Item type |
SIG Technical Reports(1) |
公開日 |
2015-06-16 |
タイトル |
|
|
タイトル |
Kernel Logistic Regression based on the Confusion Matrix for Imbalanced Data Classification |
タイトル |
|
|
言語 |
en |
|
タイトル |
Kernel Logistic Regression based on the Confusion Matrix for Imbalanced Data Classification |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Doshisha University |
著者所属 |
|
|
|
Doshisha University |
著者所属 |
|
|
|
Doshisha University |
著者所属 |
|
|
|
Doshisha University |
著者所属 |
|
|
|
National Institute of Information and Communications Technology |
著者所属(英) |
|
|
|
en |
|
|
Doshisha University |
著者所属(英) |
|
|
|
en |
|
|
Doshisha University |
著者所属(英) |
|
|
|
en |
|
|
Doshisha University |
著者所属(英) |
|
|
|
en |
|
|
Doshisha University |
著者所属(英) |
|
|
|
en |
|
|
National Institute of Information and Communications Technology |
著者名 |
Peng, Wang
Miho, Ohsaki
Kenji, Matsuda
Shigeru, Katagiri
Hideyuki, Watanabe
|
著者名(英) |
Peng, Wang
Miho, Ohsaki
Kenji, Matsuda
Shigeru, Katagiri
Hideyuki, Watanabe
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Imbalanced data classification is a common problem in applications related to the detection of anomalies, failures, and risks. Since previous problem-solving approaches were basically heuristic and task dependent, we propose a novel imbalanced data classifier with a theoretical problem-solving approach. Our proposed method fine-tunes the parameters of kernel logistic regression using the harmonic mean of such criteria as sensitivity and positive predictive value, which are derived based on a confusion matrix and are essential for multilateral evaluation. This paper presents the formulation of our proposed method and reports our empirical evaluation results. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Imbalanced data classification is a common problem in applications related to the detection of anomalies, failures, and risks. Since previous problem-solving approaches were basically heuristic and task dependent, we propose a novel imbalanced data classifier with a theoretical problem-solving approach. Our proposed method fine-tunes the parameters of kernel logistic regression using the harmonic mean of such criteria as sensitivity and positive predictive value, which are derived based on a confusion matrix and are essential for multilateral evaluation. This paper presents the formulation of our proposed method and reports our empirical evaluation results. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10505667 |
書誌情報 |
研究報告数理モデル化と問題解決(MPS)
巻 2015-MPS-103,
号 55,
p. 1-2,
発行日 2015-06-16
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8833 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |