ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2015
  4. 2015-MPS-103

Kernel Logistic Regression based on the Confusion Matrix for Imbalanced Data Classification

https://ipsj.ixsq.nii.ac.jp/records/142456
https://ipsj.ixsq.nii.ac.jp/records/142456
a700a875-0c9a-4d76-b7ee-eb42669aacef
名前 / ファイル ライセンス アクション
IPSJ-MPS15103055.pdf IPSJ-MPS15103055.pdf (577.8 kB)
Copyright (c) 2015 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2015-06-16
タイトル
タイトル Kernel Logistic Regression based on the Confusion Matrix for Imbalanced Data Classification
タイトル
言語 en
タイトル Kernel Logistic Regression based on the Confusion Matrix for Imbalanced Data Classification
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Doshisha University
著者所属
Doshisha University
著者所属
Doshisha University
著者所属
Doshisha University
著者所属
National Institute of Information and Communications Technology
著者所属(英)
en
Doshisha University
著者所属(英)
en
Doshisha University
著者所属(英)
en
Doshisha University
著者所属(英)
en
Doshisha University
著者所属(英)
en
National Institute of Information and Communications Technology
著者名 Peng, Wang

× Peng, Wang

Peng, Wang

Search repository
Miho, Ohsaki

× Miho, Ohsaki

Miho, Ohsaki

Search repository
Kenji, Matsuda

× Kenji, Matsuda

Kenji, Matsuda

Search repository
Shigeru, Katagiri

× Shigeru, Katagiri

Shigeru, Katagiri

Search repository
Hideyuki, Watanabe

× Hideyuki, Watanabe

Hideyuki, Watanabe

Search repository
著者名(英) Peng, Wang

× Peng, Wang

en Peng, Wang

Search repository
Miho, Ohsaki

× Miho, Ohsaki

en Miho, Ohsaki

Search repository
Kenji, Matsuda

× Kenji, Matsuda

en Kenji, Matsuda

Search repository
Shigeru, Katagiri

× Shigeru, Katagiri

en Shigeru, Katagiri

Search repository
Hideyuki, Watanabe

× Hideyuki, Watanabe

en Hideyuki, Watanabe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Imbalanced data classification is a common problem in applications related to the detection of anomalies, failures, and risks. Since previous problem-solving approaches were basically heuristic and task dependent, we propose a novel imbalanced data classifier with a theoretical problem-solving approach. Our proposed method fine-tunes the parameters of kernel logistic regression using the harmonic mean of such criteria as sensitivity and positive predictive value, which are derived based on a confusion matrix and are essential for multilateral evaluation. This paper presents the formulation of our proposed method and reports our empirical evaluation results.
論文抄録(英)
内容記述タイプ Other
内容記述 Imbalanced data classification is a common problem in applications related to the detection of anomalies, failures, and risks. Since previous problem-solving approaches were basically heuristic and task dependent, we propose a novel imbalanced data classifier with a theoretical problem-solving approach. Our proposed method fine-tunes the parameters of kernel logistic regression using the harmonic mean of such criteria as sensitivity and positive predictive value, which are derived based on a confusion matrix and are essential for multilateral evaluation. This paper presents the formulation of our proposed method and reports our empirical evaluation results.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2015-MPS-103, 号 55, p. 1-2, 発行日 2015-06-16
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 18:59:52.921944
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3