
IPSJ SIG Technical Report

Computational Complexity Studies of Synchronous
Boolean Finite Dynamical Systems

Mitsunori Ogihara1,a) Kei Uchizawa2,b)

Abstract: This paper studies the subclass of finite dynamical systems the synchronous boolean finite dynamical sys-
tem (synchronous BFDS, for short), where the states are boolean and the state update takes place in discrete time and
at the same on all objects. The present paper is concerned with some problems regarding the behavior of synchronous
BFDS in which the state update functions (or the local state transition functions) are chosen from a predetermined
finite basis of boolean functions B. Specifically the following three behaviors are studied: (1) Does a system at hand
converge on a given initial state configuration? (2) Will a system starting in given two state configurations produce
a common configuration? (3) Since the state space is finite, every BFDS on a given initial state configuration either
converges or enters a cycle having length greater than 1; if the latter is the case, what is the length of the loop? We
prove that the three problems are each PSPACE-complete if the boolean function basis contains NAND, NOR or both
AND and OR, while the problem (1) is in P, the problem (2) is in UP, and the problem (3) is in UP ∩ coUP if the set B
is one of {AND}, {OR} and {XOR,NXOR}.

1. Introduction
The finite dynamical system is a system consisting of some fi-

nite number of objects that each take upon a value from some
domain D. After receiving an initial state assignment the system
evolves over time by means of state updates, where the updates
occur in discrete time and are governed by a global state-update
schedule and a local (meaning assigned to each node individ-
ually) state-update functions (or local state-transition functions)
that take as input the states of the objects in the system.

Because of its flexibility the finite dynamical system has been
used as a mathematical model for time-dependent systems and
can contain in itself other multi-object computational models,
such as cellular and graph automata and Hopfield networks.

Classes of finite dynamical systems can be defined by giving
certain requirements to their operation. First, classes can be de-
fined by specifying the domain, that is, the set of permissible
states: infinite, finite, and boolean. Next, classes can be defined
based upon the types of the state update functions.

It is usually assumed that at each time step, all the objects con-
duct their state updates exactly once, and so, classes can be de-
fined depending on the order in which the state updates occur in
the objects . Specifically we have the asynchronous (any update
order), the sequential (a fixed predetermined order), and the syn-
chronous (all at the same time) finite dynamical systems.

For each n ≥ 1, the underlying structure of an n-object dy-

1 Department of Computer Science, University of Miami 1365 Memorial
Drive Coral Gables, FL 33146, USA

2 Faculty of Engineering, Yamagata University,
Jonan 4-3-16, Yonezawa, Yamagata, 992-8510 Japan

a) ogihara@cs.miami.edu
b) uchizawa@yz.yamagata-u.ac.jp

namical system over domain D can be represented as a node- and
edge-labeled directed graph G of n nodes. The nodes of G repre-
sent the objects, the edges of G represent the direct dependencies
among the objects in updating their states in a natural way: an
edge from a node u to a node v indicates that the state updating
function of v takes the state of u as input. Also, for each node
v, v is labeled by the state update function of v and the incom-
ing edges of v are labeled by the input positions of the source
node in the state update function. Because of this representation,
classes of the finite dynamical systems can be defined in terms of
the properties of the underlying graph, e.g., whether the graph is
planar, whether the graph is regular, and whether the edges are
undirected in the sense, that if there is an edge from node u to
node v, there is an edge from v to u.

The subject of this paper is the synchronous boolean finite dy-
namical systems (synchronous BFDS, for short). A synchronous
BFDS is the subclass of BFDS in which the domain is boolean
and the update is synchronous.

