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Induced minor free graphs: Isomorphism and clique-width

Rémy Belmonte1 Yota Otachi2 Pascal Schweitzer3

Abstract: Given two graphs G and H, we say that G contains H as an induced minor a graph isomorphic to H can be
obtained from G by a sequence of vertex deletions and edge contractions. We study the complexity of Graph Isomor-
phism on graphs that exclude a fixed graph as an induced minor. More precisely, we determine for every graph H that
Graph Isomorphism is polynomial-time solvable on H-induced-minor-free graphs or that it is isomorphism complete.
Additionally, we classify those graphs H for which H-induced-minor-free graphs have bounded clique-width. Those
two results complement similar dichotomies for graphs that exclude a fixed graph as an induced subgraph, minor or
subgraph.

1. Introduction
Remaining unresolved, the algorithmic problem Graph Iso-
morphism persists as a fundamental graph theoretic challenge
which, despite generating ongoing interest, has neither been
shown to be NP-hard nor polynomial-time solvable. The prob-
lem asks whether two given graphs are structurally the same, that
is, whether there exists an adjacency and non-adjacency preserv-
ing map from the vertices of one graph to the vertices of another
graph.

Related work. In the absence of a result determining the com-
plexity of the general problem, considerable effort has been put
into classifying the isomorphism problem of graph classes as be-
ing polynomial time tractable or polynomial time equivalent to
the general problem, i.e., GI-complete. Most graph classes con-
sidered in these efforts are graph classes that are closed under
some basic operations. Operations that are typically considered
are edge contraction, vertex deletion and edge deletion. A class
of graphs closed under all of these operations is said to be mi-
nor closed and can also be described as a class of graphs avoid-
ing a set of forbidden minors. As shown by Ponomarenko, the
Graph Isomorphism problem can be solved in polynomial time
on H-minor free graphs for any fixed graph H [22]. This im-
plies prior results on solvability of graphs of bounded treewidth,
planar graphs and bounded genus. The result on minor closed
graph classes was recently extended by Grohe and Marx to H-
topological minor free graphs [11], and Lokshtanov, Pilipczuk,
Pilipczuk and Saurabh [17] showed that the problem is actually
FPT on graphs of bounded treewidth, an important class of minor-
free graphs. When a graph class is only required to be closed un-
der some of the above named operations, isomorphism on such
a graph class can sometimes be polynomial-time solvable and
sometimes be isomorphism complete. We say that a graph G
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is H-free if it does not contain the graph H as an induced sub-
graph. When forbidding one induced subgraph, it is known that
Graph Isomorphism can be solved in polynomial time on H-free
graphs if H is an induced subgraph of P4 (the path on 4 vertices)
and GI-complete otherwise (see [2]). For two forbidden induced
subgraphs such a classification into graph isomorphism complete
and polynomial-time solvable cases turns out to be more compli-
cated [16], [23]. In case we consider forbidden subgraphs (i.e.,
also allowing edge and vertex deletions) there is a complete di-
chotomy for the computational complexity of Graph Isomorphism
on classes characterized by a finite set of forbidden subgraphs,
while there are intermediate classes defined by infinitely many
forbidden subgraphs [18] (assuming that graph isomorphism is
not polynomial time solvable).

Our results. In this paper we consider graph classes closed
under edge contraction and vertex deletion (but not necessarily
edge deletion). The corresponding graph containment relation is
called induced minor. More precisely, a graph H is an induced
minor of a graph G if H is obtained from G by repeated vertex
deletion and edge contraction. If no induced minor of G is iso-
morphic to H, we say that G is H-induced-minor-free. We con-
sider graph classes characterized by one forbidden induced mi-
nor, and on those classes we study the computational complexity
of the Graph Isomorphism problem and whether the value of the
parameter clique-width is bounded by some universal constant
cH . The isomorphism problem for such classes was first consid-
ered by Ponomarenko [22] for the case where H is connected. In
that paper two choices for the graph H play a crucial role, namely
choosing H to be the gem and choosing H to be co-(P3 ∪ 2K1)
(see Figure 1). Forbidding either of these graphs as induced mi-
nor yields a graph class with an isomorphism problem solvable in
polynomial time. However, to show polynomial time solvability
for the gem, the proof of [22], due to a misunderstanding concern-
ing the required preconditions, incorrectly relies on a technique
of [13] to reduce the problem to the 3-connected case (see Sub-
section 3.2). We provide a proof that avoids this reduction and
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instead use a reduction of the problem to the 2-connected case for
which we provide a polynomial time isomorphism test. To extend
Ponomarenko’s theorem to the disconnected case, we provide a
reduction structurally different from the ones used previously, al-
lowing us to treat the case where H consist of a cycle with an
added isolated vertex. Overall we extend Ponomarenko’s results
to obtain the following theorem (see Figure 1 for the graphs that
are mentioned).

gemco-(P3 ∪ 2K1)P4

Fig. 1 The small graphs used in our main theorems.

