Swapping Labeled Tokens on Complete Split Graphs

Gaku Yasui ${ }^{1, \mathrm{a})}$ Kouta $\mathrm{Abe}^{1, \mathrm{~b})}$ Katsuhisa Yamanaka ${ }^{1, \mathrm{c})}$ Takashi Hirayama ${ }^{1, \mathrm{~d})}$

Abstract

A token-swapping problem is a kind of generalization of sorting problems. Given a graph $G=(V, E)$ in which each vertex has a token, we wish to move tokens to their target vertices by repeatedly swapping two tokens on adjacent vertices. Recently, Yamanaka et al. have proposed a polynomial-time 2-approximation algorithm for trees and polynomial-time exact algorithm for bipartite complete graphs. In this paper, we give a polynomial-time exact algorithm for complete split graphs.

1. Introduction

Sorting problems are fundamental and important in computer science. In this paper, we consider a problem of sorting on graphs. Given a simple connected graph $G=(V, E)$ in which each vertex has a labeled token, we wish to move each token to its target vertex by swapping the two tokens on adjacent vertices. We call this a token-swapping problem. The token-swapping problem can be solved in $\mathrm{O}\left(n^{2}\right)$ tokenswaps for any connected graph [1]. Thus, our objective is to minimize the number of token-swaps.

Some results of the token-swapping problem have been known for several graph classes. For paths, cycles, and complete graphs, the problem can be exactly solved in polynomial time [2]. For square of paths, Heath and Vergara [3] have proposed a polynomial-time 2-approximation algorithm. Recently, Yamanaka et al. [1] have proposed a polynomial-time 2-approximation algorithm for trees and a polynomial-time exact algorithm for bipartite complete graphs.

2. Preliminaries

2.1 Graph notations

In this paper, we assume without loss of generality that graphs are simple and connected. Let $G=(V, E)$ be an undirected unweighted graph with vertex set V and edge set E. We sometimes denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively. We always denote $n=|V|$. For a vertex v in G, let $N(v)$ be the set of all neighbors of v (which does not include v itself), that is, $N(v)=\{w \in V(G) \mid(v, w) \in E(G)\}$. Let

[^0]

Fig. 1 (a) A split graph and (b) a complete split graph.
$N[v]=N(v) \cup\{v\}$.
A graph is a split graph if its vertex set is partitioned into a clique and an independent set. A split graph is a complete split graph in which each vertex of its independent set is adjacent to all vertices of its clique. See Fig. 1 for examples.

2.2 Token-swapping problem

Suppose that the vertices in a graph $G=(V, E)$ have distinct labels $v_{1}, v_{2}, \ldots, v_{n}$. Let $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}$ be a set of n labeled tokens. Then, a token-placement f of G is a mapping $f: V \rightarrow L$ such that $f\left(v_{i}\right) \neq f\left(v_{j}\right)$ holds for every two distinct vertices $v_{i}, v_{j} \in V$; imagine that tokens are placed on the vertices of G. Two token-placements f and f^{\prime} of G are said to be adjacent if the following two conditions (a) and (b) hold:
(a) there exists exactly one edge $\left(v_{i}, v_{j}\right) \in E$ such that $f^{\prime}\left(v_{i}\right)=f\left(v_{j}\right)$ and $f^{\prime}\left(v_{j}\right)=f\left(v_{i}\right) ;$ and
(b) $\quad f^{\prime}\left(v_{k}\right)=f\left(v_{k}\right)$ for all vertices $v_{k} \in V \backslash\left\{v_{i}, v_{j}\right\}$.

In other words, the token-placement f^{\prime} is obtained from f by swapping the tokens on two vertices v_{i} and v_{j} such that $\left(v_{i}, v_{j}\right) \in E$. For two token-placements f and f^{\prime} of G, a sequence $\mathcal{S}=\left\langle f_{1}, f_{2}, \ldots, f_{h}\right\rangle$ of token-placements is called a swapping sequence between f and f^{\prime} if the following three conditions (1)-(3) hold:
(1) $f_{1}=f$ and $f_{h}=f^{\prime}$;
(2) f_{k} is a token-placement of G for each $k=2,3, \ldots, h-$ 1 ; and
(3) f_{k-1} and f_{k} are adjacent for every $k=2,3, \ldots, h$.

Fig. 2 (a) A given graph and a token-placement f_{0}. (b) The token-placement obtained by swapping two tokens placed on v_{1} and v_{5}. (c) The token-placement obtained by swapping two tokens placed on v_{4} and v_{5}. This is the target token-placement.

