
Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

[DOI: 10.2197/ipsjjip.23.310]

Regular Paper

Fillmat is NP-Complete and ASP-Complete

Uejima Akihiro1,a) Suzuki Hiroaki1

Received: July 31, 2014, Accepted: January 7, 2015

Abstract: We study the computational complexity of a packing puzzle Fillmat, which is a type of pencil-and-paper
puzzles made by Japanese puzzle publisher Nikoli. We show that the problem to decide if a given instance of Fillmat
has a solution is NP-complete by a reduction from the circuit-satisfiability problem (Circuit-SAT). Our reduction is
carefully designed so that we can also prove ASP-completeness of the another-solution-problem.

Keywords: computational complexity, NP-completeness, ASP-completeness, pencil-and-paper puzzle, Fillmat

1. Introduction and Definitions

A wide variety of puzzles are played all over the world. Pencil-
and-paper puzzles are those offered as some figure on the paper
and solved by drawing on the figure with a pencil, and such a type
of puzzles are popular recreation. Fillmat (or Firumatto), which is
considered in this paper, is one of pencil-and-paper puzzles made
by Japanese puzzle magazine Nikoli [10].

It seems that one of the sources of fun on playing games and
puzzles is their difficulty. From such a viewpoint, the computa-
tional complexity of many games and puzzles has been widely
studied, and it is known that many commonly played puzzles
are NP-complete. Hearn and Demaine [4] in 2009 surveyed the
complexity results on combinatorial games and puzzles. In re-
cent studies, it has been shown that Hashiwokakero [1], Number
Link [8], Kurodoko [7], Shikaku and Ripple Effect [11], Yajilin
and Country Road [5], Yosenabe [6], Shakashaka [3] and so on
forth, which are pencil-and-paper puzzles published by Nikoli,
are NP-complete. However, the complexity of Fillmat remained
unstudied. Thus, in this paper, we study the computational com-
plexity of the packing puzzle Fillmat defined as follows.

An instance of Fillmat and its solution are shown in Fig. 1. Fill-
mat is played on a rectangular grid P of size m×n, some of whose
squares are numbered by {1, 2, 3, 4}. We call the denoted numbers
in P clues.

The player’s task is to pack 1 × 1, 1× 2, 1× 3, 1× 4 rectangles
into P without overlap under the following four constraints. We
call these 4 types of rectangles blocks.
(1) Every block may contain at most one clue.
(2) If the block contains a clue, the size of the block must be

equal to the number denoted as a clue.
(3) Two blocks of the same size must not be vertically or hori-

zontally adjacent.
(4) The boundary lines of blocks must not form a cross.

Examples that violates the constraints (3) and (4) on Fillmat

1 Osaka Electro-Communication University, Neyagawa, Osaka 572–8530,
Japan

a) uejima@isc.osakac.ac.jp

Fig. 1 An instance of Fillmat.

Fig. 2 Examples that violates the constraints (3) and (4) on Fillmat.

Fig. 3 An instance of Fillmat with holes.

are shown in Fig. 2. We note that P may contain holes, i.e., P

may have the squares on which a block can not be arranged (see
Fig. 3). We mention that the original definition of Fillmat does
not contain holes, and the original rule on the Nikoli website [10]
says that we are to fill every square of the instance.

Throughout this paper, gray squares on a rectangular grid rep-
resent holes, and 1 × 1, 1 × 2, 1 × 3, 1 × 4 blocks are denoted by
red, yellow, green, and blue squares, respectively. In this paper,
we mainly consider the decision problem of Fillmat defined as
follows.

c© 2015 Information Processing Society of Japan 310

Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

Fillmat Decision Problem
Instance: A rectangular grid P of size m × n, some of

whose squares are numbered by {1, 2, 3, 4},
and which may contain holes,

Question: Is there an arrangement of blocks in P satis-
fying the above constraints?

We analyze the computational complexity of the decision prob-
lem above and the another-solution-problem of Fillmat, and we
show the following theorem in this paper (see Ref. [12] for defi-
nitions of a class ASP and ASP-completeness).

Theorem 1 Fillmat is NP-complete and ASP-complete.

