
IPSJ SIG Technical Report

A Collection of Efficient Local Searches for Partial Latin
Square Extension Problem and Its Variants∗

Kazuya Haraguchi1,a)

Abstract: The partial Latin square (PLS) extension problem asks for a largest extension of a given PLS. The problem
is NP-hard and among fundamental problems in constraint optimization. Recently we proposed a collection of efficient
local searches for the problem. The local search is based on conventional swap neighborhoods and on a novel type of
neighborhood, Trellis-neighborhood. The iterated local searches with these neighborhoods outperform state-of-the-art
optimization solvers by a wide margin. In this paper, we review this technique and extend it to variant problems such
as Sudoku completion and finding orthogonal Latin squares.

Keywords: partial Latin square extension problem, maximum independent set problem, local search

1. Introduction
We address the partial Latin square extension (PLSE) problem.

Let n ≥ 2 be a natural number. Suppose that we are given an n×n
grid of cells. A partial Latin square (PLS) is a partial assignment
of n symbols to the cells so that the Latin square condition is sat-
isfied. The Latin square condition requires that, in each row and
in each column, every symbol should appear at most once. Given
a PLS, the PLSE problem asks to fill as many empty cells with
symbols as possible so that the Latin square condition continues
to be satisfied. The problem is NP-hard [5], and was first studied
by Kumar et al. [21]. It has been studied especially in the context
of constant-ratio approximation algorithms [11], [14], [16], [21].
Currently the best approximation factor 3/4 − ε is achieved by a
local search based algorithm [7], [8], [18].
In this paper, we review a collection of efficient local searches

that we proposed recently [15]. Then we consider extending the
local search to variant problems such as Sudoku completion and
finding orthogonal Latin squares.
Being a well-known algorithmic framework, local search starts

with an appropriate initial solution and then repeats moving to
an improved solution as long as the neighborhood of the current
solution contains one. The neighborhood is a set of solutions
that are obtained by making “slight” modification on the current
solution. Then local search is realized by repetition of a neigh-
borhood search algorithm, which finds an improved solution in
the neighborhood or concludes that no such solution exists.
For the modification on the current solution, we focus on swap

operation. Given a solution PLS and non-negative integers p, q
(p < q), (p, q)-swap is an operation of dropping exactly p sym-
bols from the solution and then inserting at most q symbols to

∗This work is partially supported by JSPS KAKENHI Grant Number
25870661.
1 Faculty of Commerce, Otaru University of Commerce, Japan
a) haraguchi@res.otaru-uc.ac.jp

empty cells. The (p, q)-neighborhood is the set of all possible
PLSs that are obtained by performing (p, q)-swap on the current
solution.
In [15] we proposed (p, n2)-neighborhood search algorithms

that run in O(np+1) time for p ∈ {1, 2, 3}. Note that q = n2 is
the upper limit of the number of symbols that can be inserted in
one swap operation. This means that, after dropping p symbols,
we insert as many symbols to the solution as possible. We regard
the proposed implementation as efficient; when p = 1, the time
bound is linear with respect to the solution size. We also invented
a novel type of swap operation, Trellis-swap, which is a general-
ization of (p, n2)-swap with p ≤ 2 and contains certain cases of
3 ≤ p ≤ n. The proposed Trellis-neighborhood search algorithm
runs in O(n3.5) time. Computational experiments showed that, for
randomly generated instances, the iterated local search (ILS) al-
gorithm with Trellis-neighborhood is much more likely to deliver
a better solution than not only ILS with (p, n2)-neighborhoods
but also state-of-the-art optimization softwares such as IP and
CP solvers from IBM ILOG CPLEX [19] and a general heuris-
tic solver from LocalSolver [22].
PLSE is a rather primitive problem and can be extended to var-

ious application problems; e.g., combinatorial design, schedul-
ing, optical routers, and combinatorial puzzles [3], [6], [12]. We
extend the local search to PLSE on Colored Grid, a generaliza-
tion of Sudoku completion and finding orthogonal Latin squares
(OLSs). Specifically we extend the (p, n2)-neighborhood search
algorithms with p ≤ 2 to this problem. The running time is shown
to be O(np+2).
The paper is organized as follows. We prepare terminologies

and notations in Sect. 2. In Sect. 3 we review the collection of
efficient local searches for the PLSE problem and present some
experimental results. Then in Sect. 4, we consider extending the
local search to PLSE on Colored Grid. Finally we conclude the
paper in Sect. 5.

c© 2015 Information Processing Society of Japan 1

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

2. Preliminaries
We formulate the PLSE problem. Suppose an n × n grid of

cells. We denote [n] = {1, 2, . . . , n}. For any i, j ∈ [n], we denote
the cell in the row i and in the column j by (i, j). We consider
a partial assignment of n symbols to the grid. The n symbols
to be assigned are n integers in [n]. We represent a partial as-
signment by a set of triples, say T ⊆ [n]3, such that the mem-
bership (v1, v2, v3) ∈ T indicates that the symbol v3 is assigned
to (v1, v2). To avoid a duplicate assignment, we assume that, for
any two triples v = (v1, v2, v3) and w = (w1, w2, w3) in T (v � w),
(v1, v2) � (w1, w2) holds. Thus |T | ≤ n2 holds.
For any two triples v, w ∈ [n]3, we denote the Hamming dis-

tance between v and w by δ(v, w), i.e., δ(v, w) = |{k ∈ [3] | vk �
wk}|. We call a partial assignment T ⊆ [n]3 a PLS set if, for any
two triples v, w ∈ T (v � w), δ(v, w) is at least two. One easily
sees that T is a PLS set iff it satisfies the Latin square condition.
We say that two disjoint PLS sets S and S ′ are compatible if, for
any v ∈ S and v′ ∈ S ′, the distance δ(v, v′) is at least two. Obvi-
ously the union of such S and S ′ is a PLS set. The PLSE problem
is then formulated as follows; given a PLS set L ⊆ [n]3, we are
asked to construct a PLS set S of the maximum cardinality such
that S and L are compatible.
In our local search, we treat the PLSE problem by reducing it

