
Electronic Preprint for Journal of Information Processing Vol.23 No.4

Regular Paper

Detection of Visual Clickjacking Vulnerabilities in
Incomplete Defenses

Yusuke Takamatsu1,a) Kenji Kono1,b)

Received: October 18, 2014, Accepted: January 16, 2015

Abstract: Clickjacking is a new attack which exploits a vulnerability in web applications. It tricks victims into
clicking on something different from what they perceive they are clicking on. The victims may reveal confidential
information or start unintended online transactions. Clickjacking attacks compromise visual integrity (called visual
clickjacking) or condition integrity (called switchover clickjacking) to deceive victims. We address visual clickjacking
in this paper. Visual clickjacking can be prevented if appropriate countermeasures such as frame busting are imple-
mented in web applications. However, the correct implementation is not easy. A trivial mistake in the implementation
leads to evasion of the countermeasures. For the correct implementation, web developers must have intimate knowl-
edge on evasion techniques of the countermeasures. In this paper, we propose Clickjuggler, an automated tool for
checking defenses against visual clickjacking during the development. Clickjuggler generates some types of visual
clickjacking attack, performs those attacks on web applications, and checks whether the attacks are successful or not.
By automating the process of checking for the vulnerabilities, web developers are released from the burden of checking
the correctness of their implementation. Unskillful developers can benefit from Clickjuggler since no special knowl-
edge on a variety of visual clickjacking and evasion techniques is needed to use Clickjuggler. Our experimental results
demonstrate that Clickjuggler can detect the visual clickjacking vulnerabilities in 4 real-world web applications and
can detect the vulnerabilities in a shorter time than existing tools.

Keywords: clickjacking, cursorjacking, web security, web application

1. Introduction

Clickjacking is known as a new attack which exploits a vul-
nerability in web applications [1]. It tricks victims into clicking
on something different from what they perceive they are clicking
on. In principle, an attacker prepares a button, a link, or a form
that the victims can not recognize (i.e., hidden from the victims),
and induces them to manipulate the hidden elements of the web
page. For example, an attacker overlays a visible button with an
invisible button. Although the victims are clicking on the invisi-
ble button, they believe they are clicking on the visible button. To
prepare invisible buttons, a vulnerable page is made transparent
(the buttons on the vulnerable page become invisible) and embed-
ded in an attacker’s page (the buttons on the attacker’s page are
visible). As a result, an attacker can induce the victims to click
on the buttons on the vulnerable page.

Clickjacking is a real threat. Sophos [2] reported a clickjacking
worm spreads quickly over Facebook users. Using a clickjack-
ing technique, the users are tricked into recommending a page
to their Facebook friends. The Setting Manager of Adobe Flash
Player was vulnerable to clickjacking [3]. The victims unknow-
ingly click on the button of the access control dialog, and allow
remote attackers to hijack the victims’ cameras and microphones.
According to Ref. [4], 30% of Alexa Top 10 web sites, 70% of

1 Keio University, Yokohama, Kanagawa 223–8522, Japan
a) yusuke@sslab.ics.keio.ac.jp
b) kono@ics.keio.ac.jp

Top 20 bank web sites, and 80% of 5 popular open-source web
applications have no defense against clickjacking in 2012.

Attackers violate visual integrity (called visual clickjacking)
or condition integrity (called switchover clickjacking) to deceive
victims in clickjacking [5]. In visual clickjacking, attackers com-
promise the guarantee that victims can fully see and recognize
an object on a browser. Visual clickjacking attacks are classi-
fied into two categories [5]. In the first category (called basic
clickjacking), attackers manipulate an element on a vulnerable
page. This is the category the example mentioned earlier falls in.
In the second category (called cursorjacking), attackers manipu-
late cursor feedback to select locations for victims’ input events.
An attacker hides the real cursor and displays a fake cursor. In
switchover clickjacking, attackers compromise the guarantee that
victims have enough time to comprehend where they are clicking.
This paper focuses on visual clickjacking because visual click-
jacking is widely recognized as clickjacking and cursorjacking.

Frame busting [6] and X-Frame-Options [7] are well-known
defenses against visual clickjacking. Since an attacker tries to
embed a vulnerable page in an attacker’s page, frame busting
prevents a page from being embedded in attackers’ pages. If
an attempt is made to embed a page to be protected in an at-
tacker’s page, the code of frame busting redirects browsers to
the protected page. X-Frame-Options controls whether a browser
should be allowed or not to render a page in a frame or an iframe

An earlier version of this paper appeared in IEEE Twelfth Annual Inter-
national Conference on Privacy, Security and Trust.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

tag. To prevent a page from being embedded in attackers’ pages,
X-Frame-Options is set not to allow browsers to render framed
pages. These defenses’ policies are enforced on each page so that
they are not enforced on each element on the page.

Unfortunately, it is quite difficult to correctly implement these
defenses. A trivial mistake in the implementation leads to the
evasion of the defenses. As shown in Section 3.3, there are many
subtle issues in the implementation of frame busting. If devel-
opers do not have intimate knowledge on evasion techniques of
frame busting [6], [8], [9], it is almost impossible to correctly im-
plement frame busting. In addition, X-Frame-Options is not free
from incorrect implementations. Joomla 3.x, a content manage-
ment framework, employs X-Frame-Options to defend against vi-
sual clickjacking. However, X-Frame-Options is not effective be-
cause of trivial typing errors [10].

Frame busting and X-Frame-Options can not be used to al-
low a page to be embedded in a third-party page. As shown in
Section 3.1.3, some developers need to allow a page to be em-
bedded in a third-party page and disable only sensitive buttons
on the page in the third-party page. In this case, the developers
must implement element-customized defenses to enforce differ-
ent policies on different elements on the page. One approach
to disable sensitive buttons does not display the buttons on a
protected page if the protected page is embedded in the third-
party page. Developers make mistakes in the implementation
of element-customized defenses because they implement policies
for each element and may not spend the time to test all elements.

We propose Clickjuggler, an automated tool that checks for
incomplete defenses against visual clickjacking in the develop-
ment phase. Clickjuggler checks for incomplete implementations
of frame busting, X-Frame-Options, and the element-customized
defenses. Clickjuggler crafts attacker’s pages, generates events
such as click to perform visual clickjacking attacks, and deter-
mines whether the attacks are successful or not.

Clickjuggler deals with a wide range of visual clickjacking at-
tacks from the basic ones to advanced ones. In fact, it performs 8
different attacks including basic clickjacking, cursorjacking, and
several ones based on evasion techniques of frame busting. Ex-
isting tools such as CJTool [11] and BeEF plug-in [12] help de-
velopers to craft attacker’s pages. These tools focus only on ba-
sic clickjacking and do not cover such a wide range of evasion
techniques. CJTool does not support any evasion techniques and
BeEF plug-in detects only one evasion technique.

Clickjuggler brings about several benefits by automating the
process of checking for the visual clickjacking vulnerabilities.
Web developers are released from the burden of checking the
incorrectness of their implementation. Clickjuggler detects the
vulnerabilities and/or insufficient implementations of the coun-
termeasures, even if the developers are not familiar with a variety
of visual clickjacking and evasion techniques. In addition, Click-
juggler shortens the time to test web applications and improves
the coverage of the tests. Since modern web sites consist of a
large number of buttons and pages, it is difficult for developers to
spend the time to test the buttons and pages.