Theorem 1.1. Let H be a graph. The Graph Isomorphism prob-
lem on H-induced-minor-free graphs is polynomial-time solvable
if H is complete or an induced subgraph of P4, co-(P3 ∪ 2K1) or
the gem, and GI-complete otherwise.

Our proofs rely on structural descriptions that also allow us to
determine exactly which classes characterized by one forbidden
induced minor have bounded clique-width.
Theorem 1.2. Let H be a graph. The clique-width of the H-
induced-minor-free graphs is bounded if and only if H is an in-
duced subgraph of P4, co-(P3 ∪ 2K1), or the gem.

While it is still open whether Graph Isomorphism is polyno-
mial time solvable for graph of bounded clique-width, our the-
orems are in accordance with the seemingly reoccurring pat-
tern that the isomorphism problem for graphs of bounded clique-
width is polynomial time solvable, while there are graph classes
with unbounded clique width on which Graph Isomorphism is
polynomial-time solvable. Additionally, note that H-free graphs
have bounded clique-width if and only H is an induced subgraph
of P4 and that H-minor-free graphs have bounded clique-width if
and only if H is planar. Recently, Paulusma and Dabrowski gave
a dichotomy for the clique-width of bipartite H-free graphs [7],
and initiated the study of clique-width on graphs that forbid two
graphs as induced subgraphs [8].

Structure of the paper. We first summarize well known ob-
servations about induced-minor-free graphs, isomorphism and
clique-width (Section 2). We then consider classes that are char-
acterized by one forbidden induced minor of size at most 5 (Sec-
tion 3). Finally we show that the observations of Sections 2 and 3
resolve all cases with forbidden induced minors of size at least 6
(Section 4). In this paper all graphs that are considered are finite.
Throughout the paper, we use standard notation and terminology
from Diestel [10].

2. Basic observations
In this section, we summarize a few well-known basic observa-

tions about graph classes closed under induced minors and clique-
width.

2.1 Clique-width
In [6], Courcelle and Olariu introduced the clique-width of

graphs as a way of measuring the complexity of minimal sepa-
rators in a graph. Similarly to graphs of bounded treewidth, it has
been shown that a large class of problems can be solved efficiently
on graphs of bounded clique-width [5]. However, while Graph
Isomorphism has long been known to be solvable in polynomial
time on graphs of bounded treewidth [22], it is not currently
known whether the problem is tractable on graphs of bounded
clique-width.

For any given graph G, the clique-width of G, denoted by
cw(G), is defined as the minimum number of labels needed to
construct G by means of the following 4 operations: (i) Creation
of a new vertex v with label i (denoted i(v)); (ii) Forming the dis-
joint union of two labeled graphs G1 and G2; (iii) Joining by an
edge every vertex labeled i to every vertex labeled j, where i , j;
(iv) Renaming label i to label j. In the remainder of the paper, we
will be using the following well-known observations to derive up-
per and lower bounds on the value of clique-width of H-induced-
minor-free graphs. See e.g., [12] for an overview of clique-width.
Theorem 2.1 ([6]). Let G be a graph and G its edge complement,
then cw(G) ≤ 2 · cw(G).
Observation 2.2. Let G be a graph and S a subset of vertices of
G. We have cw(G \ S ) ≤ cw(G) ≤ 2cw(G\S )+|S |+1 − 1.