Fig. 3 (a) A token-placement of a graph, and (b) its conflict graph.

The length of a swapping sequence \mathcal{S}, denoted by $\operatorname{len}(\mathcal{S})$, is defined to be the number of token-placements in \mathcal{S} minus one, that is, len (\mathcal{S}) indicates the number of token-swaps in \mathcal{S}. We call a given token-placement an initial tokenplacement, denoted by f_{0}. The target token-placement, denoted by f_{t}, is the token-placement such that $f_{t}\left(v_{i}\right)=\ell_{i}$ for all $i=1,2, \ldots, n$. A vertex v_{i} is a target vertex of a token ℓ_{j} if $\ell_{j}=f_{t}\left(v_{i}\right)$ holds. Token-Swapping is the problem of finding the minimum length of a swapping sequence between a given initial token-placement f_{0} and a target tokenplacement f_{t}. See Fig. 2 for an example. For a graph G and an initial token-placement $f_{0}, \operatorname{OPT}_{G}\left(f_{0}\right)=\min \{\operatorname{len}(\mathcal{S}) \mid$ \mathcal{S} is a swapping sequence between f_{0} and $\left.f_{t}\right\}$.

2.3 Conflict graph

We introduce a digraph $D=\left(V_{D}, E_{D}\right)$ for a tokenplacement f of a graph G, called the conflict graph, as follows:

- $V_{D}=V(G)$; and
- there is an $\operatorname{arc}\left(v_{i}, v_{j}\right)$ from v_{i} to v_{j} if and only if $f\left(v_{i}\right)=f_{t}\left(v_{j}\right)$.
Therefore, each token $f\left(v_{i}\right)$ on a vertex $v_{i} \in V_{D}$ needs to be moved to the vertex $v_{j} \in V_{D}$ such that $\left(v_{i}, v_{j}\right) \in E_{D}$. (See Fig. 3 for an example.) A vertex v_{i} with $f\left(v_{i}\right)=f_{t}\left(v_{i}\right)$ has a self-loop.

The following lemma holds.
Lemma 1. [1] Let D be the conflict graph for a tokenplacement f of a graph G. Then, every component in D is a directed cycle.
For a token-placement f of a graph, let $C(f)$ be the set of cycles of the conflict graph. Then, we define $V(C(f))=$ $\bigcup V(C)$.
$C \in C(f)$

```
Algorithm 1 find-swapping-sequence \(\left(G, f_{0}\right)\)
    \(G\) is a complete split graph and \(f_{0}\) is an initial token-placement
    of \(G\). Let \(f\) be the current token-placement of \(G\), and set
    \(f=f_{0}\).
    for all \(v \in V_{Q}\) do
        while \(f(v) \neq f_{t}(v)\) do
            Swap \(f(v)\) with the token on the target vertex of \(f(v)\), and
            update \(f\) to the token-placement obtained by the token-
            swap.
        end while
    end for
    for all \(v \in V_{I}\) do
        if \(f(v) \neq f_{t}(v)\) then
            Swap \(f(v)\) with the token on any vertex \(u\) in \(V_{Q}\), and let
            \(f\) be the obtained token-placement.
            while \(f(u) \neq f_{t}(u)\) do
                Swap \(f(u)\) with the token on the target vertex of \(f(u)\),
                and update \(f\) to the token-placement obtained by the
                token-swap.
            end while
        end if
    end for
```


3. Upper and lower bounds

In this section, we consider the Token-Swapping problem for complete split graphs. We first give an algorithm that constructs a swapping sequence, and then we estimate the length of the swapping sequence. Next we show that the length of the swapping sequence is optimal.
Let G be a complete split graph. Let V_{Q} and V_{I} be sets of vertices of the clique and the independent set of G. It is easily observed that the clique and the independent set of G can be founded in polynomial time. Let f be a tokenplacement of G, and let D be a conflict graph for f of G. We define $C(f)$ as the set of cycles of D for f. We similarly define $C_{Q}(f)$ as the set of cycles of D each of which is consisting of only vertices of V_{Q}, and define $C_{I}(f)$ as the set of cycles of D each of which is consisting of only vertices of V_{I}. Denote $C_{Q I}(f)=C(f) \backslash\left(C_{Q}(f) \cup C_{I}(f)\right)$. That is, $C_{Q I}(f)$ is the set of cycles each of which contains at least one vertex of V_{Q} and at least one vertex of V_{I}. Let $C^{1}(f)$ be the set of cycles with length one. Let $C_{Q}^{\prime}(f)$ be the set of cycles in $C_{Q}(f)$ with length two or more, and let $C_{I}^{\prime}(f)$ be the set of cycles in $C_{I}(f)$ with length two or more.
Now we give an algorithm that finds a swapping sequence between an initial token-placement f_{0} and the target tokenplacement f_{t}. Our algorithm is shown in Algorithm 1. Our algorithm first moves tokens on vertices in V_{Q} to their target vertices, then moves tokens on vertices in V_{I}. The details are as follows.