to the maximum independent set (MIS) problem, a well-known
NP-hard problem [9]. We then utilize sophisticated local search
strategies on the MIS problem in the literature. The detail will be
explained in the next section.
We review the MIS problem. An undirected graph (or simply

a graph) G = (V,E) consists of a set V of vertices and a set E
of unordered pairs of vertices, where each element in E is called
an edge. When two vertices are joined by an edge, we say that
they are adjacent, or equivalently, that one vertex is a neighbor
of the other. For any vertex, the number of its neighbors is called
its degree. An independent set is a subset V′ ⊆ V of vertices such
that no two vertices in V′ are adjacent. Given a graph, the MIS
problem asks for a largest independent set.
Suppose a graph G∗ = (V∗, E∗) with a vertex set V∗ = [n]3 and

an edge set E∗ = {(v, w) ∈ V∗ × V∗ | δ(v, w) = 1}. Each vertex
(v1, v2, v3) ∈ V∗ is a triple and regarded as a grid point in the 3D
integral space, which is the intersection of three grid lines that
are orthogonal to each other. Two vertices in G∗ are joined by an
edge iff there is a grid line that passes both of them. Any inde-
pendent set in G∗ should contain at most one vertex among those
on a grid line. The following propositions are obvious.
Proposition 1 A set S ⊆ [n]3 of triples is a PLS set iff S , as

a vertex set, is an independent set in G∗.
Proposition 2 Two PLS sets L and S are compatible with

each other iff L ∪ S is an independent set in G∗.
For a vertex v ∈ V∗, we denote by N∗(v) the set of vertices ad-
jacent to v, i.e., N∗(v) = {w ∈ V∗ | δ(v, w) = 1}. Clearly we
have |N∗(v)| = 3(n − 1). For a triple set L ⊆ [n]3, we denote by
N∗(L) the union

⋃
v∈L N∗(v) over L. A grid line is in the direction

d ∈ {1, 2, 3} if it is parallel to the axis d and perpendicular to the
2D plane that is generated by the other two axes. We denote by
�v,d the grid line in the direction d that passes v.

Then we see that the PLSE problem on a PLS set L ⊆ [n]3 is
equivalent to the MIS problem on a subgraphG = (V,E) ofG∗ in-
duced by V = V∗ \ (L∪N∗(L)). We hereafter consider solving the
PLSE problem by means of solving the MIS problem. For v ∈ V ,
we denote by N(v) ⊆ N∗(v) the set of its neighbors in G. Since
|N(v)| ≤ |N∗(v)| = 3(n − 1) and |V | = O(n3), we have |E| = O(n4).
We call any independent set simply a solution. Given a solution

S ⊆ V , we call any vertex x ∈ S a solution vertex and any vertex
v � S a non-solution vertex. For a non-solution vertex v, we call
any solution vertex in N(v) a solution neighbor of v. We denote
the set of solution neighbors by NS (v), i.e., NS (v) = N(v) ∩ S .
Since v has at most one solution neighbor on one grid line and
three grid lines pass v, we have |NS (v)| ≤ 3. We call the num-
ber |NS (v)| the tightness of v. When |NS (v)| = t, we call v t-tight.
In particular, a 0-tight vertex is called free. When x is a solu-
tion neighbor of a t-tight vertex v, we may say that v is a t-tight
neighbor of x.
Given a solution S , swap operation in general drops a subset

D ⊆ S from S and then inserts a subset I into S so that (S \D)∪ I
continues to be a solution. Dropping D from S makes certain
vertices free: all vertices in D and non-solution vertices whose
solution neighbors are completely contained in D. The inserted I
should be an independent set among these free vertices. If there
are D and I with |D| < |I|, then (S \D)∪ I is an improved solution.
For a generic σ-swap operation, the σ-neighborhood is the set

of all possible solutions that are obtained by performing σ-swap
on S . A solution is σ-maximal if its σ-neighborhood does not
contain an improved solution. A σ-neighborhood search algo-
rithm finds an improved solution in the σ-neighborhood of the
input solution or decides that no such solution exists. Once a σ-
neighborhood search algorithm is established, it is immediate to
design a local search algorithm that computes a σ-maximal solu-
tion; starting with an appropriate initial solution, we repeat mov-
ing to an improved solution as long as the neighborhood search
algorithm delivers one.
For two integers p, q with 0 ≤ p < q, (p, q)-swap refers to a

swap operation with |D| = p and |I| ≤ q. We assume q ≤ n2 since
the solution size is at most n2. We call a solution p-maximal if it is
(p, n2)-maximal. In particular, we call a 0-maximal solution sim-
ply a maximal solution. Being p-maximal implies that S is also
p′-maximal for any p′ < p. Equivalently, if S is not p′-maximal,
then it is not p-maximal either for any p > p′.

3. Local Search for PLSE Problem
In this section, we review the local search for the PLSE prob-

lem that we proposed in [15]. As mentioned in the last section,
we deal with the PLSE problem by reducing it to the MIS prob-
lem. We borrow the data structure from the previous studies on
local search for the MIS problem [2], [20]. Concerning (p, n2)-
neighborhood search (p ∈ {1, 2, 3}), our strategy is not merely a
simple application of the previous approaches. We improve the
efficiency by making use of the problem structure peculiar to the
PLSE problem. Specifically, although a simple application may
require O(np+3) time to conduct a (p, p+1)-neighborhood search,
we achieved the following theorem.

c© 2015 Information Processing Society of Japan 2

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

Theorem 1 (Haraguchi [15]) Let p ∈ {1, 2, 3}. Given a
solution S , we can find an improved solution in its (p, n2)-
neighborhood or conclude that it is p-maximal in O(np+1) time.
First we present the data structure in Sect. 3.1. We describe the

(p, n2)-neighborhood search algorithms in Sect. 3.2, only for p =
1 and 2. We then introduce the notion of Trellis-neighborhood
and describe the neighborhood search algorithm in Sect. 3.3. In
Sect. 3.4 we present some experimental results.