Let G be a graph and u a vertex of G. The local complemen-
tation of G at u is the graph obtained from G by replacing the
subgraph induced by the neighbors of G with its edge comple-
ment. The following observation follows from the well-known
facts that for any graph G, we have cw(G) ≤ 2rw(G)+1−1 (see [21]),
where rw denotes the rank-width, and that rank-width remains
constant under local complementations [20].
Observation 2.3. Let G and G′ be two graphs such that G′ can
be obtained from G by a sequence of local complementations,
then cw(G) ≤ 2cw(G′)+1 − 1.
Theorem 2.4 ([4]). Let G and G′ be two graphs such that G′ can
be obtained from G by a sequence of edge subdivisions, i.e., re-
placing edges with paths of length 2. Then cw(G) ≤ 2cw(G′)+1 − 1.
Observation 2.5 ([1]). Let G be a graph and B the set of its bi-
connected components. It holds that cw(G) ≤ 2t+1 − 1, where
t = maxB∈B{cw(B)}.

Finally, note that for any graph G, the clique-width of G is at
most 3 · 2tw(G)−1, where tw(G) denotes the treewidth of G [3].

2.2 Some tractable cases
Lemma 2.6. If H is a complete graph, then Graph Isomorphism
for H-induced-minor-free graphs can be solved in polynomial
time.
Lemma 2.7. Let H be a complete graph Kk. The H-induced-
minor-free graphs have bounded clique-width if and only if k ≤ 4.

Note that the lemma above is used to prove Theorem 1.2, but
K4 is not explicitly mentioned in the statement, due to the fact
that K4 is an induced subgraph of co-(P3 ∪ 2K2).
Lemma 2.8. If H is an induced subgraph of P4 then Graph Iso-
morphism for the H-induced-minor-free graphs can be solved in
linear time.

It is well known that P4-free graphs are exactly the graphs of
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clique-width at most 2 (see [14]).

2.3 Some intractable cases
A split partition (C, I) of a graph G is a partition of V(G) into

a clique C and an independent set I. A split graph is a graph ad-
mitting a split partition. A split graph is of restricted split type
if it has a split partition (C, I) such that each vertex in I has at
most two neighbors in C. Note that a non-complete split graph of
restricted split type has minimum degree at most 2. The classes
of co-bipartite graphs and restricted split graphs are closed under
vertex deletions and edge contractions, and thus under induced
minors. As also argued in [22] and [16], the standard graph-
isomorphism reductions to split graphs and co-bipartite graphs
explained in [2] imply the following lemmas.
Lemma 2.9. If H is not of restricted split type and co-bipartite,
then Graph Isomorphism for the H-induced-minor-free graphs is
GI-complete.

The reductions used in the lemma can be achieved by perform-
ing edge subdivisions and subgraph complementation. Subgraph
complementation is the operation of complementing the edges of
an induced subgraph. The clique-width of graphs in the class ob-
tained by applying subgraph complementation a constant number
of times is bounded if and only if it is bounded for graphs in the
original class [14]. Together with Theorem 2.4, this implies that
restricted split graphs and co-bipartite graphs obtained by the re-
ductions from general graphs have unbounded clique-width.
Corollary 2.10. If H is not of restricted split type and co-
bipartite, then the H-induced-minor-free graphs have unbounded
clique-width.

3. Graphs on at most 5 vertices
In this section we study graph classes characterized by a for-

bidden induced subgraph H that has at most 5 vertices.

3.1 The graph K3 ∪ K1

We show that Graph Isomorphism is GI-complete on graphs
that do not contain K3 ∪ K1 as an induced minor. Additionally,
we show that these graphs have unbounded clique-width.
Theorem 3.1. The Graph Isomorphism problem is isomorphism
complete on graphs that do not contain K3 ∪ K1 as an induced
minor.

We now prove that K3 ∪ K1-induced-minor-free graphs do not
have bounded clique-width.
Theorem 3.2. The class of graphs that do not contain K3 ∪ K1

as an induced minor does not have bounded clique-width.

3.2 The gem
We now consider the class of graphs that do not contain the

gem as an induced subgraph (see Fig. 1). In [22] this class is
also considered, however, there is an issue with the proof for
the fact that the isomorphism problem of graph in this class is
polynomial-time solvable. More precisely, a common misunder-
standing of how the reduction to three connected components by
Hopcroft and Tarjan [13] is to be applied has happened. Indeed,
the techniques of Hopcroft and Tarjan do not show that graph iso-
morphism in a graph class C polynomial-time reduces to graph

isomorphism of 3-connected components in C, even if C is a mi-
nor closed graph class. If this were the case then the class of split
graphs of restricted type would be polynomial-time solvable since
the only 3-connected graphs of this type are complete graphs.
Additionally to C being minor closed, for the techniques to be
applicable it is necessary to solve the edge-colored problem for
3-connected graphs in C. However, edge-colored isomorphism is
already GI-complete on complete graphs.