The first for-statement constructs the following tokenplacement. Let C be any cycle of D including a vertex $v \in V_{Q}$. Then a token $f(v)$ can be moved to its target vertex by one token-swap, since v is adjacent to all vertices of G. Thus, by swapping the token $f(v)$ on v with the token on the target vertex of $f(v)$, we obtain a cycle with one less length
and a cycle with one length. By repeating such token-swaps, we obtain a token-placement f^{\prime} such that $f^{\prime}(v)=f_{t}(v)$ for all $v \in V(C)$ and $f^{\prime}(v)=f(v)$ for all $v \notin V(C)$. We perform the above process for $v \in V_{Q}$ such that $f(v) \neq f_{t}(v)$ holds. Let g be the obtained token-placement. Then we have the following lemma.
Lemma 2. For the token-placement g, we have

- $g(v)=f_{t}(v)$ if $v \in V_{Q} \cup \bigcup_{C \in C_{Q I}\left(f_{0}\right)} V(C) \cap V_{I}$
- $g(v)=f_{0}(v)$ otherwise.

Now, we estimate the number of token-swaps to construct g. Let $s_{1}, s_{2}, \ldots, s_{p}$ be lengths of cycles in $C_{Q}^{\prime}\left(f_{0}\right) \cup$ $C_{Q I}\left(f_{0}\right)$, where $p=\left|C_{Q}^{\prime}\left(f_{0}\right)\right|+\left|C_{Q I}\left(f_{0}\right)\right|$. Since the tokens on vertices of any cycle with length s_{i} in $C_{Q}^{\prime}\left(f_{0}\right) \cup C_{Q I}\left(f_{0}\right)$ can be moved to their target vertices by $\left(s_{i}-1\right)$ token-swaps, the number of token-swaps to construct g is:

$$
\begin{align*}
& \left(s_{1}-1\right)+\left(s_{2}-1\right)+\cdots+\left(s_{p}-1\right) \\
= & \left(s_{1}+s_{2}+\cdots+s_{p}\right)-p \\
= & \left|V\left(C_{Q}^{\prime}\left(f_{0}\right)\right)\right|+\left|V\left(C_{Q I}\left(f_{0}\right)\right)\right| \\
& -\left(\left|C_{Q}^{\prime}\left(f_{0}\right)\right|+\left|C_{Q I}\left(f_{0}\right)\right|\right) \\
= & \left|V\left(C_{Q}^{\prime}\left(f_{0}\right)\right)\right|+\left|V\left(C_{Q I}\left(f_{0}\right)\right)\right|+\left|C^{1}\left(f_{0}\right)\right| \\
& -\left(\left|C_{Q}^{\prime}\left(f_{0}\right)\right|+\left|C_{Q I}\left(f_{0}\right)\right|+\left|C^{1}\left(f_{0}\right)\right|\right) \\
= & \left|V\left(C\left(f_{0}\right)\right)\right|-\left|V\left(C_{I}^{\prime}\left(f_{0}\right)\right)\right| \\
& -\left(\left|C_{Q}^{\prime}\left(f_{0}\right)\right|+\left|C_{Q I}\left(f_{0}\right)\right|+\left|C^{1}\left(f_{0}\right)\right|\right) \\
= & \left|V\left(C\left(f_{0}\right)\right)\right|-\left|V\left(C_{I}^{\prime}\left(f_{0}\right)\right)\right| \\
& -\left(\left|C\left(f_{0}\right)\right|-\left|C_{I}^{\prime}\left(f_{0}\right)\right|\right) . \tag{1}
\end{align*}
$$