To demonstrate the usefulness of Clickjuggler, we have ap-
plied it to four real-world web applications including Joomla [13]

(downloaded over 35 million times), WordPress [14] (over 70
million users), MediaWiki [15], and Roundcube [16]. Clickjug-
gler detects 15, 4, 5 and 2 visual clickjacking vulnerabilities in
Joomla, WordPress, MediaWiki, and Roundcube, respectively.
Clickjuggler does not cause false positives and false negatives in
those web applications. Moreover, we measure the time to de-
tect the vulnerabilities with Clickjuggler. The detection time of
Clickjuggler is shorter than CJTool and BeEF plug-in.

The remainder of this paper is organized as follows. We de-
scribe the background of clickjacking in Sections 2 and 3. Sec-
tion 4 explains Clickjuggler. Section 5 presents our experimental
results. Section 6 discusses related work. Finally, we conclude
the paper in Section 7.

2. Clickjacking

2.1 An Example of Clickjacking
To understand the concept of clickjacking, we show a simple

example of clickjacking. In this example, an attacker puts an
unreasonably expensive item for sale at a shopping site (shop-
ping.com). The attacker forces a victim to buy the item in the
shopping site. Figure 1 illustrates the example of clickjacking.
The shopping site is vulnerable to clickjacking. To exploit this
shopping site, the attacker prepares the web site (malicious.com),
called the attacker’s site, and induces the victim to visit the at-
tacker’s site with, for instance, social engineering tricks (Step 1).

The page in the attacker’s site, called the attacker’s page, is
constructed so that it is overlaid with the target page in the vulner-
able site (shopping.com). The attacker’s page obtains the target
page and embeds it in the attacker’s page (Step 2). To deceive the
victim, the target page is made transparent by the attacker’s page
so that the victim cannot perceive the presence of the target page
(Step 3). To force the victim to buy the item in shopping.com,
the decoy button is shown on the attacker’s page and precisely
overlaid with the “Buy” button on the target page (Step 4). Since
the target page is transparent, the victim cannot perceive the pres-
ence of the “Buy” button; he clicks on the “Buy” button although
he believes he is clicking on the decoy button (Step 5). Conse-
quently, the victim unintentionally buys the item in shopping.com
(Step 6). The attacker can obtain a payment for the item.

2.2 Methods of Clickjacking
Existing clickjacking attacks compromise visual integrity

(called visual clickjacking) or condition integrity (called
switchover clickjacking) to deceive victims [5]. In this paper, we
address visual clickjacking.

(1) Visual clickjacking: the attackers compromise the guar-
antee that victims can fully see and recognize an object on a
browser. Visual clickjacking attacks are classified into two cat-
egories based on the methods to deceive victims [5]. In the first
category (called basic clickjacking), attackers manipulate an el-
ement on a target page. An approach is to overlay a web page
with a transparent page as explained in the previous section. The
victims click on buttons on the target page although they believe
that they manipulate the attacker’s page.

In the second category (called cursorjacking), attackers manip-
ulate cursor feedback to select locations for victims’ input events.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

Fig. 1 Example of clickjacking. The victim accesses the attacker’s page (Step 1). The attacker’s page
requests the target page (Step 2). To deceive the victim, the target page is made transparent by the
attacker’s page (Step 3). To force the victim to click on the “Buy” button, the decoy button on the
attacker’s page is precisely overlaid with the “Buy” button on the target page (Step 4). The victim
clicks on the decoy button and sends the request (Steps 5 & 6).

The attackers display a fake cursor and hide the real one. Since
the victims can not recognize correct locations of the cursor, they
click on an unintended button on a target page. For example, an
attacker’s page displays a fake cursor at 200 pixels right of the
real cursor and hides the real cursor to deceive a victim. To hide
the real cursor, it uses the CSS cursor property which controls the
type of cursor. To force the victim to click on a target button, it
sets a decoy button at 200 pixels right of the target button. The
victim clicks on the target button although he believes he clicks
on the decoy button.

(2) Switchover clickjacking: the attackers compromise the
guarantee that victims have enough time to comprehend where
they are clicking. For example, the attackers move a button on a
target page on top of a decoy button shortly after the victim hov-
ers the cursor over the decoy button. The victim can not react to
the condition change and clicks on the button.

3. Defenses and Evasion Techniques

This section introduces the well-known defenses against visual
clickjacking: 1) frame busting and 2) X-Frame-Options. Since
those defenses do not allow a page to be embedded in another
page, the developers can not design a page that is allowed to be
embedded but still prevents sensitive elements from being ma-
nipulated. This section also introduces 3) element-customized
approaches to design such a page. Section 3.2 shows the difficul-
ties that lie in the implementation of those defenses. Section 3.3
elaborates Section 3.2 from the viewpoint of frame busting.

3.1 Defenses against Visual Clickjacking
3.1.1 Frame Busting

Frame busting is a technique to prevent a page from being
embedded in another page [6]. In visual clickjacking, a vul-
nerable page is embedded in an attacker’s page to deceive vic-
tims. In frame busting, a small piece of code (usually written in
JavaScript) is embedded in a page to be protected. If an attempt is
made to embed a protected page in an attacker’s page, the frame
busting code redirects the browser to the original site so that the
victims can see the protected page instead of the attacker’s page.

The Frame busting’s policy is enforced on all buttons, links,
and forms on a single web page and thus, can not be used if a

web page is allowed to be embedded in a third-party page. As
shown in Section 3.1.3, some web applications need to enforce
different policies on different elements on a single web page.
3.1.2 X-Frame-Options

X-Frame-Options HTTP response header indicates whether a
browser should be allowed or not to display a page in a frame or
an iframe [7]. It can be used to avoid visual clickjacking because
a page in which X-Frame-Options is set can not be embedded
in other pages. Three attributes can be specified for X-Frame-
Options: 1) DENY, 2) SAMEORIGIN, and 3) ALLOW-FROM. DENY
prohibits a page from being displayed in an iframe. SAMEORIGIN
allows only the pages that belong to the same origin to be dis-
played in an iframe. ALLOW-FROM allows the pages that originate
from the pre-defined origins to be displayed in an iframe. As with
frame busting, the policy of X-Frame-Options is not enforced on
each element on a single page because it is enforced on the single
web page.

There are web application frameworks which support X-
Frame-Options, but developers need to check the correctness of
X-Frame-Options in these frameworks. This is because the de-
velopers make mistakes in setting policies. For example, Ruby
on Rails [17] and django [18] support X-Frame-Options. These
frameworks set X-Frame-Options for all responses in sites by set-
ting policies. However, the developers might make mistakes in
setting the policies because they set the policies on every page.
3.1.3 Element-customized Approaches

Frame busting and X-Frame-Options can not allow a page to
be embedded in a third-party page. Suppose that there are the
“Buy” and the “Cart” button on the vulnerable page in Fig. 1 and
the page is allowed to be embedded in a third-party page. If it is
embedded, the “Buy” button is not clickable but the “Cart” but-
ton is clickable since the “Cart” button does not start any critical
transactions. Neither frame busting nor X-Frame-Options can be
applied to this page.

One approach to dealing with this situation is to implement
a defense customized for each element. A small piece of script
code is associated with each element. If the page to be protected
is embedded in a third-party page, the code, for instance, does not
display security-critical buttons such as the “Buy” button. An-
other approach is to stop sending cookies if the security-critical

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

buttons are clicked. If no cookies are sent, no critical transactions
can be initiated.