2. Proof of Theorem 1

We are now ready to state and prove our claim of NP-
completeness. It is obvious that the problem to decide whether
an instance of Fillmat has a solution is in NP, since it can be ver-
ified whether a solution candidate is correct in polynomial time.

To prove NP-hardness, we construct a reduction from the
circuit-satisfiability problem (Circuit-SAT for short), which is
the problem of deciding whether given Boolean circuits C(v1, v2,
. . . , vn) with n Boolean variables v1, v2, . . . , vn have an assignment
of the variables that makes the output true. Circuit-SAT has al-
ready been shown to be NP-complete in Ref. [2], and the proof of
NP-completeness also implies that the another-solution-problem
variant (ASP for short) of Circuit-SAT is ASP-complete since
Cook’s reduction is an ASP reduction (see Ref. [12] for the defi-
nition of the term “ASP reduction”).

Our reduction is carefully designed so that each solution of
Fillmat has a one-to-one correspondence with a solution of the
original instance of Circuit-SAT. Therefore, the reduction also
implies the result for the another-solution-problem of Fillmat,
namely, the ASP variant of Fillmat is ASP-complete. The ASP
version of Fillmat is defined as follows: Given an instance P of
Fillmat and a solution s, find a solution s′ of P other than s.

In the following part, we construct gadgets corresponding to
each part of a Boolean circuit by using only the basic logical gates
AND and NOT (note that {AND, NOT} is universal), wires, and
splits. In the reduction, we must be careful about wires crossing
in the circuits. To construct instances of Fillmat from circuits,
we consider the Boolean circuits restricted to a plane. For this
purpose, we can replace the wires crossing by McColl’s planar
“cross-over” circuit [9] as shown in Fig. 4, which can be con-
structed by three XOR gates (note that an XOR gate can be ex-
pressed as a “planar” circuit consisting of AND and NOT gates).

In our construction of the gadgets, we consider 6 × 6 squares
to be a basic unit, and most of the gadgets consist of a multiple
of sizes of a basic unit. In any gadget, the left-side of the gadget

Fig. 4 McColl’s planar “cross-over” circuit.

receives a Boolean value from the adjacent gadget, and the output
value is transmitted from the right-side of the gadget to the next
gadget.

2.1 Input and Wire Gadgets
An input gadget and a wire gadget are shown in Fig. 5. We use

a basic unit on the left-side of the figure, which is marked by a
red dashed line, as an input gadget.

We consider how to place a 1 × 3 block on a square numbered
by 3 in the upper left of an input gadget. From the constraint (4),
neither of both sides of a 1× 3 block can be located on the square
with clue 3. Therefore, we have only two ways of packings as
red and blue dashed rectangles illustrated in Fig. 6. Note that ar-
rangements of 1 × 3 blocks on other squares with clue 3 in Fig. 6
are restricted to such two ways.

If a choice of arrangements of a 1 × 3 block on the upper left
square in an input gadget is decided, arrangements of 1×3 blocks
on the surrounding squares with clue 3 will be fixed as illustrated
in Fig. 7 from the constraint (3), and 1×1 blocks are placed on the
remaining squares. We regard the ways of arrangements (a) and
(b) in the figure as truth-value assignments of variables and their
transfer: Arrangement (a) corresponds to a true value; in contrast,
arrangement (b) corresponds to a false value.

2.2 Split Gadget
A split gadget is shown in Fig. 8. This gadget branches a sig-

nal wire by combining the same structure as a wire gadget verti-
cally. Note that the restriction of arrangements of 1× 3 blocks on
squares numbered by 3 holds even if the direction of wire gadgets
changes. In addition, wires must bend to connect logical gates in
circuits, thus our construction needs to bend wire gadgets to route
between our gate-like gadgets. Then, we can use the structure of
the split gadget as bend gadgets.

Fig. 5 An input gadget and a wire gadget.

Fig. 6 Arrangement candidates in an input gadget.

c© 2015 Information Processing Society of Japan 311

Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

Fig. 7 Truth-value assignments of variables and their transfer. Mention that
the assignments (a) and (b) are symmetric, thus Fig. 13 and Fig. 14
in the following are also symmetric.