The second for-statement in Algorithm 1 moves tokens on vertices of cycles in $C_{I}^{\prime}\left(f_{0}\right)$ to their target vertices. Because vertices in the cycles contained in V_{I} are independent set, tokens on the vertices cannot moved to their target vertices by one token-swap. For a token on a vertex v of $C \in C_{I}^{\prime}\left(f_{0}\right)$, we swap the token and a token on a vertex $v^{\prime} \in V_{Q}$. Then, we obtain a cycle with one more length. Since the cycle contains a vertex in V_{Q} and at least two vertices in V_{I}, the above method for cycles in $C_{Q} \cup C_{Q I}$ works, and hence all tokens on vertices of the cycle can be moved to their target vertices. The number of token-swaps is $t+1$, where t is the length of C. Let $t_{1}, t_{2}, \ldots, t_{\left|C_{I}^{\prime}\left(f_{0}\right)\right|}$ be lengths of cycles in $C_{I}^{\prime}\left(f_{0}\right)$. The number of token-swaps in the second for-statement is

$$
\begin{align*}
& \left(t_{1}+1\right)+\left(t_{2}+1\right)+\cdots+\left(t_{\left|C_{I}^{\prime}\left(f_{0}\right)\right|}+1\right) \\
& \quad=\left(t_{1}+t_{2}+\cdots+t_{\left|C_{I}^{\prime}\left(f_{0}\right)\right|}\right)+\left|C_{I}^{\prime}\left(f_{0}\right)\right| \\
& \quad=\left|V\left(C_{I}^{\prime}\left(f_{0}\right)\right)\right|+\left|C_{I}^{\prime}\left(f_{0}\right)\right| . \tag{2}
\end{align*}
$$

Taking the sum of Equations (1) and (2), we obtain the number of token-swaps of Algorithm 1.

$$
\begin{aligned}
& \left|V\left(C\left(f_{0}\right)\right)\right|-\left|V\left(C_{I}^{\prime}\left(f_{0}\right)\right)\right|-\left(\left|C\left(f_{0}\right)\right|-\left|C_{I}^{\prime}\left(f_{0}\right)\right|\right)+ \\
& \left|V\left(C_{I}^{\prime}\left(f_{0}\right)\right)\right|+\left|C_{I}^{\prime}\left(f_{0}\right)\right|=n-\left|C\left(f_{0}\right)\right|+2\left|C_{I}^{\prime}\left(f_{0}\right)\right|
\end{aligned}
$$

By the above analysis, we obtain an upper bound as in the following lemma.
Lemma 3. $\operatorname{OPT}_{G}\left(f_{0}\right) \leq n-\left|C\left(f_{0}\right)\right|+2\left|C_{I}^{\prime}\left(f_{0}\right)\right|$.
To show that the upper bound is optimal, we show a lower bound as in the following lemma.
Lemma 4. $\operatorname{OPT}_{G}\left(f_{0}\right) \geq n-\left|C\left(f_{0}\right)\right|+2\left|C_{I}^{\prime}\left(f_{0}\right)\right|$.
Proof. Let f be a token-placement of G, and let $p_{G}(f)=$ $n-|C(f)|+2\left|C_{I}^{\prime}(f)\right|$. Note that $p_{G}\left(f_{t}\right)=0$ holds. We first show that any token-swap decreases $p_{G}(f)$ by at most one for any token-placement f. That is, we show that $p_{G}\left(f^{\prime}\right) \geq p_{G}(f)-1$, where f^{\prime} is a token-placement adjacent to f and is obtained by swapping two tokens on the edge (u, v).

Case 1: (u, v) is an edge of the clique of G
In this case, the token-swap on (u, v) never change the value of $\left|C_{I}^{\prime}(f)\right|$. If (u, v) is an underlying edge of D, then $|C(f)|$ is increased by one, and hence $p_{G}\left(f^{\prime}\right)=p_{G}(f)-1$. Now, we assume that (u, v) is not an underlying edge of D. If u and v are included in the same cycle, then the tokenswap on (u, v) divides the cycle with the two cycles, and hence $p_{G}\left(f^{\prime}\right)=p_{G}(f)-1$. Otherwise, suppose that u and v are included in distinct cycles. Then, token-swap on (u, v) decreases $|C(f)|$ by one, since it unifies two cycles of D. Hence $p_{G}\left(f^{\prime}\right)=p_{G}(f)+1$ holds.