3.2 Difficulties in Implementing Defenses
It is not easy to correctly implement these defenses. To im-

plement frame busting, the developers must have intimate knowl-
edge on evasion techniques of frame busting [6], [8], [10]. To
understand subtle issues in the implementation of frame busting,
Section 3.3 introduces seven evasion techniques of frame busting.
X-Frame-Options is not free from trivial mistakes. Joomla 3.x
(a widely used content management system) adopts X-Frame-
Options to avoid visual clickjacking. However, X-Frame-Options
is mis-spelled as X-Frames-Options (‘s’ following ‘Frame’ not
needed) and SAMEORIGIN is mis-spelled as SAME-ORIGIN
(‘-’ not needed) in behavior.php. This implies that the develop-
ers have not devoted time to check the correctness of the defense.

The element-customized defenses are headache. Since each
button, link and form on every page must accompany a small
piece of code that controls its behavior when embedded in a third-
party page, the developers tend to make mistakes in the imple-
mentation or forget to write the code. It would be possible to
extend existing frameworks to support the development of the
element-customized defenses. In such a framework, however, the
developers would be requested to set policies on each button, link
and form on every web page. To check the correctness of the
policy setting, we need another system that guarantees the web
application is free from the visual clickjacking vulnerabilities.

3.3 Evasion Techniques of Frame Busting
3.3.1 Double Framing

As shown in Section 3.1.1, frame busting code redirects a
browser to the original site. If parent.location is used to redi-
rect a browser, the frame busting code can be evaded by double

framing. In double framing, an attacker nests a target page in two
frames of two attacker’s pages. By nesting the target page in two
frames, redirecting with parent.location in the frame busting
code becomes security violation due to descendant policy and is
disabled by browsers. In descendant policy a frame can navigate
only its descendant frame to a different URI so that the descen-
dant frame (the frame busting code in the protected page) can not
redirect the parent frame.
3.3.2 onBeforeUnload Event

Frame busting can be evaded if frame busting code does not
stop displaying a page to be protected when the redirection is
canceled. An attacker prepares a page that registers an onBefore-
Unload handler, which is invoked when the attacker’s page is un-
loaded because of the redirection. The handler asks a user if the
redirection should be canceled. If the user chooses to cancel, the
browser cancels the redirection and the protected page remains
embedded into the attacker’s page.
3.3.3 No-Content Flushing

Frame busting can be evaded if the frame busting code is not
placed in a head tag or the forefront of the body tag. If the frame
busting code is placed at the end of the body tag, it is evaluated
after the protected page is rendered, and then attempts to redirect
the browser. To keep the protected page rendered, an attacker’s

page registers an onBeforeUnload handler. Recall that this han-
dler is invoked when the frame busting code attempts to redirect
the browser. The handler submits a request to a server which re-
sponds with a HTTP/1.1 204 No Content. On the receipt of No
Content, the browser flushes the request pipeline and the redirec-
tion is canceled.
3.3.4 Manipulating Referrer

Frame busting code checks document.referrer to allow a
page to be framed in pre-defined third-party pages. If a URI of
the pre-defined pages is in document.referrer, the frame bust-
ing code allows the page to be embedded. If this check is done by
using a simple string search, the frame busting code can be evaded
since an attacker can embed a string that matches the search. For
example, if a page to be protected is allowed to be embedded in
a page originating from safe.com, an attacker can generate a URI
of attacker.com/page?s=safe.com.
3.3.5 Browser-dependent Approaches

Three evasion techniques of frame busting exploit browser-
specific behaviors. This is another reason it is hard to implement
the code of frame busting.
clobbering location variable: To disable frame busting
code, an attacker’s page can make use of security violation caused
by accessing a local variable in other pages. Frame busting code
accesses a global variable, top.location (the origin of the par-
ent page), to confirm the page is allowed to be embedded in the
parent page. To disable this type of frame busting code, an at-
tacker’s page redefines the location variable as a local variable.
When the frame busting code accesses top.location (now, it is
a local variable), the frame busting code is disabled due to secu-
rity violation. This evasion is specific to IE 7 or Safari 4.0.4.
restricting JavaScript: If JavaScript code is disabled, frame
busting code can be evaded because it is usually written in
JavaScript. If frame busting code is put in an iframe in Firefox
and Chrome, it can be disabled by specifying a sandbox attribute
in the iframe tag. Frame busting code can be also disabled by
setting a security attribute to “restricted” in IE or turning on a
designMode property in IE 8 and Firefox.
XSS filter: To disable frame busting code, an attacker’s page
can make use of XSS filters in IE 8 and Chrome. The XSS fil-
ters disable the script code included in a response of the HTTP
request. If an attacker’s page extracts the frame busting code and
embeds it in a URI of an iframe tag, the XSS filters disable the
frame busting code.

4. Clickjuggler

As shown in Sections 3.2 and 3.3, there are many words of cau-
tion to implement the defenses against visual clickjacking. We
propose Clickjuggler, an automated tool to check the correctness
of the implementation of defenses against visual clickjacking. To
check for the visual clickjacking vulnerabilities, Clickjuggler per-
forms actual attacks on web applications. The current version of
Clickjuggler covers basic clickjacking attack, cursorjacking at-
tack, and attacks based on six evasion techniques of frame bust-
ing. As shown in Section 4.4, Clickjuggler can cover other types
of visual clickjacking attack. Clickjuggler prepares some types
of attacker’s page to perform the visual clickjacking attacks, ma-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

Fig. 2 Overview of Clickjuggler. In the data-collection phase, Clickjuggler collects information about the
target button (Step 1 to Step 3). In the attack phase, Clickjuggler crafts some types of attacker’s
page (Step 4) and emulates actual attacks (Step 5 to Step 8). In the analysis phase, Clickjuggler
determines whether the attack is successful or not (Steps 9 & 10).

nipulates the attacker’s pages as a victim, and determines whether
the attacks are successful or not.

4.1 Overview
Clickjuggler consists of three phases: 1) data-collection phase,

2) attack phase, and 3) analysis phase as shown in Fig. 2. In
the data-collection phase, Clickjuggler collects information about
target buttons that will be needed to generate attacker’s pages for
clickjacking attacks. For example, a URI of a page which has
a target button, coordinates, width, and height of the target but-
ton, and events to activate the button are collected. Clickjuggler
collects these pieces of information while developers use target
buttons during the test phase of a web application. During the
test phase, the developer opens the target page and clicks on the
target buttons to confirm the buttons work well (Steps 1 & 2).
Clickjuggler collects necessary information through these opera-
tions (Step 3). The details are presented in Section 4.3.

In the attack phase, Clickjuggler crafts some types of attacker’s
page (Step 4). Thereafter, Clickjuggler emulates actual attacks
(Step 5 to Step 8). Clickjuggler has the browser load the at-
tacker’s page. The attacker’s page uses the URI collected in the
data-collection phase to embed the target page in the attacker’s
page. Clickjuggler issues events to emulate victims’ behavior by
using the coordinates of the target button and the events collected
in the data-collection phase.

In the analysis phase, Clickjuggler determines whether the at-
tack is successful or not (Steps 9 & 10). To conclude the basic
clickjacking is successful, Clickjuggler confirms that the target
button is not displayed and the target button is clicked when a
click event is issued.

