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Abstract: This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous good
that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife protocol with one knife
achieves simple fairness and truthfulness, all players must execute the protocol synchronously. Thus, the protocol
cannot be executed on asynchronous networks such as the Internet. We show that the moving-knife protocol can be
executed approximately but asynchronously by a discrete protocol using a secure auction protocol. The number of cuts
is n−1 where n is the number of players, which is the minimum. Sgall and Woeginger proposed another asynchronous
protocol that satisfies simple fairness, truthfulness, and the minimum number of cuts. These two protocols are com-
pared from the viewpoint of social surplus. The simulation result shows that the cryptographic moving-knife protocol
is better than the Sgall-Woeginger protocol.
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1. Introduction

Cake-cutting is an old problem in game theory [2], [16], [18].
It can be employed for such purposes as dividing territory of a
conquered island or assigning jobs to members of a group.

This paper discusses achieving a moving-knife protocol using
cryptography in cake-cutting when the cake is a heterogeneous
good that is represented by an interval, [0, 1], on a real line.

The moving-knife protocol is a common technique for achiev-
ing fair cake-cutting. The trusted third party (TTP) or one of
the players moves a knife on the cake. Every player watches the
movement and calls ‘stop’ when the knife comes to some specific
point that is desirable for the player. Cake is cut at the points
the calls are made. Many protocols that use one or more knives
were shown to achieve some desirable property such as exact di-
vision [2].

The simplest moving-knife protocol using one knife was pro-
posed by Dubins and Spanier [6]. The protocol achieves simple
fairness and it is truthful.

Moving-knife protocols have several disadvantages. First, all
players must watch the knife movement simultaneously, thus
moving-knife protocols cannot be executed on networks such as
the Internet, in which transmission delays cannot be avoided. In
addition, moving knives means cutting the cake at an infinite
number of places, thus it is considered to be inefficient.

Many discrete protocols have been proposed that achieve sim-
ple fairness [9], [12], [19], [21], [22]. Several different models
were proposed that concern the allowed types of primitives. The
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simplest model is just minimizing the number of cuts. Then, the
Robertson-Webb model was proposed [18]. In the model, ‘cut’
and ‘eval’ operations are allowed. The complexity of the proto-
col is given by the total number of these two operations.

However, the cake-cutting problem when applied to the sim-
plest model has not yet been completely solved. Discrete ver-
sions of the Dubins-Spanier moving-knife protocol considered in
Refs. [8], [21] are not truthful.

Sgall and Woeginger [20] proposed an asynchronous proto-
col that satisfies simple fairness, truthfulness, and the minimum
number of cuts. Its assignment result differs from the one of
Dubins-Spanier moving-knife protocol. Sgall-Woeginger proto-
col is static, that is, every player must decide all of its evaluations
in advance. On the other hand, Dubins-Spanier moving-knife
protocol is dynamic, that is, every player evaluates the currently
remaining piece of cake in each round of the protocol. How the
assignment results of these static and dynamic protocols differ is
important when these protocols are applied to real world prob-
lems.

Cryptography is not commonly used in cake-cutting proto-
cols. A commitment protocol [3] is used in meta-envy-free cake-
cutting protocols [14] for multiple parties to declare simultane-
ously their respective private values. Complicated cryptographic
protocols have not been used for cake-cutting protocols so far.

1.1 Our Result
We show a cryptographic cake-cutting protocol that achieves

approximate simple fairness with the minimum number of cuts.
We use a secure auction protocol that calculates the maximum
bid and the winning player while hiding the bid of each player.
The protocol output is approximately the same as that of Dubins-
Spanier moving-knife protocol. The protocol achieves approxi-
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mate simple fairness and it is truthful. Sgall-Woeginger protocol
achieves simple fairness, truthfulness, and the minimum number
of cuts. We compare these two protocols in the viewpoint of so-
cial surplus. Through a simulation, we show that the social sur-
plus of cryptographic moving-knife protocol is better than that
of Sgall-Woeginger protocol. Since the cryptographic moving-
knife protocol is dynamic, each player can obtain more utility
than static Sgall-Woeginger protocol. Thus, the former protocol
is superior than the latter one.