Given a finite dynamical system we are naturally interested in
its behavior. For example, we may ask questions about fixed
points, such as whether the system has a fixed point (that is,
whether there is a state configuration in which the state update
of the system produces no change). In the case where the state
domain is finite, there are a finite number of state configurations,
and so we can ask such questions how many fixed points the sys-
tem has and how many initial state configurations lead to fixed
points. Furthermore, we can ask about the behavior of the system
on a particular initial state configuration, such as, whether a given
initial state configuration leads the system to a fixed point, and if
not, since the system eventually enters a cycle of state configura-
tions, how many steps it will take for the system to enter a cycle

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.3
2015/6/12

IPSJ SIG Technical Report

and how long the cycle is.
That the underlying structure of finite dynamical systems can

be represented as a graph suggests that the classes of finite dy-
namical systems can be studied using the number of objects as
the size parameter and so the behavioral properties of a class of
finite dynamical systems can be studied in terms of its computa-
tional complexity. In other words, for a class of finite dynamical
systems C and for a questionQ, we ask how computationally hard
it is to answer Q for class C: Is it polynomial time solvable? If
not, is the problem hard for a known complexity class, such as NP
and PSPACE?

Much work has been done to explore the computational com-
plexity of behavioral properties of finite dynamical systems. Bar-
rett et al. [3] study the computational complexity of the sequen-
tial finite dynamical systems, the model first introduced by Bar-
rett, Mortveit, and Reidys in [1]. Barrett et al. [3] study partic-
ularly the sequential boolean finite dynamical systems regarding
the existence of fixed points. For a variety of permissible state
update functions, they ask which combinations of the functions
make the problem easy or difficult. They show that the prob-
lem is NP-complete if the set of permissible local transition func-
tions is either {NAND,XNOR}, {NAND,XOR}, {NOR,XNOR}
or {NOR,XOR}. They also show that the problem is solv-
able in polynomial time if the functions are chosen from
{AND,OR,NAND,NOR}.

The above results have been strengthened by Kosub [7], who
shows a dichotomy result in the sense of Schaefer [12]; i.e., the
problem in question is either NP-hard or polynomial time solv-
able. Kosub obtains a complete complexity-theoretic characteri-
zation of the fixed-point problem about boolean finite dynamical
systems with respect to the state update function classes, which
Kosub calls Post Classes, as well as with respect to the struc-
ture of the underlying graph. He shows exactly in which case the
problem is NP-hard and for all the remaining cases the problem
is polynomial-time solvable. Kosub and Homan [10] prove a di-
chotomy result on the counting version of the fixed point problem,
in the sense that the problem is either #P-complete or polynomial-
time solvable.

Another set of natural problems that arise in finite dynamical
systems is the reachability; that is, given a system and two state
configurations a and b, can b be reached from a? A variant of this
problem is whether any fixed point can be reached from a given
configuration a. Barrett et al. [2] study these problems for the se-
quential and synchronous dynamical systems in which the under-
lying graph is an undirected graph. They show that the problems
are PSPACE-complete in general but polynomial time solvable if
the state update functions are symmetric and monotone boolean
functions.

In this paper, as a follow-up of the aforementioned prior
work [2], [3], [7], [10]), we study the computational complexity
of the synchronous boolean finite dynamical systems in which the
basis B of the state update functions is finite. We are particularly
interested in three questions:
(1) Convergence(B): Given a system F and an initial state con-

figuration a, decide whether the system converges to any
fixed point.

(2) PathIntersection(B): Given an n-object system F and two
state configurations a and b, do there exist time steps s and t,
such that the state configuration of F on a at step s is equal
to the state configuration of F on b at step t?

(3) CycleLength(B): Given a system F , an initial state con-
figuration a, and an integer t, decide whether the state con-
figuration sequence generated by the system starting from
a contains a cycle having length greater than or equal to t.
Note that the complement of this problem with t = 2 is Con-
vergence(B).

Although our work may seem reminiscent of the previous work,
our focus is on the dynamical systems whose underlying graph is
directed, not undirected. It is known that the dynamical behav-
ior of the Hopfield networks is different depending on whether
they are symmetric or not [11]. There is thus no a priori reason
to believe that the results regarding directed graph structures are
derived from the results regarding undirected graph structures.

We first show that the above three problems are all PSPACE-
complete ifB contains NAND or NOR. While we provide a proof
for the result, these follow from an earlier paper by Floréen and
Orponen [5]. We note that Barrett et al. [2] study this problem
too, but in their setting the underlying graph is undirected.