Clickjuggler requires developers to perform three operations
because it executes three phases. The three operations are intro-
duced in the next section. Although the developers are required
to perform the three operations, the manual detection of visual
clickjacking vulnerabilities is automated by Clickjuggler. They
need not to collect information about the target buttons to craft
the attacker’s pages. They need not to craft some types of at-
tacker’s page for visual clickjacking and perform actual attacks.

They need not conclude whether each attack is successful or not.

4.2 User Operations
To use Clickjuggler, the developers of web applications have

to perform the following three operations. First, they manipulate
target buttons in the data-collection phase. Second, they provide
special keywords in the data-collection phase. Third, they manip-
ulate confirmation dialogs in the attack phase.

A set of keywords must appear only in a page returned by click-
ing on a target button. The set of keywords is specified by the
developers for each target button. The keywords must be chosen
so that they do not appear in the other pages.

It is not difficult for the developers to perform these operations
since Clickjuggler users have the intimate knowledge on the web
applications under development.

To improve the accuracy of Clickjuggler, these operations
should be performed accurately. Since Clickjuggler is used by
developers of web applications, it is expected that these opera-
tions can be performed accurately.

4.3 Data-collection Phase
Clickjuggler collects information about the target buttons while

a developer manipulates the target buttons. When a devel-
oper opens a target page to check for whether buttons on the
target page work well or not, Clickjuggler records a URI of
the opened page. Figure 3 illustrates what kind of informa-
tion Clickjuggler collects. The example used in this figure is
the same as that in Fig. 1. In this example, when the devel-
oper opens the purchase page, Clickjuggler records the URI
“http://shopping.com/purchase” (Steps 1 & 2).

After opening the web page, the developer clicks on a target
button or inputs data to a target form. Clickjuggler obtains the
coordinates, the width and the height of the clicked button or the
clicked form, and events generated to perform the operations. In
Fig. 3, the developer clicks on the “Buy” button (Step 3). Click-
juggler records the coordinates of the “Buy” button (Step 4). To
reproduce the developer’s behavior, Clickjuggler maintains the
order in which objects are manipulated. For example, if an item

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

Fig. 3 Data-collection phase. The developer accesses the target page (Step 1) and clicks on the target
button on the target page (Steps 3 & 6). Clickjuggler stores the URI of the target page (Step 2),
information about the target button (Step 4), and takes the screen shot of the target button (Step 5).
Finally, the developer provides the keyword to Clickjuggler (Step7).

in a checkbox menu is clicked on, the order of the manipulated
objects is significant.

During the data-collection phase, Clickjuggler takes screen
shots of the clicked button or the clicked form. These screen
shots are later used to determine whether the attack is success-
ful or not. In Fig. 3, Clickjuggler takes a screen shot of the “Buy”
button (Step 5).

4.4 Attack Phase
Clickjuggler crafts some types of attacker’s page for visual

clickjacking attacks. Clickjuggler prepares some template HTML
files to craft the attacker’s pages. In those templates the methods
to deceive victims or to evade the frame busting are implemented.
Clickjuggler fills in holes of the template HTML files, making use
of the information collected in the data-collection phase.

Clickjuggler prepares two template HTML files for basic click-
jacking and cursorjacking and six template HTML files for the
evasion techniques. The templates for basic clickjacking and
cursorjacking generate attacker’s pages that emulate basic click-
jacking and cursorjacking introduced in Section 2.2, respectively.
Each of the six templates generates an attacker’s page that emu-
lates one of the evasion techniques introduced in Section 3.3. We
show detail of the templates in Section 4.6.

These templates detect basic clickjacking vulnerability, cur-
sorjacking vulnerability, or incomplete countermeasures. If a
web page is not equipped with any defenses, the templates for
basic clickjacking and cursorjacking can detect the vulnerabili-
ties. If a web page implements incomplete frame busting code,
at least one of six templates can detect the vulnerability. If a
web page implements invalid X-Frame-Options or incomplete
element-customized defenses, the templates for basic clickjack-
ing and cursorjacking can detect the vulnerability.

Clickjuggler can cover other and new types of visual clickjack-

ing attacks by preparing new templates for the attacks. This is
because the methods to deceive victims and to evade the frame
busting are implemented in the templates. The difference between
visual clickjacking attacks is the method.

Clickjuggler does not indicate how to modify the source code
of vulnerable web applications. This is because Clickjuggler de-
termines the vulnerabilities according to the action of web ap-
plications without analyzing the source code of the web applica-
tions. However, the templates give an important clue to modify
the source code since each template performs a pinpoint attack on
the web application.

To initiate visual clickjacking attacks, Clickjuggler has the
browser connect to the attacker’s page generated from the tem-
plate and starts emulating the behavior of victims by replaying
the events recorded during the data-collection phase. Clickjug-
gler lets the browser emulate the behavior (e.g., a click event and
a mousemove event) to the attacker’s page.

Note that an attacker’s page must have an origin different from
that of a target page. This is important because some defenses
(e.g., X-Frame-Options) rely on the origins of web pages. Click-
juggler saves the attacker’s page as local files so that the origin of
the attacker’s page differs from the target page.

4.5 Analysis Phase
To conclude visual clickjacking attacks are successful, Click-

juggler confirms conditions are met for each template. The con-
ditions for basic clickjacking differ from the ones for cursorjack-
ing. This is because basic clickjacking manipulates the target el-
ement on the target page and cursorjacking manipulates cursor
feedback. We describe the conditions for basic clickjacking in
next section and the ones for cursorjacking in Section 4.5.2.
4.5.1 Basic Clickjacking

To conclude basic clickjacking is successful, Clickjuggler con-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

firms two conditions are met. First, Clickjuggler confirms the
target button becomes transparent when it is embedded in the at-
tacker’s page. To confirm the first condition, Clickjuggler com-
pares the screen shots of the target button before and after the
button is loaded into the attacker’s page.

Second, Clickjuggler confirms the target button is clicked on
when a click event is sent to the location where a decoy button
is displayed. We consider three design alternatives to determine
whether the target button is clicked on or not.
Design 1: Clickjuggler checks to which site a request is sent
after the button is clicked on. If the request is sent to the site
to be framed, Clickjuggler concludes the button is clicked on.
This approach misjudges a button is vulnerable if the button im-
plements the defense in which cookies are deleted as shown in
Section 3.1.3.
Design 2: Clickjuggler checks contents of the HTML file re-
turned after the button is clicked on. If the contents of the HTML
file is the same as that obtained in the data-collection phase,
Clickjuggler concludes the target button is clicked on. This is
because the site returns the HTML file obtained in the data-
collection phase by clicking on the target button. This approach
does not work well if the response differs from time to time.
Design 3: As with the design 2, Clickjuggler checks the con-
tents of the HTML file returned after the button is clicked on.
To deal with the buttons that return different pages, Clickjuggler
identifies the returned page with the special keyword shown in
Section 4.2.

The special keywords must be specified by the developers in
the data-collection phase (Step 7 in Fig. 3) so that a returned
page can be identified. As shown in Section 4.2, it is usually
straightforward to specify the keywords. In the experiments in
Section 5.1, the authors who are not the developers of the real web
applications could specify those keywords without extra efforts.
The keywords specified are like “Profile successfully saved” and
“Article successfully saved.”