Fig. 8 A split gadget.

2.3 Output Gadget
We use the gadget in Fig. 9 (a) as an output gadget. The gadget

consists of 2×1 squares adding on the lower right of the wire gad-
get. If the input of the output gadget is true, we have only one way
to arrange on the gadget as illustrated in Fig. 9 (b). Otherwise, we
have no arrangements satisfying all constraints. For example, the
arrangement as Fig. 9 (c) does not satisfy the constraints (3) and
(4). Therefore, it has a solution if and only if the value received
from the left is true.

2.4 NOT Gadget
Figure 10 shows the NOT gadget. Similar to the case of a wire

gadget, arrangements of 1 × 3 blocks on squares numbered by 3

Fig. 9 An output gadget.

Fig. 10 A NOT gadget.

Fig. 11 A NOT gadget with true input.

in the gadget are restricted.
If the input of the NOT gadget from the left gadget is true, the

arrangement on the left half of the gadget is fixed as Fig. 11 since
the structure of the part is the same as a split gadget. Now, we
consider how to arrange a 1 × 2 block on the upper right square
with 2. If it is the arrangement like a red dashed rectangle in
Fig. 11, we have no feasible arrangements of blocks on the two
squares marked by a blue dashed line from the constraint (3).
Therefore, the arrangement of a 1 × 2 block is fixed as Fig. 12,
and the next 1× 2 block is also fixed from the same reason. Simi-
lar to the same argument, we have only one way to arrange on the
remaining part of the gadget as Fig. 13.

If the input of the NOT gadget is false, we have only one way
to arrange on the gadget as Fig. 14 from upper and lower symme-
try of the gadget. Therefore, the NOT gadget plays as a NOT gate
in a circuit.

c© 2015 Information Processing Society of Japan 312

Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

Fig. 12 Arranging 1 × 2 blocks in a NOT gadget with true input.

Fig. 13 Solution to a NOT gadget with true input.

Fig. 14 Solution to a NOT gadget with false input.

2.5 AND Gadget
Figure 15 shows the AND gadget for an AND gate y = x1∧ x2.

According to the values of x1, x2, we have four possible cases. Ar-
rangements of 1×3 blocks on squares numbered by 3 in the shape
of parallel crosses (i.e., in the #-shaped subgrid except for holes)
are similarly restricted. Therefore, it is easy to see that the output
y is false if either x1 or x2 is false, since a horizontally long 1 × 3
block is placed on either the square B or C (see Figs. 19, 23, and
24).

We consider the case that the inputs (x1, x2) of the AND gadget
from the left gadget is (true, true) as illustrated in Fig. 16. Note
that vertically long 1× 3 blocks are placed on both squares B and
C in this case. Now, it takes notice of arrangement on uncovered
squares in the upper side of wire-like gadgets from x2. Then,
we have only one way to arrange a 1 × 3 block as a red dashed
rectangle in Fig. 16. If not, the two 1 × 3 blocks are vertically ad-

Fig. 15 An AND gadget.

Fig. 16 An AND gadget with (x1, x2) = (true, true).

Fig. 17 Arranging blocks in an AND gadget with (x1, x2) = (true, true).

jacent and it contradicts the constraint (3). According to such an
arrangement, arrangement of blocks on its surrounding squares
with numbers is fixed and the remaining squares are covered by
1 × 1 blocks as illustrated in Fig. 17.

After that, we must place a 1× 4 block on the square A as a red

c© 2015 Information Processing Society of Japan 313

Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

Fig. 18 Unique solution to an AND gadget with (x1, x2) = (true, true).

Fig. 19 An AND gadget with (x1, x2) = (false, false).

dashed rectangle in Fig. 17, thus two 1× 3 blocks are arranged by
flush right on the right-side squares with clue 3, and it yields that
the remaining squares are covered by 1 × 1 and 1 × 2 blocks as
illustrated in Fig. 18. Therefore, pushing by the 1 × 3 block on
the part, we have only one arrangement on the right-side of AND
gadget. Consequently, it requires that the right adjacent gadget
receives the value true when both inputs are true.