3.1 Data Structure
We store the graph G = (V, E) by means of an ordering of ver-

tices and a 3D array of vertices. The ordering is motivated by
Andrade et al.’s local search [2] and used to scan vertices of a
particular type (e.g., solution vertices, free vertices) in linear time
with respect to their number. We introduce the 3D array to access
the vertex in a specified coordinate if it exists or to decide that no
such vertex exists in O(1) time.
We denote an ordering of vertices by a bijection π : V → [|V |].

In π, every solution vertex is ordered ahead of all the non-solution
vertices. Among the non-solution vertices, every free vertex is or-
dered ahead of all the non-free vertices, and among the non-free
vertices, every 1-tight vertex is ordered ahead of all 2-tight and
3-tight vertices. In each of the four sections (i.e., solution ver-
tices, free vertices, 1-tight vertices and other non-free vertices),
the vertices are ordered arbitrarily. We denote the inverse func-
tion by π−1. We store π so that not only π(v) (v ∈ V) but also π−1(i)
(i ∈ [|V |]) can be accessed in O(1) time. We also maintain param-
eters that represent the solution size, the number of free vertices
and the number of 1-tight vertices, which we denote by #sol, #0
and #1 respectively. We can access the head of each section in
O(1) time.
We denote the 3D n × n × n array by C. For each triple

(v1, v2, v3) ∈ [n]3, if (v1, v2, v3) ∈ V , then we let C[v1][v2][v3] have
a pointer to the vertex object of (v1, v2, v3), and otherwise, we let
it have a null pointer. The 3D array stores the edge set E implic-
itly. All the neighbors of (v1, v2, v3) are among C[v′1][v2][v3]’-s,
C[v1][v′2][v3]’-s and C[v1][v2][v

′
3]’-s for every v

′
1, v
′
2, v
′
3 ∈ [n] such

that v′1 � v1, v
′
2 � v2 and v

′
3 � v3.

In addition, for each solution vertex x ∈ S , we store a param-
eter λd(x) (d ∈ {1, 2, 3}) that represents the number of its 1-tight
neighbors in the direction d. For each non-solution vertex v � S ,
we store two parameters, τ(v) and ρd(v). The former represents
the tightness |NS (v)| of v and the latter represents the pointer to
the solution neighbor of v in the direction d; when v has no such
solution neighbor, we let ρd(v) have a null pointer.
Clearly the size of the data structure is O(n3). We can construct

it in O(n3) time, as preprocessing of local search. We show time
complexities of some elementary operations.
Maximality check: We can check whether S is maximal or not

in O(1) time since it suffices to see whether #0 = 0 or #0 > 0.
Neighbor search: We can search all neighbors of a vertex in

O(n) time by using the 3D array C.
Drop: We can drop a solution vertex x from S in O(n) time as

follows. We exchange the orders between x and the last ver-
tex in the solution vertex section. We decrease #sol by one
and increase #0 by one; as a result, x falls into the free ver-

tex section. The tightness τ(x) is set to zero and the pointers
ρd(x)’-s (d ∈ {1, 2, 3}) are assigned null pointers. For every
neighbor v ∈ N(x) in each direction d, we release its pointer
ρd(x) to x since x is no longer a solution vertex, and decrease
the tightness τ(v) by one.
• If τ(v) is decreased to zero, then v is now free. To put v in the
free vertex section, we exchange the orders between v and
the head vertex in the 1-tight vertex section, and increase
#0 by one and decrease #1 by one.

• If τ(v) is decreased to one, then v is now 1-tight. To put v in
the 1-tight vertex section, we exchange the orders between
v and the head vertex in the last vertex section, and increase
#1 by one. Furthermore, v has a unique solution neighbor,
say y. We increase the number λd(y) by one, where d is the
direction of the grid line that passes both v and y.

Insertion: We can insert a free vertex into S in O(n) time in a
manner analogous to the drop operation.

3.2 (p, n2)-Neighborhood Search Algorithms
The (p, n2)-neighborhood search algorithms have the similar

structure. In principle, we need to search all subsets D’-s of S
of size p. We do this by means of scanning “trigger” vertices.
When p = 1 (resp., 2), each solution vertex (resp., 2-tight vertex)
serves as a trigger vertex. For each trigger vertex, we generate
a subset D of size p somehow in O(1) time. Let F denote the
set of vertices free from S \ D. We then compute the MIS size
of the subgraph induced by F. We may call it “the MIS size of
F” for simplicity and denote it by #MIS when F is clear from the
context. The point is that we compute #MIS without finding an
MIS itself. Surprisingly we can compute #MIS in O(1) time. Only
when #MIS > p, we search for an MIS to be inserted, denoted by
I, and thereby obtain an improved solution (S \D)∪ I. The search
for I requires O(n) time.
The (p, n2)-neighborhood search algorithms are established

based on this top-level strategy. Below we describe the algo-
rithms for p = 1 and 2.
3.2.1 Case of p = 1
Let S be a maximal solution. The (1, n2)-neighborhood con-

tains an improved solution iff there are x ∈ S and u, v � S such
that (S \ {x})∪ {u, v} is a solution. It is clear that u and v should be
neighbors of x. They are 1-tight, and their unique solution neigh-
bor is x. The u and v should not be adjacent, which implies that
u and v are not on the same grid line. We define Λ(x) as a sub-
set of the direction indices in which x has a 1-tight neighbor, i.e.,
Λ(x) = {d ∈ {1, 2, 3} | λd(x) > 0}. Then #MIS, the largest num-
ber of vertices that can be inserted into S \ {x} simultaneously, is
given by the cardinality |Λ(x)|. Therefore, an improved solution
exists iff there is x ∈ S with |Λ(x)| > 1.
Given a solution S , we can find an improved solution in the