From the theoretical viewpoint, it is possible to design a web
application in which there does not exist such a keyword. If two
pages returned when two different buttons are clicked contain
completely the same keywords only, it is impossible to choose
an appropriate keyword. From the practical viewpoint, it would
be quite rare to prepare those pages that contain completely the
same keywords.

Clickjuggler employs the design 3 because the design 1 and 2
cause false positives in some defenses and pages.
4.5.2 Cursorjacking

To conclude cursorjacking is successful, Clickjuggler confirms
two conditions. First, Clickjuggler confirms a fake cursor is dis-
played to force victims not to recognize the correct position of the
real cursor. Clickjuggler compares the screen shots of the decoy
button on the attacker’s page before and after the fake cursor is
moved. If the screen shots differ, the fake cursor is displayed.

It is possible that Clickjuggler causes false positive when the
target pages change dynamically. This is because the change in
the target pages affects the screen shots of the decoy button. To
prevent the screen shots from changing, Clickjuggler covers the
target page with an element and sets the decoy button on the ele-

Table 1 Web API interfaces.

Web API interface Summary [19]

window.content Returns a reference to the content element
in the current window

document.URL Returns the string URL of the HTML
document

Element.getBoundingClientRect Returns a text rectangle object that encloses
a group of text rectangles

document.createEvent Creates an event of the type specified

event.initMouseEvent Initializes the value of a mouse event once
it’s been created

EventTarget.dispatchEvent Dispatches an Event at the specified
EventTarget, invoking the affected

EventListeners in the appropriate order

EventTarget.addEventListener Registers the specified listener on the
EventTarget it’s called on

ment as shown in Section 4.6.2.
Second, Clickjuggler confirms the target button on the at-

tacker’s page is clicked when a click event is issued to the target
button in a condition that the attacker’s page visually deceives a
victim. To confirm the condition Clickjuggler uses the same way
as basic clickjacking.

Clickjuggler does not confirm the real cursor is hidden to force
victims not to recognize the real cursor. This is because it is pos-
sible to succeed cursorjacking even if the real cursor is displayed.
The victims click on the target button if they focus on the fake
cursor when the real cursor and the fake cursor are displayed.

There are techniques [5] to let users pay attention to the cor-
rect position of the real cursor. These techniques do not prevent
cursorjacking completely. Clickjuggler determines that a target
button which implements these techniques is vulnerable. This is
because it is possible to succeed cursorjacking.

4.6 Implementation
Clickjuggler is implemented as a plug-in for Firefox 20.0.1 and

3.6.8. Our implementation makes use of Firefox plug-in inter-
face, but we believe Clickjuggler can be ported easily to other
browsers such as IE, Chrome, and Safari because our implemen-
tation uses only the common API functions. Table 1 lists the API
that Clickjuggler uses.

Attackers can abuse Clickjuggler to scan vulnerable web ap-
plications. We can consider some approaches to prevent attackers
from abusing Clickjuggler. For example, Clickjuggler performs
authentication between the developers and the target sites. How-
ever, Clickjuggler does not incorporate such approaches because
the purpose of this paper is to detect some types of visual click-
jacking vulnerability.

Clickjuggler uses the templates for basic clickjacking and cur-
sorjacking, and the six templates to craft the attacker’s pages as
shown in Section 4.4. Clickjuggler generates all attacks intro-
duced in Section 3.3 except for the evasion techniques of restrict-
ing JavaScript with security attribute, clobbering location vari-
able, and XSS filter. These evasion techniques are not supported
because these evasion techniques are the attack specific to IE,
Chrome, and Safari. We introduce the templates for basic click-
jacking and cursorjacking, and the six templates, and discuss the
evasion techniques for IE, Chrome, and Safari.
4.6.1 Template for Basic Clickjacking

As shown in Fig. 4, attacker’s pages, crafted from the template

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

1 <IFRAME style="opacity:0;" src="URI">
2 </IFRAME>

3 <BUTTON style="left:X; top:Y; width:WIDTH; height:HEIGHT;
4 position:absolute; z-index:-1;">Decoy

5 </BUTTON>

Fig. 4 Template for basic clickjacking.

1 <BODY style="cursor: none;">

2

3 <SCRIPT>

4 var move = function(e){

5 a = coordinate x of the real cursor + 200;

6 b = coordinate y of the real cursor;

7 // move a fake cursor on coordinates (a, b);

8 };

9 //Continuously catch mousemove event

10 document.body.addEventListener(’mousemove’, move, true);

11 </SCRIPT>

12 <BUTTON style="left:X+200; top:Y;
13 width:WIDTH; height:HEIGHT;
14 position:absolute; z-index:-1;">Decoy<BUTTON>

15 <IFRAME src="URI"></IFRAME>
16 <DIV style="..."></DIV>...<DIV style="..."></DIV>

17 </BODY>

Fig. 5 Template for cursorjacking.

for basic clickjacking, display a decoy button that is overlaid with
a target page which is made transparent. In the template, an
iframe tag is used to load a target page from a URI (line 1).
To make the loaded page transparent, an opacity is set in the
style attribute of the iframe tag. A decoy button is displayed at
coordinates (X,Y) with height HEIGHT and width WIDTH (line
3); i.e., precisely at the location of the target button on the target
page. To craft an attacker’s page, Clickjuggler fills in URI, X,
Y, HEIGHT, and WIDTH, using the information obtained in the
data-collection phase.
4.6.2 Template for Cursorjacking

As shown in Fig. 5, attacker’s pages, crafted from this template
for cursorjacking, hides a real cursor, displays a fake cursor, and
covers a target page to prevent false positive. To hide a real cursor,
cursor:none is set in the style attribute of the body tag (line
1). The Img tag is used to load a bitmap of a fake cursor to be
displayed (line 2). JavaScript code in the script tag moves the
fake cursor at coordinates (x coordinate of the real cursor +200,
y coordinate of the real cursor) (line 3 to line 11). The Button
tag sets a decoy button at coordinates (X + 200, Y) with width
WIDT H and height HEIGHT (line 12 to line 14). The iframe
tag is used to load a target page from “URI” in the iframe (line
15). The Div tags overlay the target page without covering the
target button (line 16).
4.6.3 Six Templates for Evasion Techniques

Each template extends the template for basic clickjacking to
generate each of the evasion techniques. The first template, dou-

ble framing, consists of two template files because a target page is
nested in two attacker’s pages. The one template loads the other
template in a frame, the other template is the same as the template
for basic clickjacking.

The second template, the onBeforeUnload event, cancels redi-
rection requested by the frame busting code. To cancel the redi-
rection an attacker’s page registers an onBeforeUnload handler.
This handler asks a user to cancel the redirection with a confir-
mation dialog. Clickjuggler requires developers to select the can-
cel of the redirection in attack phase. Clickjuggler can not select

1 var prevent_bust = 0;

2 // Event handler to catch execution of redirection

3 window.onbeforeunload = function(){

4 prevent_bust++

5 };

6 // Continuously monitor whether redirection is

7 // executed or not

8 setInterval(function(){

9 if(prevent_bust > 0){

10 prevent_bust -= 2;

11 // Get "No Content"

12 window.top.location = ’http://no-content-204.com/’;

13 }

14 }, 1);

Fig. 6 Template for No-Content Flushing.

the cancel of the redirection because Clickjuggler implemented
in JavaScript can not manipulate the confirmation dialog. In the
second template, the code is added as follows.
window.onbeforeunload=function(){return "Do you want to exit?";}

The third template, No-Content flushing, cancels redirection
requested by the frame busting code as shown in Fig. 6. To can-
cel the redirection an attacker’s page registers an onBeforeUn-
load handler. This handler catches the redirection requested by
the frame busting code (line 3 to line 5). This template contin-
uously monitors whether the redirection is executed or not and
issues a request to a server which responds with a HTTP/1.1 204
No Content (line 8 to line 14).