2. Preliminaries

Throughout the paper, the cake is a heterogeneous good that is
represented by interval [0, 1] on a real line. Each player Pi has a
utility function, μi, that has the following three properties.
( 1 ) For any interval X ⊆ [0, 1] whose size is not empty, μi(X) >

0.
( 2 ) For any X1 and X2 such that X1 ∩ X2 = ∅, μi(X1 ∪ X2) =
μi(X1) + μi(X2).

( 3 ) μi([0, 1]) = 1.
The tuple of the utility function of Pi(i = 1, . . . , n) is denoted as
(μ1, . . . , μn). Utility functions might differ among players. No
player has knowledge of the utility of the other players.

An n-player cake-cutting protocol, f , assigns several portions
of [0, 1] to the players such that every portion of [0, 1] is assigned
to one player. We denote fi(μ1, . . . , μn) as the set of portions as-
signed to player Pi by f , when the tuple of the utility function is
(μ1, . . . , μn).

All players are risk-averse, namely they avoid gambling. They
try to maximize the worst case utility they can obtain.

A desirable property for cake-cutting protocols is truthfulness.
A protocol is truthful if there is no incentive for any player to
lie about his utility function. If a player obtains more utility by
declaring a false value, the protocol is not robust. For example,
consider the simplest cake-cutting protocol ‘divide-and-choose.’
In this protocol, Divider first cuts the cake into two pieces [0, x]
and [x, 1], such that μ([0, x]) = μ([x, 1]) = 1/2 for Divider.
Chooser selects the piece she prefers. Divider obtains the re-
maining piece. Since the utility function of Divider is unknown
to Chooser, Divider can lie about his utility function and cut the
cake as [0, x′] and [x′, 1], for any x′(� x). In this case, Chooser
might select the piece such that the utility for Divider is more than
half and Divider might obtain less than half. Thus, the risk-averse
Divider obeys the rule of the protocol and cuts the cake in half.
‘Divide-and-choose’ is thus truthful for risk-averse players.

Several desirable properties of cake-cutting protocols have
been defined [18]. Simple fairness, which is the most fundamen-
tal one, is defined as follows.

For any i, μi( fi(μ1, . . . , μn)) ≥ 1/n.
This paper discusses simple fair cake-cutting protocols. One

of the other types of the desirable property is the social surplus,
that is, the total utilities the players obtain. For two protocol f

and f ′ which has the same properties (for example, both truthful
and simple fair), f is better than f ′ in the sense of social surplus
if
∑n

i=1 μi( fi(μ1, . . . , μn)) >
∑n

i=1 μi( f ′i (μ1, . . . , μn)).
Several kinds of complexity models of discrete cake-cutting

problems are defined. The simplest model is that the complexity

is the total number of cuts. This model is further divided into two
categories.
• Cut-and-calculate model: Any operation that uses the utility

function of each player is possible other than cutting.
• Cut-only model: No operation other than cutting is allowed.

Thus, the utility of player Pi can be known only by Pi per-
forming a cut.

Another model called the Robertson-Webb model [18] is intro-
duced. The operations are restricted to the following two types in
the model.
• Cuti(I, α): Player Pi cuts interval I = [x1, x2] such that
μi([x1, y]) = αμi(I), where 0 ≤ α ≤ 1.

• Evali(I): Player Pi evaluates interval I = [x1, x2], which is
one of the cuts previously performed using the protocol. Pi

returns μi(I).
The complexity of the Robertson-Webb model is defined as

follows.
• Robertson-Webb cut-complexity model: The complexity is

measured by the number of cuts. That is, evaluation queries
can be issued for free.

• Robertson-Webb cut-and-query-complexity model: The
complexity is measured by the total number of cuts and
queries.