We then prove that if B is one of {AND}, {OR}, and
{XOR,NXOR}, Convergence is solvable in polynomial time and
that the same assumption implies that PathIntersection belongs
to UP and CycleLength belongs to UP ∩ coUP. We suspect that
the latter two problems are polynomial time solvable, but we do
not have at hand yet proofs that the problems are in P.

The rest of the paper is organized as follows. In Section 2, we
formally define the dynamical systems and the problems we will
study. In Section 3, we give algorithms for the convergence prob-
lem and the path intersection problem. In Section 4, we show that
the cycle length problem is in UP ∩ coUP.

2. Preliminaries
2.1 Definitions

Below, following the definition of the sequential dynamical
systems by Laubenbacher and Pareigis [8] we define synchronous
boolean finite dynamical systems.

Let n ≥ 1 be an integer. A synchronous boolean finite dynam-
ical system (synchronous BFDS, for short) of n variables is an
n-tuple F = (f1, f2, . . . , fn) such that f1, . . . , fn are boolean func-
tions of n variables.

Let F = (f1, f2, . . . , fn) be an n-variable synchronous BFDS.
A state configuration (or simply a configuration) of F is an n-
dimensional boolean vector. We use the vector notation x =

(x1, x2, . . . , xn) to denote a state configuration, where x1, . . . , xn

are boolean variables.
The action of F on an state configuration x is defined as:

F (x) = (f1(x), f2(x), . . . , fn(x))

In other words, the elements of F (x) are obtained by apply-
ing the n boolean functions f1, . . . , fn concurrently on the vari-
ables x1, . . . , xn. Given an initial state configuration x0 =

(x0
1, x

0
2, . . . , x

0
n), the synchronous BFDS defines n sequences of

boolean values {xt
i}, 1 ≤ i ≤ n and t ≥ 0 by iterative applica-

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.3
2015/6/12

IPSJ SIG Technical Report

tions of F on the initial state configuration vector:

for all t ≥ 0, xt+1 = F (xt),

where for all t ≥ 0, xt = (xt
1, x

t
2, . . . , x

t
n). In other words, for all

t ≥ 0,

xt = F t(x0).

For an n-state boolean finite dynamical system, there are ex-
actly 2n possible state configurations. This implies that in an
n-state synchronous BFDS, regardless of which initial state con-
figuration x0 it starts, the state configuration sequence generated
from x0 enters a cycle; that is, in the sequence there exist indices
s and t, 0 ≤ s < t, such that xs = xt. Clearly, for all such pairs
(s, t), it holds:

for all i ≥ 0, xs+i = xt+i.

This implies that there is the smallest value of s for which there
exists some t > s such that xs = xt and that, for that smallest value
of s, there exists the smallest value of t > s such that xs = xt. Let
s0 and t0 respectively be the values of s and t thus defined. Then
we have:
• t0 ≤ 2n and
• for all i and j, 0 ≤ i < j ≤ t0 − 1, xi , x j.

We say that F on x enters a cycle (or enters a loop) at step s0 and
its cycle has length t0 − s0. We call s0 the tail length of F on x.
We define LF (x0) to be the length of the cycle t0 − s0.

In the case where t0 = s0 + 1, the cycle length is 1, and so, for
all s ≥ s0 it holds that xs0 = xs. In such a case we say that the
vector xs0 is a fixed point of F ; we also say that F converges on
the initial state configuration x0.

A function family is a collection of boolean functions H =

{hi}i≥1 such that for each i ≥ 1, hi takes i inputs. For example, the
disjunction of any input size, which can be described as

{hi}i≥1, hi(x1, . . . , xi) = x1 ∨ · · · ∨ xi,

is a function family. For a function family H , we write Hk to
mean the element of H for input size k. For example, OR is the
family of the disjunction functions while OR2 is the binary dis-
junction function.

A basis boolean function is either a single boolean function or
a function family. Let f be a boolean function of n variables and
let g be a boolean function of m variables for some m < n. We
say that g is equivalent to f if there exist indices xi1 , . . . , xim such
that for all x1, · · · , xn ∈ {0, 1}, it holds that

f (x1, . . . , xn) = g(xi1 , . . . , xim).