The fourth template, manipulating Referrer, manipulates
document.referrer. Clickjuggler checks for whether
the frame busting code uses simple string search to check
document.referrer or not. To check the frame busting code
Clickjuggler manipulates a URI of the fourth template because
the URI is assigned to document.referrer. Clickjuggler
embeds a URI of a target page into the URI of the fourth
template. This is because we assume that developers allow pages
in the target site to embed pages in the target site.

The fifth template, restricting JavaScript with sandbox, pro-
hibits the execution of JavaScript code. An attacker’s page
specifies a sandbox attribute in an iframe tag to prevent the
JavaScript code from running. In the fifth template, the sandbox
attribute is added as follows. “allow-forms” allows form submis-
sion in the iframe.
<IFRAME style="opacity:0;"

sandbox=”allow-forms” src="URI"></IFRAME>

The sixth template, restricting JavaScript with designMode,
prohibits the execution of JavaScript code. An attacker’s page
can prevent the frame busting code in an iframe from working
by setting “on” as a value of the designMode property of the
iframe tag. In the sixth template, the designMode property is
added as follows.
<IFRAME style="opacity:0;" id="tgt" src="URI"></IFRAME>

document.getElementById("tgt").contentDocument.designMode="on";

4.6.4 Evasion Techniques for Chrome, IE, or Safari
We believe Clickjuggler can check for the visual click-

jacking vulnerabilities with two evasion techniques (clobbering
location variable and restricting JavaScript with security at-
tribute) by making Clickjuggler as Chrome, IE, or Safari plug-in.
Clickjuggler can craft the attacker’s pages which make use of two
techniques from two templates.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

Two templates extend the template for basic clickjacking as
with the six templates. The template, clobbering location vari-

able, manipulates the location variable. An attacker’s page re-
defines the location variable as a local variable to disable the
frame busting code due to security violation. In this template, the
script code is added as follows.
<SCRIPT> var location="clobbered" </SCRIPT>

The template, restricting JavaScript with security attribute,
prohibits the execution of JavaScript code in an iframe. An at-
tacker’s page prevents the frame busting code in the iframe from
working by setting “restricted” as a value of security attribute
of the iframe tag. In this template, the security attribute is
added as follows.
<IFRAME style="opacity:0;"

security=”restricted” src="URI"></IFRAME>

Clickjuggler which is implemented as Chrome and IE plug-in
can not check for the visual clickjacking vulnerabilities with the
evasion technique of XSS filter because the current version of
Clickjuggler can not craft the attacker’s pages which make use of
XSS filters. We discuss the reason in Section 5.3.

5. Experiments

We evaluate the accuracy and the performance of Clickjuggler
to demonstrate the usefulness of Clickjuggler. To evaluate the ac-
curacy, we confirm that Clickjuggler can detect correctly visual
clickjacking vulnerabilities in real-world web applications in next
section. To evaluate the performance, we compare the detection
time of Clickjuggler with existing tools in Section 5.2. Moreover,
we discuss about limitation of Clickjuggler in Section 5.3.

The target web applications run on a MAMP machine (Mac
OS X version 10.8.2, Apache 2.2.23, MySQL 5.5.29, and PHP
5.2.17). The MAMP machine and Firefox 20.0.1 and 3.6.8 run
on a 2.7 GHz Intel Core i7 with 16 GB memory and Mac OS X
version 10.8.2. A prototype of Clickjuggler is installed on the
Firefox 20.0.1 and 3.6.8.

5.1 Accuracy of Detection Results
We evaluate Clickjuggler using four real-world web applica-

tions: Joomla [13], Roundcube [16], MediaWiki [15], and Word-
Press [14]. All of these applications are widely used. For exam-
ple, Joomla is downloaded over 35 million times, Roundcube is
downloaded over 2 million times, WordPress is used in over 70
million users. Since there are the special keywords for each target
button in these web applications, we can specify them. To check
for the clickjacking vulnerabilities, we use two versions of Fire-
fox (20.0.1 and 3.6.8) because the former (20.0.1) supports X-
Frame-Options HTTP response header but the letter (3.6.8) does
not. We select normal links in the four web applications as target
buttons to check for the cursorjacking vulnerabilities. This is be-
cause the template for the cursorjacking targets normal links and
buttons.

Table 2 lists the summary of those experiments. The names
and versions of the tested web applications are listed in (Web Ap-
plication). (target button) lists target links, buttons, or forms in
the experiments. (Vulnerability) shows if the target links, but-
tons, or forms are vulnerable or not. We manually investigate

each link, button, or form to find out the visual clickjacking vul-
nerabilities. We have confirmed the results of our manual inves-
tigation by searching for the clickjacking vulnerabilities of tested
web applications in vulnerability repositories such as Refs. [20]
and [21], wiki [22], and release note [23]. (Result) shows the test
results obtained from Clickjuggler.

From Table 2, we can say that Clickjuggler detects visual click-
jacking vulnerabilities without any false positives and any false
negatives. For all the vulnerable elements (vul. in the Vulnerabil-
ity column), at least one of the Clickjuggler templates judges they
are vulnerable. For all the non-vulnerable elements (no vul. in the
Vulnerability column), all the Clickjuggler templates judge they
are not vulnerable. (basic), (1) to (6), and (cursor) in (Template)
of Table 2 show the Clickjuggler templates’ results.

Clickjuggler can check the defenses against visual clickjack-
ing attacks introduced in Section 3. Clickjuggler concludes
that X-Frame-Options and the element-customized defense in
Roundcube 0.7.0 are not vulnerable. As you can see from Ta-
ble 2, Roundcube 0.7.0 is not vulnerable in Firefox 20.0.1 (sup-
porting X-Frame-Options) because Roundcube 0.7.0 implements
X-Frame-Options correctly. In addition to X-Frame-Options,
Roundcube 0.7.0 implements another element-customized de-
fense so that Firefox 3.6.8 (not supporting X-Frame-Options) can
not be compromised as shown in Table 2. If a page is embedded
in another page, a code of the element-customized defense exam-
ines the origin of the page in which the page is embedded. If the
origin of the page differs, this code disables all the form elements.

As shown in Table 2, Clickjuggler concludes that a page to
edit user’s profile in Joomla 3.0.2 is not vulnerable to basic click-
jacking and evasion techniques of frame busting. This is because
this page exceptionally implements the frame busting code and its
implementation is perfect. The frame busting code is in the head
tag of the page. Even if JavaScript is disabled, it does not dis-
play the page. Subtle variables such as parent.location and
document.referrer are not used in the code.

5.2 Performance
We compare the detection time using CJTool [11] and BeEF

plug-in [12]. These tools help the developers to craft the at-
tacker’s pages of visual clickjacking. In those experiments Click-
juggler and these tools detect basic clickjacking vulnerability in
normal links of four web applications used in Section 5.1. This is
because CJTool targets only basic clickjacking vulnerability and
BeEF plug-in does not target forms which require users to input
data. We repeatedly measure the time to test the normal links with
each tool 5 times and calculate the average time.