For the cut-and-calculate model, the minimum number of cuts
for simple fair division is n− 1, where n is the number of players.
For the cut-only model, when the number of players is n = 3, the
minimum number of cuts for simple fair division is three [18].
When n = 4, the minimum number of cuts is four [9]. For a
general number of players, the Divide and Conquer protocol [9]
achieves 1 + nk − 2k cuts, where k = 
log2 n� [17]. The lower
bound of the cut-only model is Ω(n log n) [4].

For the Robertson-Webb cut-and-query-complexity model, the
lower bound is Ω(n log n) [20]. Edmonds and Pruhs extended the
Ω(n log n) lower bound to the cases when a player obtains a union
of intervals and approximate fairness is achieved [7].

This paper considers the simplest cut-and-calculate model.

3. Dubins-Spanier Moving-knife Protocol

This section outlines the Dubins-Spanier moving-knife proto-
col [6] shown in Fig. 1.

When the number of remaining players is k and the remaining

1: begin

2: Let k ← n and x← 1.

3: repeat

4: The TTP moves the knife from x toward 0. Let y be the current posi-

tion of the knife.

5: Player Pi calls ‘stop’ if μi([y, x]) = μi([0, x])/k.

6: The TTP immediately stops moving the knife when ’stop’ is called.

Let x′ be the point of the knife when ‘stop’ is called.

7: The TTP cuts the cake at x′. The player who said ‘stop’ obtains the

piece [x′, x] and exits the protocol.

8: Let k ← k − 1 and x← x′.
9: until k = 1

10: The remaining player obtains the rest of the cake ([0, x]).

11: end.

Fig. 1 Dubins-Spanier moving-knife protocol.
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1: begin

2: Let k ← n and x← 1.

3: repeat

4: Each player Pi declares point xi such that μi([xi, x]) = μi([0, x])/k.

5: Let x′ be the maximum of xis. Let Pi be the player who called x′.
6: Pi obtains piece [x′, x] and exits the protocol.

7: Let k ← k − 1 and x← x′.
8: until k = 1

9: The remaining player obtains the rest of the cake ([0, x]).

10: end.

Fig. 2 Endriss protocol.

cake is [0, x], each remaining player Pi calls ‘stop’ if the knife
comes to point y which satisfies μi([y, x]) = μi([0, x])/k, that is,
the value of piece [y, x] is 1/k of the remaining cake. The first
player who calls ‘stop’ obtains piece [y, x] and exits the proto-
col. The remaining players continue the same procedure for the
remaining cake [0, y].

Each player obtains at least 1/n based on the utility function of
the player, thus simple fairness is achieved.

In addition, the protocol is truthful for risk-averse players.
Consider the case when player Pi tells a lie. Assume that the num-
ber of current remaining players is k. Let the remaining players be
Pi, Pi+1, . . . , Pi+k−1 and the remaining cake be [0, x]. The actual
place that Pi to call ‘stop’ is xi, that is, μi([xi, x]) = μi([0, x])/k.

If Pi calls ‘stop’ earlier than xi, Pi obtains less than μi([0, x])/k
and the result is worse than telling the truth.

If Pi does not call ‘stop’ even if the knife comes to xi, player
Pi+1 might call ‘stop’ at xi − ε. The remaining piece is [0, xi − ε]
and μi([0, xi − ε]) < (k − 1)μi([0, x])/k. Let xi+1 = xi − ε. Af-
ter that, player Pj( j = i + 2, i + 3, . . . , i + k − 1) calls ‘stop’ at
point x j such that μi([x j, x j−1]) = μi([0, x])/k. If Pi calls ‘stop’
before x j( j > i + 1), Pi obtains less than μi([0, x])/k. If Pi does
not call ‘stop’ and obtains the last remaining piece [0, xi+k−1], the
utility of Pi, μi([0, xi+k−1]), is less than μi([0, x])/k. Therefore, not
calling ‘stop’ at the true point can be worse than telling the truth.

Note that the moving-knife protocol is not a discrete protocol.
A protocol is presented by Endriss [8] shown in Fig. 2 that makes
the protocol discrete.