(1, n2)-neighborhood or conclude that it is 1-maximal in O(n2)
time as follows; First, if S is not maximal, we obtain an improved
solution by inserting any free vertex into S , which requires O(n)
time. Then we assume S to be maximal and thus utilize the above
argument. We search all solution vertices by sweeping the first
section of the vertex ordering. There are at most n2 solution ver-
tices. For each solution vertex x, the number |Λ(x)| can be com-

c© 2015 Information Processing Society of Japan 3

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

2

2

1

2 11

1

2
3

this 2-tight vertex is not
free from (S \ {x, y}) ∪ {u}

uxy
u x

y

Fig. 1 An illustration of the case such that (2, n2)-swap can be made:
A square � indicates a solution vertex and a circle ◦ indicates a
non-solution vertex, where the number in ◦ indicates the tightness.
Shaded vertices are free from (S \ {x, y}) ∪ {u}.

puted in O(1) time. If x with |Λ(x)| > 1 is found, we can deter-
mine the 1-tight vertices to be inserted in O(n) time by searching
each grid line �x,d with λd(x) > 0. The number of inserted 1-tight
vertices is at most 3. Dropping x from S and inserting the 1-tight
vertices into S \ {x} take O(n) time.
3.2.2 Case of p = 2
Let S be a 1-maximal solution. The (2, n2)-neighborhood con-

tains an improved solution iff there exist x, y ∈ S and u, v, w � S
such that (S \ {x, y})∪{u, v, w} is a solution. These vertices should
satisfy Lemmas 1 to 4 in [2], which are conditions established
for the general MIS problem. According to the conditions, each
vertex in {u, v, w} is either 1-tight or 2-tight, and at least one of
them is 2-tight. The unique solution neighbor of a 1-tight vertex
is either x or y, and the two solution neighbors of a 2-tight vertex
are x and y.
For any 2-tight vertex u and its solution neighbors x and y, let

F denote the set of vertices free from (S \ {x, y})∪ {u}. We would
like to know the MIS size of F. To observe how vertices in F are
distributed, see Fig. 1. In the figure, we permute the coordinates
so that x (resp., y) is the u’-s solution neighbor in the direction 1
(resp., 2). Indicated by shade, vertices in F are among the four
solid grid lines, that is, �x,2, �x,3, �y,1 and �y,3. Let us denote the
intersection point of �x,2 and �y,1 by uxy = (uxy,1, uxy,2, uxy,3). For-
mally, it is defined as uxy,1 = x1, uxy,2 = y2, and uxy,3 = u3, where
the last one is also equal to x3 and y3. Then F contains all 1-tight
vertices on the four grid lines, and also contains the vertex uxy
only if it exists and is 2-tight.
The MIS size of F can be computed in O(1) time without

computing F explicitly; one can show that the size is either
|Λ(x)\ {1}|+ |Λ(y)\ {2}| or |Λ(x)\ {1}|+ |Λ(y)\ {2}|+1, and it is the
latter iff the vertex uxy exists, it is 2-tight, and λ2(x) = λ1(y) = 0.
Then given a solution S , we can find an improved solution in

the (2, n2)-neighborhood or conclude that it is 2-maximal inO(n3)
time as follows; We assume S to be 1-maximal since, if not so,
we obtain an improved solution in O(n2) time. We search all 2-
tight vertices by sweeping the last section of the vertex ordering,
and their number is at most |V \ S | ≤ |V | ≤ n3. The solution
vertices to be dropped are the solution neighbors of u, which we
denote by x and y. We can recognize x and y in O(1) time by trac-
ing the pointers ρd(u)’-s. Let F be the set of vertices free from
S \{x, y}∪{u}. We can compute the MIS size of F in O(1) time. If
the MIS size is no less than 2, there exists an improved solution.
An MIS of F is decided in O(n) time by searching the four grid

lines. The total number of inserted vertices is at most 4. Drop and
insertion requires O(n) time.

3.3 Trellis-Neighborhood Search Algorithm
In this section, we introduce a novel type of neighborhood,

Trellis-neighborhood, and describe a neighborhood search algo-
rithm that runs in O(n3.5) time.
Trellis-neighborhood is a generalization of (p, n2)-

neighborhood with p ≤ 2. Let d ∈ [3] and k ∈ [n] be
any integers. We regard a vertex v as a 3D integral point
v = (v1, v2, v3). Cutting the n × n × n 3D integral cube by a
2D plane vd = k, we have a 2D facet. We call this facet the
(d, k)-facet. There are possibly some vertices on the (d, k)-facet.
In Trellis-swap, the set D of solution vertices to be dropped is
any subset of solution vertices on the facet. We define the Trellis-
neighborhood of a solution S as the set of all solutions that can
be obtained by dropping such D from S and then inserting an
independent set I into S \ D. Observe that (p, n2)-neighborhood
with p ≤ 2 is a special case of Trellis-neighborhood in the sense
that the cardinality |D| is restricted to p.
We claim that, even when D is maximal (i.e., D is the set of

all solution vertices on a (d, k)-facet), a largest I can be computed
efficiently in O(n2.5) time since the problem of finding a largest I
is reduced to the maximum bipartite matching problem. In what
follows, we restrict ourselves to such D. Then |D| is at most n and
there are at most 3n different D’-s. Let us define the (d, k)-Trellis,
a certain subgraph of G.
Definition 1 Suppose that we are given a solution S . For any