We now provide a proof that isomorphism of graphs not con-
taining the gem as an induced subgraph is polynomial-time solv-
able without alluding to 3-connectivity. For this we first need to
extend the structural considerations for such graphs performed in
for 3-connected graphs [22] to biconnected graphs.

Let C be a subgraph of G. We say a vertex v in a vertex
set M ⊆ V(G) \ C has exclusive attachment with respect to C
among the vertices of M if N(v) ∩ C , ∅ but there is no ver-
tex v′ ∈ M \ {v} with (N(v) ∩ C) ∩ (N(v′) ∩ C) , ∅. That is, no
other vertex of M shares a neighbor in C with v.
Lemma 3.3. Let G be a biconnected gem-induced-minor-free
graph. Suppose C is a biconnected subgraph of G with at least 3
vertices and M is a component of G−C such that N(M)∩C , C.
If v ∈ M is a vertex with |N(v) ∩ C| = 1 then v has exclusive
attachment.
Lemma 3.4. Let G be a biconnected gem-induced-minor-free
graph. Suppose C is a biconnected subgraph of G and M is a
component of G − C with N(M) ∩ C , C and |N(M) ∩ C| ≤ 3.
If there is no vertex x in M with |N(x) ∩ C| = 1 then every vertex
of M has a neighbor in C, and M is a P4-free graph.

We call a vertex of a biconnected graph G a branching vertex
if it has degree at least 3.
Lemma 3.5. Let G be a biconnected gem-induced-minor-free
graph that contains the path P4 as an induced subgraph. Then
at least one of the following two options holds:
• G has a subgraph H which is an induced path containing at

most 2 inner vertices that are branching vertices of G such
that G − H is disconnected, or

• G has a subgraph H that is a cycle containing at most 3
branching vertices of G such that for every connected com-
ponent M of G − H we have N(M) ∩ H , H.

Let G be a graph with subgraphs H and K. We say that G is
sutured from H and K along V ⊆ V(H) and V ′ ⊆ V(K) if G is
obtained in the following way. First we require that |V | = |V ′|.
We also require that V(H) ∩ V(K) = V ∩ V ′. The graph G must
then be formed from K ∪ H in the following way. We add edges
that form a perfect matching between vertices in V \V ′ and V ′ \V .
Finally we may subdivide the edges in the matching an arbitrary
number of times (See Figure 2).
Lemma 3.6. Let G be a biconnected gem-induced-minor-free
graph. There exists an induced subgraph H of G which is isomor-
phic to either a path or a cycle, contains at most 4 branching ver-
tices, and such that for every component M of G−H the following
holds: the graph G[M ∪ H] is sutured from H and some graph K
along V and V ′ such that K \ V ′ is P4-free. Moreover |V ′| ≤ 4
and every vertex of K − V ′ has a neighbor in V ′.
Theorem 3.7. The Graph Isomorphism problem can be solved in
polynomial time on gem-induced-minor-free graphs.
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H K

V V ′

Fig. 2 A suture of two graphs H and K.

Proof. It is folklore that graph isomorphism of a hereditary
graph class C reduces to isomorphism of vertex-colored bicon-
nected graphs in C (see for example [9] or [19]). We thus assume
that the input graphs are colored and biconnected. If G is such a
biconnected graph, we search for a subgraph H that satisfies the
assumptions of Lemma 3.6, that is, H is a path or a cycle with
at most 4 branching vertices such that for every component M
of G−H we know that G[M ∪H] is a suture of H with a graph K
such that K \ V ′ is P4-free, where V ′ are the attachments in K.
Moreover |V ′| ≤ 4 and every vertex in K−V ′ has a neighbor in V ′.
Each H is determined by the branch vertices, the leaves (if H is a
path) and choices of the paths of non-branching vertices connect-
ing such vertices. Suppose now G1 and G2 are biconnected input
graphs to the isomorphism problem. Since there are only polyno-
mially many possible choices for H, we can find a graph H1 in G1

with said properties and test for every H2 in G2 whether there is
an isomorphism that maps H1 to H2. To do so we iterate over
all isomorphism φ from H1 to H2, there are only polynomially
many, and check whether such an isomorphism extends to an iso-
morphism from G1 to G2. To check whether such an isomorphism
extends, it suffices to know which component M1 of G1 − H1 can
be mapped isomorphically to which component M2 of G2 − H2

such that the isomorphism can be extended to an isomorphism
from G1[H1 ∪M1] to G2[H2 ∪M2] such that H1 is mapped to H2

in agreement with φ.
Note that the mapping φ determines how vertices with exclu-

sive attachment in H1 must be mapped. Repeatedly increasing H1

by these vertices and H2 by their images we end up at a part of M1

that is P4-free and adjacent to at most 3 vertices to which images
have already been determined.