It seems that this protocol is the same as the Dubins-Spanier
moving-knife protocol, but it is actually not. In this protocol, all
players know the cut point of the other players. The cut point
information can offer a hint to a player and the player can obtain
more utility by behaving dishonestly. Suppose that n = 3 and the
density functions for the utility of the players are as follows.

u1(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4/5 0 ≤ z ≤ 5/6

2 5/6 < z ≤ 1

u2(z) = 1(0 ≤ z ≤ 1),

u3(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 0 ≤ z ≤ 1/3

1/2 1/3 < z ≤ 1

The utility of Pi for [x, y], μi([x, y]), is calculated by
∫ y

x
ui(z)dz.

Since
∫ 1

0
ui(z)dz = 1(i = 1, 2, 3), these density functions satisfy

the conditions of the utility functions.
At the first round, each player declares c1 = 5/6, c2 = 2/3,

1: begin

2: Each player, Pi, simultaneously declares n − 1 points xi, j(1 ≤ j ≤ n − 1)

such that μi([xi, j, xi, j+1]) = 1/n(0 ≤ j ≤ n − 1) (Note that xi,0 = 0 and

xi,n = 1).

3: Let y← 0.

4: for k = 1 to n − 1 do

5: begin

6: Let z ← min xi,k, where the minimum is taken among the remaining

players.

7: Let Pj be the player who declares z.

8: Pj obtains [y, z] and exits the protocol.

9: Let y← z.

10: end

11: The remaining player obtains the rest of the cake ([y, 1]).

12: end.

Fig. 3 Sgall-Woeginger protocol.

and c3 = 1/3, since
∫ 1

5/6
u1(z)dz = 1/3,

∫ 1

2/3
u2(z)dz = 1/3,

and
∫ 1

1/3
u3(z)dz = 1/3. Since 5/6 > 2/3 > 1/3, P1 obtains

[5/6, 1] and exits the protocol. The next round is performed by
P2 and P3 with the remaining cake [0, 5/6]. The honest decla-
ration, c′2, at the next round by P2 is 5/12, since

∫ 5/6

5/12
u2(z)dz =

1/2
∫ 5/6

0
u2(z)dz = 5/12. Since

∫ 5/6

11/48
u3(z)dz = 1/2

∫ 5/6

0
u3(z)dz,

P3 will declare 11/48 as the cut point c′3, for the next round.
Although P2 cannot know c′3 in advance, it knows that c′3 < c3

is satisfied for any utility function. Thus, P2 can declare a false
value 1/3(= c3), instead of the true value of 5/12 as c′2, if P2

knows that the declared value by P3 in previous round is c3. When
P2 declares false value 1/3, P2 wins in this round and obtains
[1/3, 5/6]. The utility of P2 is 1/2, which is larger than utility
5/12 when P2 declares the true cut point, 5/12.

Thus knowledge of the declared values of other players de-
stroys the truthful characteristic of the protocol. The trimming
protocol [21], which also achieves simple fairness by a discrete
protocol, has the same problem about truthfulness, since a player
might be able to know all other players’ cut points in the previous
round.

Sgall and Woeginger [20] showed an asynchronous protocol in
which the number of cuts is n − 1, shown in Fig. 3.

This protocol achieves simple fairness. When k = 1, player Pi

who obtains piece [0, z] satisfies z = xi,1, thus μi([0, xi,1]) = 1/n.
Next consider the case k > 1. If player Pi obtains [y, xi,k] in the
k-th round, Pi could not obtain its piece in the previous round.
Thus, y ≤ xi,k−1 is satisfied for for any currently remaining player
Pi at line 6 and μi([y, xi,k]) ≥ μi([xi,k−1, xi,k]) = 1/n.

Since all players declare their cut points simultaneously, no
player can know the other players’ cut points in advance. Thus,
telling a false value such as in the Endriss protocol is not effective
in this protocol. Thus the protocol is truthful.

The difference between the Dubins-Spanier moving-knife pro-
tocol and the Sgall-Woeginger protocol is the time when the cut
points are declared. The latter protocol is static, that is, every
player must decide its cut points in advance. The former protocol
is dynamic, that is, each player decides his cut point for currently
remaining cake in each round.
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4. Cryptographic Moving-knife Protocol

The important characteristics of the Dubins-Spanier moving-
knife protocol are that (1) the declaration is done round by round
and (2) when a player P calls ‘stop’, no player knows the other
remaining players’ cut points because the knife is moving so that
the size of the cutting piece increases.