d ∈ [3] and k ∈ [n], let D ⊆ S be a subset D = {(v1, v2, v3) ∈ S |
vd = k}. We denote by F1 (resp., F2) the set of all 1-tight (resp.,
2-tight) vertices such that the unique solution neighbor is con-
tained in D (resp., both of the solution neighbors are contained in
D). We define the (d, k)-trellis as the subgraph of G induced by
D ∪ F1 ∪ F2.
We may call the (d, k)-facet and the (d, k)-trellis simply the facet
and the trellis respectively when d and k are clear from the con-
text.
We show an example of trellis in Fig. 2. The D consists of four

solution vertices on the 2D facet, i.e., D = {x, y, z, z′}. All vertices
in the trellis are indicated by shade; F1 is the set of five 1-tight
vertices, and F2 is the set of three 2-tight vertices. We see that all
vertices in D∪F2 are on the 2D facet. Two vertices in F1 are also
on the same facet, while the three other vertices in F1 are out of
the facet like a hanging vine.
Note that dropping D from S makes all vertices in the trellis

free. Then any independent set in the trellis serves as I.
Lemma 1 Given d ∈ [3] and k ∈ [n], we can compute an MIS

of the (d, k)-trellis in O(n2.5) time.

Proof: We explain how to compute an MIS of the (d, k)-trellis.
Let us partition F1 into F1 = F′1 ∪ F′′1 so that F′1 (resp., F′′1) is
the subset of vertices on (resp., out of) the (d, k)-facet. The vertex
set F′′1 induces a subgraph that consists of cliques, each of which
is formed by 1-tight vertices on a grid line perpendicular to the
facet; in Fig. 2, � and �′ are among such grid lines. Among MISs
of the trellis, there is one such that a solution vertex is chosen

c© 2015 Information Processing Society of Japan 4

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

2 2 3

2

1

1

1

1

1

2

2

1

1
2

3

u v

w

ts

x

y

z

z′

�

�′

Fig. 2 An example of trellis: Four bold squares on the same 2D facet are the
solution vertices to be dropped. Vertices in the trellis are indicated
by shade.

Grid lines in

Grid lines in
the direction 1

the direction 2

u v
w tsx y

Fig. 3 The bipartite graph in the proof of Lemma 1: Any matching is an
independent set of the trellis. {x, y} is a matching that consists of
vertices in the current solution, and we see a larger matching such as
{s, v, w}.

from every clique. Intending such an MIS, we ignore the vertices
in F′′1 and their unique solution neighbors. Let D

′′ ⊆ D be a sub-
set such that D′′ =

⋃
u∈F ′′1 NS (u); in Fig. 2, D

′′ = {z, z′}. We can
no longer choose the vertices in D′′. Let D′ = D \ D′′.
The remaining task is to compute an MIS of D′ ∪ F′1 ∪ F2. All

the vertices in D′ ∪ F′1 ∪ F2 are on the (d, k)-facet. We should
choose as many vertices as possible so that, from each of 2n
grid lines on the facet, a vertex is chosen at most once. It is the
problem of finding a maximum matching in a bipartite graph like
Fig. 3; a vertex is associated with a grid line on the facet, and
the bipartition of vertices is determined by the directions of grid
lines. An edge joins two vertices whenever the trellis has a vertex
on the intersecting point of the corresponding two grid lines.
An MIS of the trellis is given by the union of D′′ and a maxi-

mum matching M. It takes O(n2) time to recognize the vertex sets
D, F1 and F2 and partitions D = D′ ∪D′′ and F1 = F′1 ∪ F′′1 , and
then to construct the bipartite graph since the bipartite graph has
2n vertices and O(n2) edges. We need O(n2.5) time to compute
M [17]. �

Theorem 2 (Haraguchi [15]) Given a solution S , we can
find an improved solution in the Trellis-neighborhood or conclude
that no such solution exists in O(n3.5) time.

Proof: There are 3n facets and thus 3n trellises. For a (d, k)-
trellis, let D be the maximal subset of solution vertices on the
trellis. We can identify whether there is an independent set I with
|D| < |I| or not in O(n2.5) time from Lemma 1. When such D and
I are found, we have an improved solution (S \D)∪ I by dropping
D from S and then by inserting I into S \ D. This requires O(n2)
time since |D| ≤ n and |I| ≤ 2n. �

3.4 Experimental Results
We design iterated local search (ILS) algorithms [10], [13] that

utilize the neighborhood search algorithms described so far. We
then compare them with state-of-the-art optimization softwares
in terms of solution quality; Our ILS algorithms outperform the
competitors.
The ILS algorithm iterates local searches until the computa-

tion time exceeds a given time limit (which is set to 10 seconds),
and then outputs the incumbent solution S∗, i.e., the best solution
searched so far. Each local search begins with an initial solution
and repeats a σ-neighborhood search algorithm until it finds a σ-
maximal solution, say S . If S is not worse than the current S∗