In other words, f is a function that depends only on the variables
xi1 , . . . , xim and g characterizes the behavior of f on those m in-
puts.

Let B be a finite set of basis functions. We say that a syn-
chronous BFDS F = (f1, . . . , fn) has basis B if each function of
F is either a function family in B or equivalent to a boolean func-
tion in B. In this paper, we consider specifically the bases that are
chosen from function families AND,NAND,OR,NOR,XOR,
and NXOR.

We say that a function family H = {hi}i≥1 is polynomial-time
(respectively, polynomial-space) computable if there exists an al-
gorithm for computing, given an integer i ≥ 1 and a1, . . . , ai ∈

{0, 1}, the value of hi(a1, . . . , ai) in time (respectively, space) poly-
nomial in i. We say that a function base B is polynomial-time (re-
spectively, polynomial-space) computable if each function family
in B is polynomial-time (respectively, polynomial-space) com-
putable.

Given the above formulation it is now possible to discuss how
to encode the synchronous BFDS F over a basis B. An n-object
synchronous BFDS f over a basis B is encoded as a labeled di-
rected graph G = (V, E) in which V is the object set and E repre-
sents the dependency of the objects in terms of their state update.
The nodes are labeled with their basis function. The number of
incoming edges to each node is no more than the number of in-
puts to the basis function it is associated with, and those edges
are labeled to indicate the positions of the variables in the input
of the basis functions. Thus, any basis B, the synchronous BFDS
F over B has an encoding whose length is bounded by a fixed
polynomial in the number of objects. Note that such an encoding
may not exist if B contains a function family that does not have a
polynomial-size encoding.

We now formally define the three decision problems we con-
sider in the paper. Let B be a boolean function basis.
(1) Convergence(B) is the problem of deciding, given a syn-

chronous BFDS F having basis B and an initial state config-
uration a of F , whether F converges on a.

(2) PathIntersection(B) is the problem of deciding, given a syn-
chronous BFDS F having basis B and two initial state con-
figurations a and b of F , whether there exist some s and t,
0 ≤ s, t ≤ 2n − 1, such that F s(a) = F t(b).

(3) CycleLength(B) is the problem of deciding, given a syn-
chronous BFDS F having basis B, an initial state configura-
tion a of F , and an integer t, whether the cycle length of F
on a, i.e., LF (a), is greater than t.

We assume that the reader is familiar with introductory-level
complexity classes (see, e.g., Hemaspaandra and Ogihara [6], for
reference). The class PSPACE consists of all decision problems
that can be decided by a polynomial space-bounded Turing ma-
chines. The class UP consists of all decision problems that can be
decided by a polynomial time-bounded nondeterministic Turing
machines with a special property that given as input each positive
(respectively, negative) instance, the number of accepting compu-
tation paths of the machine is 1 (respectively, 0). The class coUP
is the class of all decision problems that are the complement of
some decision problem in UP.

2.2 PSPACE-completeness
Here we prove that the aforementioned three problems are

PSPACE-complete if the basis contains NAND, NOR or both
AND and OR.

Proposition 1. For all polynomial-space computable bases B,
Convergence(B), PathIntersection(B) and CycleLength(B) are
in PSPACE.

Proof. Let M be a Turing machine that, given as input a syn-

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.3
2015/6/12

IPSJ SIG Technical Report

chronous BFDS S of some n objects, an initial state configuration
a, and an integer t, 0 ≤ t ≤ 2n, outputs S t(a). Since the basis B
is polynomial-space computable, M can be made to run in poly-
nomial space. Using this machine M as a subroutine, the three
problems can be solved as follows:
• Convergence(B): Test whether there exists a t, 0 ≤ t ≤ 2n,

such that M(S , a, t) = M(S , a, t + 1).
• PathIntersection(B): Test whether there exist s and t, 0 ≤

s, t ≤ 2n − 1, such that M(S , a, s) = M(S , b, t).
• CycleLength(B): Test whether there are no k and l, 0 ≤

k, l ≤ 2n and l − k ≤ t, such that M(S , a, k) = M(S , a, l).
Clearly, each of the above search can be run using O(n) space.
Thus, all three problems are in PSPACE.