The simplest solution to keep the protocol truthful and make
the protocol discrete would be to have a TTP. In each round,
every remaining player privately sends its cut point to the TTP.
The TTP decides the largest value and the player who gave the
maximum value from the cut point information.

However, it might be difficult to have such a TTP. There might
be collusion between a player and the TTP. The TTP might send
the player cut point information to the colluding player.

In order to address this problem, we introduce a secure auc-
tion protocol. Secure auction protocols have been proposed in
cryptography theory [1], [13], [15]. They are outlined as follows.
• Player Pi generates its share of public key and secret key,

(PKi, S Ki) of a homomorphic encryption scheme.
Pi broadcasts PKi and the public encryption key PK is cal-
culated by any player from (PK1, . . . , PKn).
S Ki is the private key of Pi for decryption.
Any player can execute encryption procedure Enc using PK.
The ciphertext obtained by executing Enc on plaintext m is
Enc(PK,m).
If P1, . . . , Pn jointly execute decryption procedure Dec

with their private keys S K1, . . . , S Kn, they can decrypt
Enc(PK,m) and obtain m. That is, Dec(Enc(PK,m),
S K1, . . . , S Kn) = m. Note that the decryption can be per-
formed without revealing the value of S Ki to any other play-
ers.
For any set of players whose size is less than n, they cannot
decrypt Enc(PK,m) by themselves.

• Pi encrypts his bid bi using the public key, that is, Pi calcu-
lates ci = Enc(PK, bi).

• P1, . . . , Pn jointly calculates bmax = max(b1, . . . , bn) and
player Pj who bids bmax from c1, . . . , cn without directly de-
crypting c1, . . . , cn using the homomorphic property.

• During execution of the secure auction protocol, each player
gives a zero-knowledge proof [11] that the player acts cor-
rectly. The proof can be verified by any other player.
The correctness of the obtained highest bid and the winning
player is also given as a zero-knowledge proof. The proof
can be verified by any player. That is, no player can deny its
bid afterwards.

The details are shown in Refs. [1], [13], [15]. Secure auction
protocols use a homomorphic encryption, in which addition of
encrypted values can be accomplished without decrypting them.
Homomorphic encryption has the following properties.
• There exists polynomial time computable operation ⊗ and
−1 as follows. For any two ciphertext c1 = Enc(PK,m1) and
c2 = Enc(PK,m2), c1 ⊗ c2 ∈ Enc(PK,m1 + m2).
For any ciphertext c = Enc(PK,m), c−1 ∈ Enc(PK,−m).

• The encryption is semantically secure, that is, the advantage

1: begin

2: Let k ← n, x← 2m.

3: repeat

4: Pi decides xi such that μi([xi, x]) = μi([0, x])/k.

5: Pi encrypts xi and broadcasts it.

6: All players execute a secure auction protocol together and obtain

maximum bid x′ and player P who bids x′.
7: [x′, x] is marked as the piece for P and P cannot bid any more.

8: Let x← x′, k ← k − 1.

9: until k = 1.

10: [0, x] is marked as the piece for the remaining player and every player

obtains his/her piece.

11: end.

Fig. 4 Cryptographic moving-knife protocol.

of the adversary for the following game is negligible.
The adversary obtains all PKi’s and all S Ki’s except for
some S Kj. First, the adversary can repeatedly obtain
Dec(S K, c) for any ciphertext c that it selects. It then out-
puts two plaintext m0,m1. Challenger randomly selects bit
b← {0, 1} and c = Enc(PK,mb) is given to the adversary.
Then the adversary outputs b′. It wins if b = b′

The advantage of the adversary is Pr[b = b′] − 1/2.
The first property is calculating sum of two ciphertexts without

decrypting them. Using the homomorphic characteristics, it is
possible to compare multiple bids without decrypting them, that
is, they can obtain C = Enc(PK,max(b1, . . . , bn)) from c1, . . . , cn.
They jointly decrypt C and obtain the maximum bid without
knowing each bid. In some secure auction protocol [15], another
type of homomorphic encryption scheme is used in which multi-
plication of two ciphertexts are also possible.