(i.e., |S | ≥ |S ∗|), then S ∗ is updated to S . The initial solution S0
of the next local search is generated by “kicking” S∗, where we
write the detail in our future papers. We consider four variants
of ILS algorithms: 1-ILS, 2-ILS, 3-ILS and Tr-ILS. As the name
goes, 1-ILS is the ILS algorithm with (1, n2)-neighborhood. The
others are analogous.
For competitors, we employ two exact solvers and one heuris-

tic solver. For the former, we employ the optimization solver
for integer programming model (CPX-IP) and the one for con-
straint optimization model (CPX-CP) from IBM ILOG CPLEX
(ver. 12.6) [19]. It is easy to formulate the PLSE problem by these
models (e.g., see [12]). For the latter, we employ LocalSolver
(ver. 4.5) [22] (LSSOL), which is a general heuristic solver based
on local search. All the parameters are set to default values ex-
cept that, in CPX-CP, DefaultInferenceLevel and AllDiff
InferenceLevel are set to extended. We set the time limit of
all the competitors to 30 seconds (which is three times the time
limit of ILS algorithms).
Benchmark instances are random PLSs. We generate the in-

stances by utilizing the scheme called “quasigroup completion”
(QC) that is well-known in the literature [4], [12]. Note that
a PLS is parametrized by the order n and the ratio r ∈ [0, 1]
of pre-assigned symbols over the n × n grid. Starting from an
empty assignment, QC generates a PLS by assigning a sym-
bol to an empty cell randomly until n2r� symbols are assigned.
Note that a QC instance does not necessarily admit a complete
Latin square as an optimal solution. One can download some of
the used instances from the author’s website (http://puzzle.
haraguchi-s.otaru-uc.ac.jp/PLSE/).
Let us mention what kind of instance is “hard” in general. Of

course an instance becomes harder when n is larger. Then we
set the grid length n to 50, 60 and 70, which are relatively large
compared with previous studies (e.g., [12]). For a fixed n, the
problem has easy-hard-easy phase transition. Then we regard in-
stances with an intermediate r “hard”.
All the experiments are conducted on a workstation that carries

Intel R© CoreTM i7-4770 Processor (up to 3.90GHz by means of
Turbo Boost Technology) and 8GB main memory. The installed
OS is Ubuntu 14.04.1.
We show how the ILS algorithms and the competitors improve

the initial solution S0 in Table 1. The S 0 is generated by a con-
structive algorithm named G5 in [1], which is a “look-ahead”
minimum-degree greedy algorithm. For each pair (n, r), a number
in the 3rd column is the average of |L| + |S0 | (i.e., the given PLS
size |L| = n2r� plus the initial solution size) and a number in the
4th to 10th columns is the average of the improved size over 100

c© 2015 Information Processing Society of Japan 5

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

QC instances. A bold number indicates the largest improvement
among all.
Obviously the ILS algorithms outperform the competitors in

many (n, r)’-s although the time limit is much shorter. We claim
that Tr-ILS should be the best among the four ILS algorithms.
Clearly 3-ILS is inferior to others; this must be because the
(3, n2)-neighborhood search algorithm takes much longer time
than others. The remaining three algorithms seem to be com-
petitive, but Tr-ILS ranks first or second most frequently.
Concerning the competitors, CPX-CP performs well for under-

constrained “easy” instances (i.e., r ≤ 0.4), whereas CPX-IP does
well for over-constrained “easy” instances (i.e., r ≥ 0.7). LSSOL
is relatively good for all r’-s and outstanding especially for “hard”
instances with 0.5 ≤ r ≤ 0.7.
4. Extension of Local Search for PLSE on Col-

ored Grid
Now we extend the local search to a variant of the PLSE prob-

lem, PLSE on Colored Grid (PLSE-CG). In this problem, the n×n
grid is assumed to be colored, that is, each cell is assigned one of
n colors in a given palette, say c1, . . . , cn. We denote the color
of cell (i, j) by col(i, j). We say that a PLS satisfies the color
condition if, among the cells having the same color, each symbol
appears at most once. Then given a colored grid and a PLS L
that satisfies the color condition, the PLSE-CG problem asks for
a largest extension of L so that not only the Latin square condition
but also the color condition continues to be satisfied.
The PLSE-CG problem is a generalization of (maximization

versions of) Sudoku completion and finding orthogonal Latin
squares (OLSs). In Sudoku completion, the order n is assumed
to be a square number n = m2. Then it is regarded as a spe-
cial case of the PLSE-CG problem such that, in every m × m
subgrid, all n cells are assigned the same color, and any two
cells in different subgrids are assigned different colors from each
other. Two Latin squares A, B are called orthogonal if every
ordered pair (a, b) ∈ [n]2 of symbols appears exactly once in
⋃
(i, j)∈[n]2 {(a, b) | (i, j, a) ∈ A and (i, j, b) ∈ B}. To find a Latin

square that is orthogonal to a given A, we have only to solve the
PLSE-CG problem such that col(i, j) = ck whenever (i, j, k) ∈ A.
Let G∗∗ = (V∗, E∗ ∪ E†) be a graph such that the new edge set

E† is added to the graph G∗. This edge set is defined as;

E† = {(u, v) ∈ V∗ × V∗ | col(u1, u2) = col(v1, v2), u3 = v3}.
Then vertices (u1, u2, u3)’-s with the same color col(u1, u2) and
the same u3 form a clique. We denote by N∗∗(v) the set of v’-s
neighbors in G∗∗. The PLSE-CG problem is reduced to the MIS
problem on the subgraph ofG∗∗ induced by V = V∗ \(L∪N∗∗(L)).
For convenience, we represent the adjacency given by E† by
means of a grid line; that is, we regard that u and v are on the grid
line “in the direction 4” if (u, v) ∈ E†. We connect C[i][j][k]’-s
by double-links to represent a grid line in the direction 4. The
tightness of a non-solution node is now at most 4. In addition to 3
directions, we maintain the number λ4(x) for any solution vertex
x and the pointer ρ4(u) for any non-solution vertex u. It is easy to
see that we can do elementary operations in Sect. 3.1 within the
same time bound.

