1 + ||ν||1)
)
, (17)

where ||.||1 is the `1 norm and C is a weight for the `1 regulariza-
tion term to avoid over-fitting to the training data. Here, ∆(y, ŷ) is
a loss function of ŷ for y defined as

∆(y, ŷ) =δFN
n∑

i=1

m∑

l=1

I(yil = 1)I(ŷil = 0) (18)

+ δFP
n∑

i=1

m∑

l=1

I(yil = 0)I(ŷil = 1)

+ δFN
n∑

i=2

m∑

l=1

m∑

k=1

I(yi−1lyik = 1)I(ŷi−1lŷik = 0)

+ δFP
n∑

i=2

m∑

l=1

m∑

k=1

I(yi−1lyik = 0)I(ŷi−1lŷik = 1),
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Table 1 Summary of datasets.

# regions # of nt # genes # mapped reads
Training 2 3038447 511 561676
Test 31 21459613 1111 3144765

Table 2 The accuracy of our model compared with AUGUSTUS.

PPV SEN F
Our model ( fgene + fevidence) 15.7 31.1 20.9
Baseline ( fgene) 14.1 7.1 9.4
AUGUSTUS 55.9 17.8 27.0

where I(condition) is an indicator function that takes a value of 1
or 0 depending on whether condition is true or false. Here, δFN

and δFP are hyperparameters to control the trade-off between sen-
sitivity and specificity for learning the parameters. In this case,
we can calculate the first term of Eq. (17) by replacing scores µi j

and νkl in Eq. (12) as

µ̄i j =


µi j − δ

FN (if yi j = 1)
µi j + δFP (if yi j = 0)

ν̄kl =


νkl − δ

FN (if yi−1lyik = 1)
νkl + δFP (if yi−1lyik = 0)

We used C = 1.0, δFN = 1.0, and δFP = 1.0 in our experiments.
To minimize the objective function (17), we can apply stochas-

tic subgradient descent or forward–backward splitting [7].

3. Results and discussion
To verify the model described in Sec. 2, we developed a pre-

liminary implementation of our model. We conducted computa-
tional experiments using EGASP [8] as training and test datasets.
Our model was trained using two regions from the EGASP train-
ing dataset, ENm004 and ENm006. The model was then evalu-
ated on 31 regions from the EGASP test dataset. Gene annota-
tions were obtained from GENECODE [9]. We used two repli-
cates of RNA-seq data from liver hepatocellular carcinoma cell
line HepG2 [4] as transcriptional evidence. We mapped RNA-
seq reads into training and test regions using STAR [5]. Table 1
shows a summary of the datasets.

We evaluated the accuracy of predicting gene structures
through nucleotide-level measurements as defined by [3]. The
nucleotide-level accuracy is assessed by positive predictive value
(PPV = T P

T P+FP ) and sensitivity (S EN = T P
T P+FN ), where T P is

the number of nucleotides at which exon states are correctly pre-
dicted (true positives), FP is the number of nucleotides at which
exon states are incorrectly predicted (false positives), and FN is
the number of nucleotides in the true exon states that were not
predicted (false negatives). We also used the F-value as a bal-
anced measure between PPV and SEN, which is defined as their
harmonic mean F = 2×PPV×S EN

PPV+S EN .
Table 2 shows the accuracy of our model (i.e. fgene + fevidence) in

comparison to our model without the evidence-based scores (i.e.
only fgene) as a baseline method, and suggests that significant im-
provement, especially in sensitivity, can be observed by using the
evidence-based scores. We also compared our method with AU-
GUSTUS [14] with default options, which was trained using the
same regions as in our setting.

Although our model is improved by the use of evidence-based

scoring, it is not yet sufficiently accurate compared with exist-
ing methods. This is because the preliminary implementation of
our model cannot perform the learning algorithm using a large
dataset, despite using dual decomposition for efficiency. To re-
alize large-scale training, we need to implement an improved
stochastic subgradient descent algorithm such as AdaGrad [6].
We also need to further optimize hyperparameters including α

and β for the weights of transcriptional evidences, C for the `1

regularization, and δFN and δFP to control the trade-off between
sensitivity and specificity.

4. Concluding Remarks
We develop a novel gene prediction method for eukaryote

genomes that extends the traditional HMM-based gene prediction
model by incorporating comprehensive evidence of transcripts
using RNA sequencing (RNA-seq) technology. We formulated
gene prediction as an integer programming problem, and solved
it using the dual decomposition technique. To confirm the pro-
posed algorithm, we conducted computational experiments on
benchmark datasets. The results showed that our algorithm with
RNA-seq data works efficiently and effectively.
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