Table 3 lists the summary of those experiments. The names
and versions of the targeted web applications are listed in (Web
Application). (total) shows the total time of the (preparatory) time
and the (test) time. (preparatory) shows the time to prepare in-
formation to check for vulnerabilities and perform operations for
each tool. (test) shows the time to craft the attacker’s pages and
test the normal buttons.

Table 3 shows that Clickjuggler detects the vulnerabilities in a
shorter time than the existing tools in all cases. The test time is
the cause of the difference between the total time of Clickjuggler

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

Table 2 Detection result of visual clickjacking.

Web Application target button Vulnerability Detection results of Clickjuggler
Template* Result

basic 1 2 3 4 5 6 cursor

Joomla 1.6.1 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit profile vul. vul. vul. vul. vul. vul. vul. vul. - vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Joomla 2.5.7 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit profile vul. vul. vul. vul. vul. vul. vul. vul. - vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Joomla 3.0.2 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Make article vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
Edit profile No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. - No vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Roundcube 0.4.1 Normal link vul. vul. vul. vul. vul. vul. No vul. No vul. vul. vul.
Edit setting vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Roundcube 0.7.0 Normal link No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul.
Edit setting No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. - No vul.

Roundcube 0.7.0 Normal link No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul.
(Firefox 3.6.8) Edit setting No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. - No vul.

MediaWiki 1.16.0 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

WordPress 3.1.2 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Post comment vul. vul. vul. vul. vul. vul. vul. vul. - vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Add user (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Template*: basic is Template for basic clickjacking, 1 is double framing, 2 is The onBeforeUnload event, 3 is No-Content flushing, 4 is manipulating Referrer, 5

is restricting JavaScript with sandbox, 6 is restricting JavaScript with designMode, and cursor is Template for cursorjacking as shown in Section 4.6.

“-” means “not checked by Clickjuggler because the template for the cursorjacking targets normal links and buttons.”

Table 3 Detection time of Clickjuggler, CJTool, and BeEF plug-in.

Web Application Clickjuggler CJTool BeEF plug-in
preparatory (s) test (s) total (s) preparatory (s) test (s) total (s) preparatory (s) test (s) total (s)

Joomla 1.6.1 9.78 10.7 20.5 11.5 15.9 27.4 11.5 26.3 37.8
Joomla 2.5.7 9.44 10.7 20.1 11.5 15.9 27.4 11.5 25.4 36.9
Joomla 3.0.2 9.41 10.7 20.1 10.5 15.4 25.9 11.3 24.7 36.0

Roundcube 0.4.1 12.6 14.6 27.2 19.7 28.9 48.6 19.7 36.2 55.9
Roundcube 0.7.0 12.8 14.4 27.2 19.7 21.2 40.9 19.7 28.0 47.7

Roundcube 0.7.0 (Firefox 3.6.8) 12.8 14.5 27.3 19.5 31.3 50.8 19.5 36.1 55.6
MediaWiki 1.16.0 8.14 10.7 18.8 10.8 15.2 26.0 10.8 24.3 35.1
WordPress 3.1.2 9.18 10.6 19.8 10.3 14.9 25.2 10.3 22.8 33.1

and the existing tools. This is because Clickjuggler automates
the processes to craft the attacker’s pages and to perform visual
clickjacking attacks. CJTool and BeEF plug-in do not automate
those processes as shown in Section 6.

5.3 Limitation
Clickjuggler can cause false positives and negatives in some

cases. We show two cases that the keywords specified can not
identify a page and that a defense against clickjacking is imple-
mented as a CSS effect.

Clickjuggler can cause false positives and negatives if the key-
words specified by developers can not identify a page returned
when a button is clicked. Developers are expected to specify the
keywords appropriately since they have the intimate knowledge
on the web applications. In our experiments in Section 5.1, there
is no obstacle to specifying the keywords although the tested ap-

plications are not developed by the authors.
Clickjuggler can cause false positives when the defense uses

CSS because even if a mouse event is issued to a button for which
a CSS effect is written, this event does not trigger the CSS ef-
fect. Developers discuss that the CSS effect is not triggered with
JavaScript [24]. When Clickjuggler issues a mouse event to a
button for which a defense is written in CSS, this defense does
not work. Clickjuggler determines that this button is vulnerable
because all attacks are successful. We believe that Clickjuggler
can detect the defense written in CSS by modifying the browsers.
This is because JavaScript does not trigger the CSS effect due to
the browsers. However, we do not modify Firefox because as far
as we know, there is not the defense written in CSS.

Clickjuggler can not craft attacker’s pages which exploit XSS
filters in IE and Chrome. To exploit XSS filters, Clickjuggler
must embed part of the frame busting code in the URI of the pro-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

tected page. The current version of Clickjuggler cannot identify
the frame busting code in the protected page. This is because
each developer can write different frame busting code. Clickjug-
gler can identify the frame busting code by a slight extension.
For example, Clickjuggler requires the developers to provide the
frame busting code. However, this extension is not implemented
because Clickjuggler is implemented as a Firefox plug-in.

6. Related Work

Some countermeasures against visual clickjacking have been
proposed. Frame busting [6] and X-Frame-Options [7] have been
already discussed in Section 3.1. In this section, we address other
defenses against visual clickjacking.

Several existing tools help developers to check for a clickjack-
ing vulnerability in web applications. CJTool [11] and a plug-in
Ref. [12] for BeEF (the Browser Exploitation Framework [25])
help to craft an attacker’s page for basic clickjacking. The vul-
nerabilities which these tools focus on and the detection time of
these tools are discussed in Section 1 and Section 5.2, respec-
tively. We address the architecture of these tools in this section.

It is difficult that these tools craft always exhaustively the at-
tacker’s pages. This is because these tools craft the attacker’s
page according to the developers’ setting. Clickjuggler crafts ex-
haustively the attacker’s pages because it uses templates.

These tools can not perform three processes because they are
not implemented in the browsers. First, they can not obtain infor-
mation about the target buttons from the browsers. Second, they
can not issue the event via the browsers to perform visual click-
jacking. Third, they can not determine whether the attack is suc-
cessful or not because they can not obtain information from the
browsers in the attack. Clickjuggler automates those processes.

InContext [5], CSP [26], and [27] offer the defenses against vi-
sual clickjacking in which the client and the server cooperate. The
server indicates behavior of each element on a page in InContext
and behavior of each content and page in CSP and Ref. [27] on
the client’s browser. Clickjuggler is useful to check for whether
or not the behavior indicated by the server are complete and cor-
rect.

ProClick [28] is a client-side defense to detect basic clickjack-
ing attacks in a proxy-level framework. To identify symptoms
of basic clickjacking, ProClick examines parameters of requests
and responses according to a policy crafted by users. To set up
the policy, ProClick users need to have intimate knowledge about
the evasion techniques of frame busting. Clickjuggler does not
require users to have the intimate knowledge.

ClearClick [29], Clicksafe [30], and CSCP [31] are browser’s
extensions to defend against the basic clickjacking. To detect a
button to be disguised, ClearClick compares the bitmap of the
clicked element with that rendered without inheriting properties
from the parent element. If the bitmaps differ, ClearClick con-
cludes the button suffers from basic clickjacking and alerts users.
The users choose between sending the request or not. The choice
is not easy for the users which do not have knowledge about click-
jacking. Clickjuggler users do not need the knowledge.