�

The following theorem follows from [5], Corollary 3.2; we
omit the proof due to the page limitation.

Theorem 1. If the basis B contains either NAND, NOR or
{AND,OR}, the problems Convergence(B), PathIntersection(B)
and CycleLength(B) are PSPACE-hard.

The theorem immediately implies the following corollaries.

Corollary 1. If the basis B contains either NAND or
NOR, the problems Convergence(B), PathIntersection(B) and
CycleLength(B) are PSPACE-complete.

Corollary 2. If the basis B contains both AND and OR,
the problems Convergence(B), PathIntersection(B) and
CycleLength(B) are PSPACE-complete.

3. Algorithms for Convergence and PathInter-
section

In this section, we prove the following theorem.

Theorem 2. If B is one of {AND}, {OR}, and {XOR,NXOR},
Convergence(B) is polynomial-time computable and
PathIntersection(B) belongs to UP.

The theorem is built upon the following lemma, which states
that the state configuration at any time step t, 0 ≤ t ≤ 2n, of a syn-
chronous BFDS of n objects can be computed in time polynomial
in n for a basis chosen from {AND}, {OR}, or {XOR,NXOR}.

Lemma 1. Let B be one of {AND}, {OR}, and {XOR,NXOR}.
Given an n-object synchronous BFDS F over basis B, a state
configuration a ∈ {0, 1}n, and an integer k ≥ 0, we can compute
F k(a) in time polynomial in n + log k.

Proof. In this proof we will think of the state configurations to
be column vectors. We first consider the case where B = {OR}.
LetF = (f1, f2, . . . , fn) and a ∈ {0, 1}n be respectively an n-object
BFDS over B and its state configuration. Let A be the adjacency
matrix of the system F in terms of its graph-based encoding; that
is, for all i and j, 1 ≤ i, j ≤ n, the entry (i, j) of A is 1 if there is
an edge from node j to node i and 0 otherwise. We then have

F (a) = Aa,

where the multiplication is interpreted as AND and the addition
as OR. It follows from this that for all k ≥ 0

F k(a) = Ak a

and that F k therefore can be computed by way of the standard
iterated multiplication. Thus, for all k, F k(a) can be computed in
time polynomial in n + log k.

Next we consider the case where B = {AND}. For each vector
a, ac be the component-wise complement of a, that is, the vector
constructed from a by flipping each element. Then we have

F (a)c = Aac.

This implies that for all k ≥ 0,

(F (a)k)c = Ak ac

and so

F (a)k = (Ak ac)c.

Thus, from the previous discussion, the lemma holds in the case
where the basis is {AND}.

Finally we consider the case where B = {XOR,NXOR}. We
will consider each state to be an element of Z2 and perform the
arithmetic over Z2. For each i, 1 ≤ i ≤ n, fi can be represented by
a linear function over Z2:

fi(x) =

⊕
j∈Xi

x j

 ⊕ bi

where ⊕ is the addition over Z2, Xi is a set of all indices of vari-
ables involved in fi, and bi = 1 if fi is equivalent to NXOR and
0 otherwise. By using the same adjacency matrix as before and
using the column vector b = (b1, b2, . . . , bn)T , we have:

F (a) = Aa ⊕ b,

and so for all k ≥ 0,

F k(a) = Ak a ⊕ (Ak−1 ⊕ Ak−2 ⊕ · · · ⊕ I)b, (1)

where I is the n × n identity matrix. By the standard iterated
multiplication, for each k, 0 ≤ k ≤ 2n, we can compute Ak in
polynomial time. Thus, it suffices to show that the second term of
Eq. (1) is computable in time polynomial in n + log k.

Let Q(k) denote the summation in question. Suppose k is a
power of 2. Let p = log k. We have k = 2p and

Q(k) = (A2p−1
⊕ I)(A2p−2

⊕ I) · · · (A ⊕ I).