The isomorphism problem for vertex-colored P4-free is solv-
able in polynomial time (see [23]) and thus the problem for
graphs obtained from P4-free by adding a bounded number of
vertices can be solved in polynomial time ([15], Theorem 1). Us-
ing this algorithm the theorem follows. □

Theorem 3.8. If H is an induced subgraph of the gem, then the
H-induced-minor-free graphs have bounded clique-width.

3.3 The graph co-(P3 ∪ 2K1)
In the following we will analyze the graphs that do not con-

tain an induced minor isomorphic to co-(P3 ∪ 2K1), the graph
obtained from K5 by removing two incident edges. While it has
already been shown in [22] that isomorphism for such graphs re-
duces to isomorphism of graphs not containing the gem (and is
thus polynomially solvable), we provide refinement of the proof
in [22] for this. We do this to obtain a finer structural description

of the graphs, allowing us also to bound the clique-width in the
graph class.

Suppose G is a co-(P3 ∪ 2K1)-induced-minor-free graph. If G
does not have a Kt minor for some fixed t then G is in particular
in the minor closed graph class of Kt-minor free graphs, and, as
described in the introduction, the isomorphism problem can be
solved in polynomial time for such graphs. Our strategy is thus
to find a Kt minor and use this to analyze the structure of G. In
general, of course, there is no constant bound on the number of
vertices required to form a Kt minor. However in a co-(P3∪2K1)-
induced-minor-free graph there is such a bound. We call a Kt

minor compact if every bag has at most 2 vertices.
Lemma 3.9. If a co-(P3 ∪ 2K1)-induced-minor-free graph G has
a Kt minor for t ≥ 5 then G has a compact Kt minor.

Proof. Let M1, . . . ,Mt be the bags of a Kt minor in G such that
the Mi are inclusion minimal with respect to forming a Kt minor.
That is, removing a vertex from one of the Mi yields a minor dif-
ferent from Kt. We analyze the structure of the minor. We say a
vertex v is adjacent to a bag M j if there exists a vertex v′ ∈ M j

that is adjacent to v.
For a vertex v ∈ Mi define Mdeg(v) = |{M j | j , i,N(v)∩M j ,
∅}| to be the number of bags different from Mi adjacent to v.
Using several steps we will show that Mdeg(v) ≥ t − 2 for
all v ∈ M1∪M2∪· · ·∪Mt. We first argue that in case Mdeg(v) > 1
then Mdeg(v) ≥ t − 2. Indeed, if Mdeg(v) > 1 then consider the
minor obtained by removing all vertices from Mi different from v.
If Mdeg(v) < t − 2 we can choose 2 bags which have vertices
adjacent to v and two bags which do not have such vertices. Us-
ing these bags and the vertex v we obtain the forbidden induced
minor co-(P3 ∪ 2K1). We call vertices with Mdeg(v) = 0 inner
vertices, those with Mdeg(v) = 1 low degree vertices and we call
vertices with Mdeg(v) ≥ t − 2 high degree vertices. Next we
argue that there are at most 2 high degree vertices in each bag.
Indeed, if there are at least 2 such vertices, we can pick two high
degree vertices v, v′ in Mi which are not adjacent to exactly the
same bags such that there is a path from v to v′ in Mi that does
not contain any other high degree vertex. Since every bag differ-
ent from Mi is adjacent to v or v′, removing all vertices different
from v and v′ and not lying on the path yields a Kt minor. Since
the bags M1, . . . ,Mt were chosen to be minimal, we conclude that
there are at most 2 high degree vertices in each bag.

We further argue that there is no low degree vertex in Mi. In-
deed, in case there is at least one low degree vertex in Mi, we can
choose a low degree vertex v ∈ Mi and a vertex v′ ∈ Mi adjacent
to a bag M j with j , i such that v is not adjacent to M j and such
that there exists a path in Mi of inner vertices connecting v and v′.
We remove all vertices in Mi different from v and v′ and not on
said path connecting them. We then move the vertex v′ from Mi

to M j. We obtain the induced minor co-(K1,t−3 ∪ 2K1), which
contains co-(P3 ∪ 2K1) since t > 2.