1 1

1

1

1

1 1

1

1

1

2
3

4

u

v

w

s

x

�x,1

�x,2

�x,4

Fig. 4 An illustrative example for the proof of Theorem 3: (upper) distribu-
tion of vertices in F and (lower) the bipartite graph for this situation

We extend the (p, n2)-neighborhood search algorithm with p ≤
2 to the PLSE-CG problem. First we consider the case of p = 1.
Let x ∈ S be any solution vertex, and F denote the set of vertices
free from S \ {x}. Recall that F consists of 1-tight neighbors of
x. In contrast to the primitive PLSE problem, we cannot pick up
a 1-tight vertex from each grid line independently. It is possible
that, for example, u on �x,1 and v on �x,2 are on the same grid
line �x,4. In such a case, u and v cannot be inserted into S \ {x}
simultaneously.
Theorem 3 In the PLSE-CG problem, given a solution S , we

can find an improved solution in its (1, n2)-neighborhood or con-
clude that it is 1-maximal in O(n3) time.

Proof: It suffices to show that the MIS of F can be computed in
O(n) time. We construct a bipartite graph that consists of three
vertices corresponding to solid grid lines �x,1, �x,2 and �x,4 and n
vertices corresponding to colors in a given palette. Let F′ denote
the subset of vertices in F that are on the grid line �x,3. We define
the edge set as follows.
• If there is u ∈ F \ F′ that is on �x,1, then we join �x,1 and
col(u1, u2) by an edge.

• If there is u ∈ F \ F′ that is on �x,2, then we join �x,2 and
col(u1, u2) by an edge.

• If there is u ∈ F \ F′ that is neither on �x,1 nor on �x,2 but is
on �x,4, then we join �x,4 and col(u1, u2) by an edge.

See Fig. 4 for example. We claim that a matching in this bipartite
graph corresponds to an independent set of F. Since there are
only 3 vertices on one side of bipartition and are O(n) edges, it
takes O(n) time to compute a maximum matching. Finally, from
F′, we can add any 1-tight vertex on �x,3 to the independent set if
one exists. �

In the example of Fig. 4, an independent set {u, v, w} may be
chosen by a maximum matching algorithm, and s on the grid line
�x,3 may be appended into the independent set. Then we have an
improved solution (S \ {x}) ∪ {u, v, w, s}.
Theorem 4 In the PLSE-CG problem, given a solution S , we

can find an improved solution in its (2, n2)-neighborhood or con-
clude that it is 2-maximal in O(n4) time.

c© 2015 Information Processing Society of Japan 6

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

Table 1 Improved sizes brought by the ILS algorithms and the competitors
n r |L| + |S 0 | Tr-ILS 1-ILS 2-ILS 3-ILS CPX-IP CPX-CP LSSOL
50 0.3 2496.03 3.97 3.97 3.95 3.93 0.00 3.84 0.32

0.4 2493.78 6.22 6.20 6.22 6.08 0.00 4.24 0.87
0.5 2488.52 11.48 11.37 11.43 10.73 0.00 1.40 4.44
0.6 2476.21 20.97 20.02 20.09 18.46 0.00 2.66 13.00
0.7 2442.21 27.86 27.26 27.57 25.56 4.19 8.83 21.24
0.8 2382.07 12.07 12.07 12.04 12.02 12.51 6.03 11.60

60 0.3 3593.07 6.93 6.91 6.93 6.21 0.00 5.22 0.13
0.4 3590.68 9.32 9.29 9.28 7.90 0.00 1.87 0.49
0.5 3585.29 14.65 14.36 14.29 12.24 0.00 0.54 2.21
0.6 3572.61 24.06 23.21 23.24 20.16 0.00 1.09 12.91
0.7 3534.62 37.50 36.85 35.96 31.89 0.09 5.83 26.43
0.8 3456.59 21.90 22.00 21.78 21.46 21.99 7.55 19.85

70 0.3 4890.20 9.80 9.78 9.78 7.12 0.00 3.55 0.05
0.4 4887.73 12.25 12.23 12.25 8.67 0.00 0.63 0.25
0.5 4881.09 18.48 18.32 18.35 12.88 0.00 0.08 1.81
0.6 4868.21 27.98 27.09 26.72 20.31 0.00 0.53 9.56
0.7 4829.65 43.30 42.76 41.32 34.73 0.00 2.29 30.06
0.8 4731.35 34.56 35.32 34.46 32.58 30.09 6.38 29.82

Proof: Let u ∈ S be any 2-tight vertex, x, y be u’-s solution neigh-
bors, and F denote the set of vertices free from (S \ {x}) ∪ {u, v}.
Similarly to Theorem 3, it suffices to show that an MIS of F can
be computed in O(n) time.
Suppose that x and y are u’-s solution neighbors in the direc-

tions dx and dy respectively. Here we give the proof only to the
case (dx, dy) = (1, 2). The other cases are analogous.
We construct a bipartite graph that consists of four vertices cor-

responding to solid grid lines �x,1, �y,2, �x,4 and �y,4 and n vertices
corresponding to colors in a given palette. Let F′ denote the sub-
set of vertices in F that are among �x,3 and �y,3. We define the
edge set as follows.
• If there is 1-tight vertex v ∈ F \ F′ that is on �x,1, then we
join �x,1 and col(v1, v2) by an edge.

• If there is 1-tight vertex v ∈ F \ F′ that is on �y,2, then we
join �y,2 and col(v1, v2) by an edge.

• If there is 1-tight vertex v ∈ F \ F′ that is neither on �x,1
nor on �y,2 but has the same color as x, then we join �x,4 and
col(v1, v2) by an edge.

• If there is 1-tight vertex v ∈ F \ F′ that is neither on �x,1
nor on �y,2 but has the same color as y, then we join �y,4 and
col(v1, v2) by an edge.