Since p = log k, by the iterative multiplication, we can compute
all the components on the right-hand side in time polynomial in
n + log k, and so the left-hand side can be obtained in time poly-
nomial in n + log k.

Now suppose k is not a power of 2. There exist p and k′ such
that 2p < k < 2p+1 and k′ = k − 2p ≤ k/2. We have

Q(k) = Q(2p) ⊕ A2p
Q(k′).

Since 1 ≤ k′ < k/2, this allows us to establish a recursive method
for computing Q(k). The depth of recursion is at most log k, and

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.3
2015/6/12

IPSJ SIG Technical Report

each term of the form either Q(2m) or A2m
during the recursion

can be computed in time polynomial in n + log k. Thus, Q(k) can
be computed in time polynomial in n + log k. Hence, the claim
holds, and the proof is complete. �

Theorem 2 can be proven using Lemma 1 as follows.
Proof of Theorem 2. To show that Convergence is polynomial-
time computable, let F be an n-object synchronous BFDS over
one of the three bases and let a be an initial state configuration.
By the definition of convergence, we have that F converges on
a if and only if F 2n−1(a) = F 2n

(a) holds. By Lemma 1, we can
compute F 2n−1(a) and F 2n

(a) in polynomial time, and thus we
complete the proof.

The following algorithm shows that PathIntersection(B) is in
UP: Given F , a, and b,
Step 1 Nondeterministically choose s, 0 ≤ s ≤ 2n − 1.
Step 2 Nondeterministically choose t, 0 ≤ t ≤ 2n − 1.
Step 3 Test whether F s(a) = F t(b). If the test fails, reject.
Step 4 If either s = 0 or t = 0, then accept. Otherwise, test

whether F s−1(a) , F t−1(b). If the inequality holds, accept;
otherwise, reject.

Clearly the algorithm runs in time polynomial in n. If the two
state configuration paths intersect, then there is a unique combi-
nation of s and t for which the tests pass. Thus, the algorithm
runs in UP.

4. Algorithm for CycleLength
In this section we prove the following theorem.

Theorem 3. If B is one of {AND}, {OR}, and {XOR,NXOR},
then CycleLength(B) belongs to UP ∩ coUP.

This result together with the latter statement of Theorem 2 can
be used as evidence that for the bases mentioned in the theorems
PathIntersection(B) and CycleLength(B) are unlikely to be NP-
hard.

We first prove the following proposition.

Proposition 2. Let F be an n-object BFDS and let a be an ini-
tial state configuration. For all integers p ≥ 0 and q ≥ 1, F on
a has tail length p and cycle length q if and only if the following
properties hold:
(1) F p(a) = F p+q(a).
(2) If p > 0, then F p−1(a) , F p+q−1(a).
(3) For all prime numbers d dividing q, F p(a) , F p+q/d(a).

Proof. Let F and a be as in the statement of the proposition.
Suppose F on a enters a cycle at step p and the cycle length is
q. Then, we have F p(a) = F p+q(a). This is identical to Prop-
erty 1 in the above. Also, by the minimality of p, we have: for
all i, 0 ≤ i ≤ p − 1 and for all j ≥ i, F i(a) , F j(a). By set-
ting i = p − 1 and j = p + q − 1, we get Property 2. Finally, by
the minimality of q, we have for all i ≥ 0 and s, 1 ≤ s ≤ q − 1,
F i(a) , F i+s(a). In particular, if d is a prime number dividing
q, then q/d < q, and so by setting i = p and s = q/d, we have
Property 3.

Conversely, suppose that one of the three properties in the
statement of the proposition fails to hold for p and q. If Prop-
erty 1 fails to hold, clearly q is not the cycle length. If Property 2

fails to hold, F p−1(a) = F p+q−1(a), and so F on a enters a cycle
earlier than step p. If Property 3 fails to hold, there is a divisor
e = p/d for some prime number d such that F p(a) = F p+e(a).
This implies that the cycle length is smaller than q.