To safely choose between sending the request or not, Clicksafe
provides the user with other users’ ratings about the choice. For

example, the user obtains a percentage of the users that chose to
send the request. The ratings are created from feedback on the ac-
tion which users of Clicksafe choose. Clicksafe does not ensure
that the ratings are correct because malicious users can give in-
correct feedback on the choice. Detection results of Clickjuggler
is not affected by the malicious users.

CSCP employs an existing method to detect hidden Facebook
widgets and warns users. CSCP does not detect basic clickjacking
on web applications other than Facebook. In contrast, Clickjug-
gler can test these web applications.

Reference [32] is a technique for automatically searching for
basic clickjacking attacks in the wild. This technique automati-
cally clicks on buttons on a target page, analyzes the page, and
determines whether or not the page is an attacker’s page. This
technique can not confirm the correctness of the defenses.

7. Conclusion

This paper has presented Clickjuggler, an automated tool for
checking defenses against visual clickjacking during the develop-
ment phase. Web developers must carefully write the code for de-
fending against visual clickjacking, but it is not easy to implement
the defending code correctly. Clickjuggler releases the developers
from the burden of checking the correctness of the implementa-
tion. Our experimental results demonstrate that Clickjuggler can
detect the visual clickjacking vulnerabilities in 4 real-word web
applications and in a shorter time than the existing tools.

References

[1] Hansen, R. and Grossman, J.: Clickjacking (2008), available from
〈http://www.sectheory.com/clickjacking.htm〉.

[2] Sophos: Viral clickjacking ‘Like’ worm hits Facebook users, available
from 〈http://nakedsecurity.sophos.com/2010/05/31/viral-clickjacking-
like-worm-hits-facebook-users/〉.

[3] US-CERT: CVE-2008-4503: Adobe Flash Player Clickjacking Vul-
nerability (2008), available from 〈http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2008-4503〉.

[4] Yang, D.: Clickjacking: An Overlooked Web Security Hole, available
from 〈https://community.qualys.com/blogs/securitylabs/2012/11/29/
clickjacking-an-overlooked-web-security-hole〉.

[5] Huang, L.-S., Moshchuk, A., Wang, H.J., Schechter, S. and Jackson,
C.: Clickjacking: attacks and defenses, Proc. USENIX Security Symp.,
pp.413–428 (2012).

[6] OWASP: Clickjacking Defense Cheat Sheet, available from
〈https://www.owasp.org/index.php/Clickjacking Defense Cheat
Sheet〉.

[7] Microsoft: IE8 Clickjacking Defense, available from 〈http://blogs.
msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-
defenses.aspx〉.

[8] Rydstedt, G., Bursztein, E., Boneh, D. and Jackson, C.: Busting frame
busting: a study of clickjacking vulnerabilities at popular sites, IEEE
Oakland Web 2.0 Security and Privacy (2010).

[9] Lekies, S., Heiderich, M., Appelt, D., Holz, T. and Johns, M.: On
the Fragility and Limitations of Current Browser-provided Clickjack-
ing Protection Schemes, Proc. USENIX Conf. Offensive Technologies,
pp.53–63 (2012).

[10] Brackebusch, T.: Typo in header makes header useless, available from
〈http://joomlacode.org/gf/project/joomla/tracker/?action=
TrackerItemEdit&tracker item id=30790〉.

[11] Stone, P.: Clickjacking Tool, available from 〈http://www.contextis.
com/research/tools/clickjacking-tool/〉.

[12] Lundeen, B. and Alves-Foss, J.: Practical clickjacking with BeEF,
IEEE Conf. Technologies for Homeland Security, pp.614–619 (2012).

[13] Joomla: Joomla, available from 〈http://www.joomla.org/〉.
[14] WordPress: WordPress, available from 〈http://wordpress.org/〉.
[15] MediaWiki: MediaWiki, available from 〈http://www.mediawiki.org/

wiki/MediaWiki〉.
[16] Roundcube: Roundcube, available from 〈http://roundcube.net/〉.
[17] Ruby on Rails: Ruby on Rails Security Guide, available from

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.4

〈http://guides.rubyonrails.org/security.html〉.
[18] django: Clickjacking Protection, available from 〈https://docs.

djangoproject.com/en/1.6/ref/clickjacking/〉.
[19] Mozilla: Mozilla Developer Network “Web API interfaces,” available

from 〈https://developer.mozilla.org/en-US/docs/Web/API〉.
[20] US-CERT: National Vulnerability Database, available from

〈http://web.nvd.nist.gov/〉.
[21] SECLISTS: SECLISTS.ORG, available from 〈http://seclists.org/〉.
[22] Roundcube: Roundcube(wiki), available from 〈http://trac.roundcube.

net/wiki/Chang-elog〉.
[23] Joomla: Joomla 3.0.2 Released, available from 〈http://www.joomla.

org/announcements/release-news/5471-joomla-3-0-2-released.html〉.
[24] stackoverflow: Trigger css hover with JS, available from

〈http://stackoverflow.com/questions/4347116/〉.
[25] BeEF: BeEF: The Browser Exploitation Framework Project, available

from 〈http://beefproject.com/〉.
[26] Stamm, S., Sterne, B. and Markham, G.: Reining in the web with con-

tent security policy, Proc. Int’l Conf. World Wide Web, pp.921–930
(2010).

[27] Nepomnyashy, M.: Protecting applications against Clickjacking with
F5 LTM, SANS Institute InfoSec Reading Room (2013).

[28] Shahriar, H., Devendran, V.K. and Haddad, H.: ProClick: A Frame-
work for Testing Clickjacking Attacks in Web Applications, Proc. of
Int’l Conf. Security of Information and Networks, pp.144–151 (2013).

[29] Maone, G.: Hello ClearClick, Goodbye Clickjacking!, Black Hat Eu-
rope (2012).

[30] Shamsi, J.A., Hameed, S., Rahman, W., Zuberi, F., Altaf, K.
and Amjad, A.: Clicksafe: Providing Security against Clickjack-
ing Attacks, Proc. Int’l Symp. High-Assurance Systems Engineering,
pp.206–210 (2014).

[31] Rehman, U., Khan, W., Saqib, N. and Kaleem, M.: On Detection and
Prevention of Clickjacking Attack for OSNs, Proc. Int’l Conf. Fron-
tiers of Information Technology, pp.160–165 (2013).

[32] Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D. and Kruegel, C.:
A solution for the automated detection of clickjacking attacks, Proc.
ACM Symp. Information, Computer and Communications Security,
pp.135–144 (2010).

Yusuke Takamatsu received his B.E.
and M.E. degrees from Keio University
in 2010 and 2012, respectively. He is cur-
rently a Ph.D. student in Keio University.
His research interest is web security. He
is a student member of IPSJ.

Kenji Kono received his B.Sc. degree in
1993, M.Sc. degree in 1995, and Ph.D. de-
gree in 2000, all in computer science from
the University of Tokyo. He is an asso-
ciate professor of the Department of In-
formation and Computer Science at Keio
University. His research interests include
operating systems, system software, and

Internet security. He is a member of the IEEE/CS, ACM and
USENIX.

c© 2015 Information Processing Society of Japan