See Fig. 5 for example. Similarly to Theorem 3 a matching in this
bipartite graph corresponds to an independent set of F. We can
compute a maximum matching of this graph in O(n) time. It is an
MIS candidate of F, but F may have a 2-tight vertex; it is w in the
example of Fig. 5. This should belong to every MIS of F when
no maximum matching in the bipartite graph touches �x,1 or �y,2.
Whether this is the case or not can be decided in O(n) time. If
so, we add the 2-tight vertex to the independent set. Finally, from
F′, we can add any 1-tight vertex on �x,3 and one on �y,3 to the
independent set if one exists. In this way, we can decide an MIS
of F in O(n) time. �

5. Concluding Remarks
In this paper we reviewed the efficient local search for the

PLSE problem that we proposed recently [15]. We then extended
it to a variant problem, PLSE-CG, a generalization of Sudoku
completion and finding OLSs.

2

1

1

1

11

1

2

1

1

1

2
3

4

u

w

x

y

�y,2

�y,4

�x,1

�x,4

Fig. 5 An illustrative example for the proof of Theorem 4: (upper) distribu-
tion of vertices in F and (lower) the bipartite graph for this situation

The future work includes studying the case of p = 3. It is not
promising to extend Trellis-swap to PLSE-CG since we may need
to solve the maximum rainbow matching problem (a.k.a., multiple
choice matching), an NP-hard problem [9], to determine the MIS
of the trellis. Now we are working on efficient local search algo-
rithm for the partial symmetric Latin square extension problem,
which has strong application in scheduling.

References
[1] Alidaee, B., Kochenberger, G. and Wang, H.: Simple and fast surro-

gate constraint heuristics for the maximum independent set problem,
J. Heuristics, Vol. 14, pp. 571–585 (2008).

[2] Andrade, D., Resende, M. and Werneck, R.: Fast local search for the
maximum independent set problem, J. Heuristics, Vol. 18, pp. 525–
547 (2012). The preliminary version appeared in Proc. 7th WEA
(LNCS vol. 5038), pp. 220–234 (2008).

[3] Barry, R. A. and Humblet, P. A.: Latin routers, design and imple-
mentation, IEEE/OSA J. Lightwave Technology, Vol. 11, No. 5, pp.
891–899 (1993).

[4] Barták, R.: On generators of random quasigroup problems,
Proc. CSCLP 2005, pp. 164–178 (2006).

[5] Colbourn, C. J.: The complexity of completing partial Latin squares,
Discrete Applied Mathematics, Vol. 8, pp. 25–30 (1984).

[6] Colbourn, C. J. and Dinitz, J. H.: Handbook of Combinatorial De-

c© 2015 Information Processing Society of Japan 7

Vol.2015-AL-153 No.4
2015/6/12

IPSJ SIG Technical Report

signs, Chapman & Hall/CRC, 2nd edition (2006).
[7] Cygan, M.: Improved Approximation for 3-Dimensional Matching

via Bounded Pathwidth Local Search, Proc. FOCS 2013, pp. 509–518
(2013).

[8] Fürer, M. and Yu, H.: Approximating the k-Set Packing Problem by
Local Improvements, Proc. ISCO 2014, LNCS, Vol. 8596, pp. 408–
420 (2014).

[9] Garey, M. R. and Johnson, D. S.: Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman & Company
(1979).

[10] Glover, F. and Kochenberger, G.(eds.): Handbook of Metaheuristics,
Kluwer Academic Publishers (2003).

[11] Gomes, C. P., Regis, R. G. and Shmoys, D. B.: An improved ap-
proximation algorithm for the partial Latin square extension problem,
Operations Research Letters, Vol. 32, No. 5, pp. 479–484 (2004).

[12] Gomes, C. P. and Shmoys, D. B.: Completing quasigroups or Latin
squares: a structured graph coloring problem, Proc. Computational
Symposium on Graph Coloring and Generalizations (2002).

[13] Gonzalez, T. F.(ed.): Handbook of Approximation Algorithms and
Metaheuristics, Chapman & Hall/CRC (2007).

[14] Hajirasouliha, I., Jowhari, H., Kumar, R. and Sundaram, R.: On com-
pleting Latin squares, Proc. STACS 2007, LNCS, Vol. 4393, pp. 524–
535 (2007).

[15] Haraguchi, K.: An Efficient Local Search for Partial Latin Square Ex-
tension Problem, Proc. CPAIOR 2015, LNCS, Vol. 9075, pp. 182–198
(2015).

[16] Haraguchi, K. and Ono, H.: Approximability of Latin Square
Completion-Type Puzzles, Proc. FUN 2014, LNCS, Vol. 8496, pp.
218–229 (2014).

[17] Hopcroft, J. E. and Karp, R. M.: An n5/2 algorithm for maximum
matchings in bipartite graphs, SIAM J. Computing, Vol. 2, No. 4, pp.
225–231 (1973).

[18] Hurkens, C. A. J. and Schrijver, A.: On the size of systems of sets
every t of which have an SDR, with an application to the worst-case
ratio of heuristics for packing problems, SIAM J. Discrete Mathemat-
ics, Vol. 2, No. 1, pp. 68–72 (1989).

[19] IBM ILOG CPLEX: http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/. accessed on
January 20, 2015.

[20] Itoyanagi, J., Hashimoto, H. and Yagiura, M.: A local search algo-
rithm with large neighborhoods for the maximum weighted indepen-
dent set problem, Proc. MIC 2011, pp. 191–200 (2011). The full paper
is written in Japanese as a master thesis of the 1st author in Graduate
School of Information Science, Nagoya University (2011).

[21] Kumar, R., Russel, A. and Sundaram, R.: Approximating Latin square
extensions, Algorithmica, Vol. 24, No. 2, pp. 128–138 (1999).

[22] LocalSolver: http://www.localsolver.com/. accessed on Jan-
uary 20, 2015.

c© 2015 Information Processing Society of Japan 8

Vol.2015-AL-153 No.4
2015/6/12