Case 2: (u, v) is an edge between a vertex of the clique and a vertex of the independent set of G
Without loss of generality, suppose u is a vertex of the clique of G and v is a vertex of the independent set of G. If (u, v) is an underlying edge of a cycle of D, then the tokenswap on (u, v) increases $|C(f)|$ by one, and $\left|C_{I}^{\prime}(f)\right|$ remains the same. Thus, we have $p_{G}\left(f^{\prime}\right)=p_{G}(f)-1$. Otherwise, let C_{u} and C_{v} be the cycles including u and v, respectively. First consider the case that u and v is included in the same cycle of D, that is C_{u} and C_{v} are the same cycle. The token-swap on (u, v) divides C_{u} into the two cycles, say C_{u}^{\prime} and C_{v}^{\prime}. We assume that C_{u}^{\prime} contains u and C_{v}^{\prime} contains v. If $C_{u}^{\prime} \in C_{I}^{\prime}\left(f^{\prime}\right)$ holds, we have $p_{G}\left(f^{\prime}\right)=p_{G}(f)+1$. Note that $C_{u}^{\prime} \in C_{Q I}\left(f^{\prime}\right)$ holds, since u is a vertex of the clique. Otherwise, $|C(f)|$ is increased by one, and hence we have $p_{G}\left(f^{\prime}\right)=p_{G}(f)-1$. Now we suppose $C_{u} \neq C_{v}$. We analyze the following two subcases.

Case (A): $C_{v} \in C_{I}^{\prime}\left(f_{0}\right)$
$|C(f)|$ is decreased by one, and $\left|C_{I}^{\prime}(f)\right|$ is decreased by one. We therefore obtain $p_{G}\left(f^{\prime}\right)=p_{G}(f)-1$.

Case (B): $C_{v} \notin C_{I}^{\prime}\left(f_{0}\right)$
$|C(f)|$ is decreased by one, and hence $p_{G}\left(f^{\prime}\right)=p_{G}(f)+1$.
By the above case analysis, we obtain the following inequation;

$$
\begin{equation*}
p_{G}\left(f^{\prime}\right) \geq p_{G}(f)-1 \tag{3}
\end{equation*}
$$

Thus, any token-swap decreases $p_{G}(f)$ by at most one for any token-placement f of G.

From Equation (3), for any swapping sequence $\mathcal{S}=$ $\left\langle f_{1}, f_{2}, \ldots, f_{h}\right\rangle$ between f_{0} and f_{t} of $G, p_{G}\left(f_{i+1}\right) \geq$ $p_{G}\left(f_{i}\right)-1$ holds for $i=1,2, \ldots, h-1$. By taking a sum of all the inequations for $i=1,2, \ldots, h-1$, we have the following inequations.

```
\(p_{G}\left(f_{t}\right) \geq p_{G}\left(f_{0}\right)-\operatorname{len}(\mathcal{S})\)
\(\operatorname{len}(\mathcal{S}) \geq p_{G}\left(f_{0}\right)-p_{G}\left(f_{t}\right)\)
\(\operatorname{len}(\mathcal{S}) \geq n-\left|C\left(f_{0}\right)\right|+2\left|C_{I}^{\prime}\left(f_{0}\right)\right|\)
```

Thus, we obtain the lower bound $\operatorname{OPT}_{G}(f) \geq p_{G}(f)$.
Immediately from Lemmas 2 and 3, we have the following theorem.
Theorem 5. For any token-placement f_{0} on a complete split graph $G, \operatorname{OPT}_{G}\left(f_{0}\right)=n-\left|C\left(f_{0}\right)\right|+2\left|C_{I}^{\prime}\left(f_{0}\right)\right|$.

4. Conclusion

We have designed a polynomial-time algorithm that find an exactly optimal solution of token-swapping problem for a complete split graph. Our future works include to design an algorithm for split graphs.
Acknowledgments This work is partially supported by MEXT/JSPS KAKENHI, including the ELC project (Grant Numbers 24106007 and 25330001).

References

[1] Yamanaka, K., Demaine, E., Ito, T., Kawahara, J., Kiyomi, M., Okamoto, Y., Saitoh, T., Suzuki, A., Uchizawa, K. and Uno, T.: Swapping Labeled Tokens on Graphs, Theoretical Computer Science, accepted.
[2] Jerrum, M.: The Complexity Of Finding Minimum-length Generator Sequences, Theoretical Computer Science, Vol. 36, pp. 265-289 (1985).
[3] Heath, L. and Vergara, J.: Sorting by Short Swaps, Journal of Computational Biology, Vol. 10, pp. 775-789 (2003).

[^0]: Iwate University, Japan
 a) yasui@kono.cis.iwate-u.ac.jp
 b) k-abe@kono.cis.iwate-u.ac.jp
 c) yamanaka@cis.iwate-u.ac.jp
 d) hirayama@cis.iwate-u.ac.jp