When the inputs (x1, x2) of the AND gadget from the left gad-
get is (false, false), the arrangement of blocks on the shape of
parallel crosses including blocks with clue 3 is fixed as illustrated
in Fig. 19. Then, we have only one way to arrange a 1 × 3 block
as a red dashed rectangle in Fig. 19. According to such an ar-
rangement, the arrangement of blocks on its surrounding squares
with clues is fixed and the remaining squares are covered by 1×1
and 1 × 2 blocks as Fig. 20. If we place a 1 × 3 block like a red
dashed rectangle in Fig. 20, there exists no feasible arrangements
of blocks on the two squares marked by a blue dashed line. There-
fore, the arrangement of a 1 × 3 block is fixed as Fig. 21, and the
next 1 × 2 block is also fixed from the same reason.

Now, we consider how to arrange a 1 × 4 block on the square
with clue 4 near the center of the gadget. If we place the block like
a red dashed rectangle in Fig. 21, there exists no feasible arrange-
ments of blocks on the two squares marked by a blue dashed line.
Therefore, the arrangement of blocks on its surrounding squares
is fixed as illustrated in Fig. 22. Note that if the horizontally long
1× 4 block is arranged by flush right, it contradicts the constraint
(4) on the bottom left corner of the block. This arrangement cor-

Fig. 20 Arranging blocks in an AND gadget with (x1, x2) = (false, false).

Fig. 21 Arranging a 1 × 4 block in an AND gadget with (x1, x2) = (false,
false).

Fig. 22 Unique solution to an AND gadget with (x1, x2) = (false, false).

responds to the behavior of an AND gate with (false, false) as
both inputs.

We consider the case that the inputs (x1, x2) of the AND gadget
from the left gadget is (true, false). Similar to the same argument
for using the case (x1, x2) = (false, false), we have only one way
to arrange on the remaining part of the gadget as illustrated in
Fig. 23. Note that two squares on the right-side of square B must
be covered by a 1 × 2 block as Fig. 23.

When the inputs (x1, x2) of the AND gadget from the left gad-
get is (false, true), the arrangement on most of the squares is
fixed as Fig. 24. In fact, the arrangement of blocks on the shape
of parallel crosses including blocks with clue 3 is fixed by false

c© 2015 Information Processing Society of Japan 314

Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

Fig. 23 Unique solution to an AND gadget with (x1, x2) = (true, false).

Fig. 24 An AND gadget with (x1, x2) = (false, true).

Fig. 25 Unique solution to an AND gadget with (x1, x2) = (true, true).

value x1, moreover, we have only one way to arrange most of the
squares in the upper side of wire gadgets of x2 from the same
argument for using the case (x1, x2) = (true, true).

Arrangement on the remaining squares is considered. Since
the arrangement like a red dashed rectangle in Fig. 24 does not
satisfy the constraint (3), blocks placed on the remaining squares
are fixed as illustrated in Fig. 25.

Therefore, the AND gadget in Fillmat instance corresponds to
an AND gate in a circuit. Moreover, there is no other way of ar-
ranging blocks on the AND gadget for each case. Thus, feasible
arrangements on the AND gadget have a one-to-one correspon-
dence with the behavior of an AND gate.

3. Proof of Correctness of the Reduction

All the necessary gadgets we listed are constructed in the pre-
vious section. The area of the grid P where no gadget exists is
filled by holes. As a result, we can construct the resulting in-
stance of Fillmat in polynomial time of the size of the original
Boolean circuit C.

It is easy to see that the resulting instance of Fillmat has a
solution if and only if the original circuit has an assignment of
the variables that makes the output true. Namely, the instance of
Fillmat obtained by the reduction correctly simulates a Boolean
circuit. Therefore, Fillmat Decision Problem is NP-complete.
Moreover, once we fix an assignment of the variables of C, the
arranging pattern of the resulting instance of Fillmat is uniquely
determined. That is, arrangements of blocks on P of Fillmat have
a one-to-one correspondence with the behavior of the original
Boolean circuit C. Therefore, ASP version of Fillmat is ASP-
complete.