Finally we argue that there are no inner vertices. Indeed, by
minimality we can assume that every inner vertex v lies on a path
between two high degree vertices v1 and v2, say. We again re-
move all vertices different from v1 and v2 not on the path. We then
move v1 to an adjacent bag M j and v2 to an adjacent bag M j′ such
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that j , j′. This is possible since the vertices have high degree.
Again we obtain a forbidden induced minor co-(K1,t−3 ∪ 2K1) as
above.

Since there are only high degree vertices and since each bag
can only contain two such vertices, the minimal minor is com-
pact. □

Lemma 3.10. If G is a biconnected co-(P3∪2K1) induced-minor-
free graph and M is a compact Kt minor with t ≥ 5 then G − M
is (K2 ∪ K1)-free.
Corollary 3.11. If a biconnected co-(P3 ∪ 2K1)-induced-minor-
free graph G has a K8 minor then G is (K2 ∪ K1)-free.

Since the gem is biconnected, and thus every occurrence of a
gem as induced minor must occur within a biconnected compo-
nent of a graph, the corollary is a refinement of Ponomareko’s
result [22] that says that if a co-(P3 ∪ 2K1)-induced-minor-free
graph G has a K218+4-minor then it does not contain a gem as in-
duced minor.
Theorem 3.12. Graph isomorphism for co-(P3 ∪ 2K1)-induced-
minor-free graphs can be solved in polynomial time.

To show that the co-(P3∪2K1)-induced-minor-free graphs have
bounded clique-width, we need the following fact, which was in-
directly proven by van ’t Hof et al. in the proof of Theorem 9 in
[24].
Theorem 3.13 ([24], Proof of Theorem 9). For any graph F and
for any planar graph H, there exists a constant cF,H such that an
F-minor-free graph of treewidth at least cF,H has H as an induced
minor.
Theorem 3.14. If H is an induced subgraph of co-(P3 ∪ 2K1),
then the H-induced-minor-free graphs have bounded clique-
width.

3.4 The remaining graphs on at most 5 vertices
Now we study the remaining small graphs of at most five ver-

tices. We show that every case here can be reduced to some case
we have solved already.
Lemma 3.15. Let H be a non-complete graph of 5 vertices. If H
is neither co-(P3∪2K1) nor the gem, then Graph Isomorphism for
the H-induced-minor-free graphs is GI-complete.
Lemma 3.16. Let H be a graph of at most 4 vertices. The Graph
Isomorphism problem for the H-induced-minor-free graphs is
polynomial-time solvable if H is an induced subgraph of either
co-(P3 ∪ 2K1) or P4. Otherwise, it is GI-complete.

The two lemmas above together imply the following theorem.
Theorem 3.17. Let H be a non-complete graph of at most 5
vertices. Then Graph Isomorphism for the H-induced-minor-free
graphs is polynomial-time solvable if H is an induced subgraph
of P4, co-(P3 ∪ 2K1), or the gem; otherwise, it is GI-complete.

The reductions we used above in order to show the GI-
completeness preserve the property that the clique-width is un-
bounded (see Subsection 2.3). Thus we have the following corol-
lary.
Corollary 3.18. Let H be a non-complete graph of at most 5
vertices. Then the H-induced-minor-free graphs have bounded
clique-width if and only if H is an induced subgraph of P4, co-
(P3 ∪ 2K1), or the gem.

4. Non-complete graphs on at least 6 vertices
In this section, we show that if H is not a complete graph

and has at least six vertices, then Graph Isomorphism for the H-
induced-minor-free graphs is GI-complete.
Lemma 4.1. If H is non-complete and contains a clique of size
5, then Graph Isomorphism for the H-induced-minor-free graphs
is GI-complete.
Theorem 4.2. If H is a non-complete graph of size at least 6,
then Graph Isomorphism for the H-induced-minor-free graphs is
GI-complete.

Since the reductions that we used above in order to show the
GI-completeness preserve the property that the clique-width is
unbounded (see Subsection 2.3), we have the following corollary.
Corollary 4.3. If H is a non-complete graph of size at least 6,
then the H-induced-minor-free graphs have unbounded clique-
width.
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