This proves the proposition.
�

For a total function g, we say that g is UP-computable if
there exists a polynomial-time nondeterministic Turing machine
M such that for all inputs x, M on x accepts along exactly one
computational path and in that unique computation path M on x
outputs g(x).

In the following lemma, we show that the cycle length is UP-
computable, which immediately implies Theorem 3.

Lemma 2. Suppose B is one of {AND}, {OR}, and
{XOR,NXOR}. Then for all synchronous BFDS F and
initial configurations a, the tail length and the cycle length of F
on a are UP-computable.

Proof. LetB be one of {AND}, {OR}, and {XOR,NXOR}. Since
the tail length p and the cycle length q are uniquely determined
for each combination ofF and a and since the prime factorization
is in UP∩coUP [4], we can design a UP-algorithm for calculating
p and q given F and a as follows:
Step 1 Our algorithm nondeterministically guesses p and q

such that 0 ≤ p < 2n and 1 ≤ q ≤ 2n − p.
Step 2 Using the algorithm presented in [4], we compute the

prime factorization of q in UP. If the factorization is suc-
cessful, the algorithm proceeds to the next step.

Step 3 Our algorithm tests the three properties in Proposition 2.
Step 4 Our nondeterministic algorithm accepts and outputs p

and q if and only if all the tests pass.
The prime factorization part is carried out nondeterministically
and since it is in UP, there is exactly one computation path along
which the factorization is successfully obtained. Since q ≤ 2n, the
number of distinct prime factors of q is at most n. This implies
that there will be at most n + 2 equalities to be tested in Step 3.
Since both p and q are bounded from above by 2n, we have from
Lemma 1 that each equality can be tested in time polynomial in
n. Thus, the above algorithm runs in time polynomial in n. The
algorithm has exactly one accepting computation path for all F
and a, and on that unique accepting computation path computes
p and q. Thus, the algorithm is an UP-algorithm.

This proves the lemma. �

References
[1] C. L. Barrett , H. S. Mortveit , C. M. Reidys. Elements of a theory

of simulation II: Sequential dynamical systems. Applied Mathematics
and Computation, 107(2-3):121-136, 2000.

[2] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. Complexity of reachability problems
for finite discrete dynamical systems. Journal of Computer and System
Sciences, 72(8):1317-1345, 2006.

[3] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, R. E. Stearns, and P. T. Tošić. Gardens of Eden and fixed
points in sequential dynamical systems. In Proceedings of Discrete
Models: Combinatorics, Computation, and Geometry, pages 95-110,
2001.

[4] M. R. Fellows and N. Koblitz. Self-witnessing polynomial-time com-
plexity and prime factorization. In Proceedings of the Seventh Annual

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.3
2015/6/12

IPSJ SIG Technical Report

Conference on Structure in Complexity Theory, pages 107-110, 1992.
[5] P. Floréen and P. Orponen. Complexity issues in discrete Hopfield net-

works. Neuro-COLT Technical Report Series, NC-TR-94-009, 1994.
[6] L. A. Hemaspaandra and M. Ogihara. A Complexity Theory Compan-

ion. Springer-Verlag, 2001.
[7] S. Kosub. Dichotomy results for fixed-point existence problems

for boolean dynamical systems. Mathematics in Computer Science,
1(3):487-505, 2008.

[8] R. Laubenbacher and B. Pareigis. Equivalence relations on finite dy-
namical systems. Advances in Applied Mathematics, 26(3):237-251,
2001.

[9] A. Maruoka. Concise Guide to Computation Theory. Springer-Verlag,
2011.

[10] S. Kosub. and C. M. Homan. Dichotomy Results for Fixed Point
Counting in Boolean Dynamical Systems. In Proceedings of the Tenth
Italian Conference on Theoretical Computer Science (ICTCS 2007),
pages 163-174, 2007.

[11] I. Parberry. Circuit Complexity and Neural Networks. MIT Press,
Cambridge, MA, 1994.

[12] T. J. Schaefer. The complexity of satisfiability problems. In Proceed-
ings of the Tenth ACM Symposium on Theory of Computing, pages
216-226, 1978.

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.3
2015/6/12