4. Conclusions

In this paper, we have studied the computational complexity
of Fillmat and we proved that Fillmat is NP-complete and ASP-
complete by reducing the Circuit-SAT problem to Fillmat. The
resulting instance of Fillmat contains holes, hence the complex-
ity of Fillmat without holes is still open. In our reduction, the
squares with clue 4 appear only in AND gadgets. An interesting
question is to determine the computational complexity of Fillmat
without the number 4 as a clue.

Acknowledgments This research was supported in part by
Institute of Informatics, Osaka Electro-Communication Univer-
sity.

References

[1] Andersson, D.: Hashiwokakero is NP-complete, Inf. Process. Lett.,
Vol.109, No.19, pp.1145–1146 (2009).

[2] Cook, C.S.: The complexity of theorem proving procedures, 3rd ACM
Symposium on Theory of Computing, pp.151–158 (1971).

[3] Demiane, E.D., Okamoto, Y., Uehara, R. and Uno, Y.: Computa-
tional Complexity and an Integer Programming Model of Shakashaka,
IEICE Trans. Fundamentals of Electronics, Communications and
Computer Science, Vol.E97-A, No.6, pp.1213–1219 (2014).

[4] Hearn, R.A. and Demaine, E.D.: Game, Puzzles, & Computation,
A.K. Peters Ltd., MA, USA (2009).

[5] Ishibashi, A., Sato, Y. and Iwata, S.: NP-completeness of Two Pen-
sil Puzzles: Yajilin and Country Road, Utilitas Mathematica, Vol.88,
pp.237–246 (2012).

[6] Iwamoto, C.: Yosenabe is NP-complete, Journal of Information Pro-
cessing, Vol.22, No.1, pp.40–43 (2014).

[7] Kölker, J.: Kurodoko is NP-complete, Journal of Information Pro-
cessing, Vol.20, No.3, pp.694–706 (2012).

[8] Kotsuma, K. and Takenaga, Y.: NP-completeness and Enumeration
of Number Link Puzzle, IEICE Technical Report, Vol.109, No.465,
pp.1–7 (2010) (in Japanese).

[9] McColl, W.: Planar crossovers, IEEE Trans. Comput., Vol.30, No.2,
pp.223–225 (1981).

[10] Nikoli: Rules of Fillmat (online), available from
〈http://www.nikoli.co.jp/ja/puzzles/fillmat.html〉 (accessed 2014-08-
30).

[11] Yakenaga, Y., Aoyagi, S., Iwata, S. and Kasai, T.: Shikaku and Ripple
Effect are NP-Complete, Congressus Numerantium, Vol.216, pp.119–
127 (2013).

[12] Yato, T. and Seta, T.: Complexity and Completeness of Finding An-
other Solution and its Application to Puzzles, IEICE Trans. Fun-
damentals of Electronics, Communications and Computer Sciences,
Vol.E86-A, No.5, pp.1052–1060 (2003).

c© 2015 Information Processing Society of Japan 315

Journal of Information Processing Vol.23 No.3 310–316 (May 2015)

Uejima Akihiro was born in 1975. He
received a B.E. and M.E. from Infor-
mation Systems Engineering, Department
of Information and Computer Sciences,
Toyohashi University of Technology in
1998 and 2000, respectively, and Dr.
of Informatics degree from Department
of Communications and Computer Engi-

neering, Graduate School of Informatics at Kyoto University in
2005. He was a lecturer during 2005–2013, and has been an as-
sociate professor since 2013 in Department of Engineering Infor-
matics, Osaka Electro-Communication University. His research
interest is in graph theory, computational complexity. He is
a member of IEICE, IPSJ, the Operations Research Society of
Japan, the Language and Automaton Symposium.

Suzuki Hiroaki was born in 1991. He re-
ceived a B.Sc. from Department of En-
gineering Informatics, Faculty of Infor-
mation and Communication Engineering,
Osaka Electro-Communication University
in 2014. From 2014, he has been a stu-
dent of Master course in Division of Infor-
mation and Computer Science, Graduate

School of Engineering at Osaka Electro-Communication Univer-
sity.

c© 2015 Information Processing Society of Japan 316