The second property means that no player can obtain informa-
tion of the plaintext from a given ciphertext if at least one of the
secret keys is unknown.

The moving-knife protocol using a secure auction protocol is
shown in Fig. 4. In auction protocols, the bids are considered to
be an integer. Thus, we convert cake [0, 1] to [0, 2m] for some
large integer m and each player must bid an integer value for the
cutting point. Note that m must be large enough such that for any
player Pi and any c ∈ [0,1], μi([
c · 2m�/2m, c]) is negligible, that
is, bidding integer values is not a bad approximation.

The protocol is asynchronous, that is, no two events in this pro-
tocol need to be executed simultaneously. The number of cuts is
n − 1, which is the minimum.

A difference between the Dubins-Spanier moving-knife proto-
col and this protocol is that no player exits the protocol during
the execution. If a player exits, the set of players who execute
the secure auction protocol changes in each round. Changing the
set of players requires that the keys be re-generated for the secure
auction protocol, thus the protocol would be inefficient. There-
fore, the set of players is unchanged in this protocol. However, if
a player obtains a piece, the player has no incentive to execute the
secure auction protocol honestly any more. Thus, in the proposed
protocol, the pieces are actually assigned to the players at the end
of the protocol. During the execution of the secure auction pro-
tocol, each player presents a proof that the player executes the
protocol correctly. If a player misbehaves, it is detected by veri-
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Fig. 5 Social surplus of the two protocols.

fying the proof and the player does not obtain the piece marked
for the player. The assignment at the end of the protocol must also
be done without TTP. If this protocol is executed just once, there
is no way to prevent a player from misbehaving at the assignment
without TTP. If this protocol is executed multiple times or some
other protocol will be executed among the same players, there is
a record of the proof that a player misbehaved in this execution of
the protocol, and the player will be rejected from joining another
protocol or another execution of this protocol. If a player wants
to not be rejected, the player has an incentive to act correctly. A
simple way to prove the misbehave is that each player generates a
digital signature [10] to the document that records the assignment
result given by the protocol. Anyone can check the record by the
verification of the digital signatures. If some player misbehaves,
then anyone can know the fact by the player’s obtained cake and
the record with digital signatures.

Simple fairness cannot be achieved by the cryptographic
moving-knife protocol because each player bids integer values.
We define a cake-cutting protocol f that satisfies approximate
simple fairness as follows.

For any i, μi( fi(μ1, . . . , μn)) − 1/n is negligible if
μi( fi(μ1, . . . , μn)) < 1/n.
Theorem 1. The protocol in Fig. 4 is truthful for risk-averse play-

ers and approximate simple fair. The number of cuts is minimum.

Proof. These properties are achieved because the assignment is
an approximation of the one of the Dubins-Spanier moving-knife
protocol. �

5. Comparison of Social Surplus

The difference between Sgall-Woeginger protocol and crypto-
graphic moving-knife protocol is whether the cut point declara-
tions are static or dynamic. The difference affects the assignment
results. This section compares these two protocols in the view-
point of social surplus.

In the cryptographic moving-knife protocol, when Pi exits in
the first round with obtaining [x, 1], each of the remaining player

Pj obtains at least μ j([0, x])/(n − 1), which is greater than 1/n.
Since Pj did not win in the first round, μ j([x, 1]) < 1/n, thus
μ j([0, x]) > (n−1)/n. Therefore, from the second round, the cake
is more than (n−1)/n for the remaining players. The other rounds
have the same characteristic. If a player exits with a “small”(in
the other players’ view) portion of the cake, all of the remaining
players obtain more utility.

On the other hand, in the Sgall-Woeginger protocol, when a
player exits with a “small” portion of the cake, the extra part
of the cake is automatically assigned to the next round’s win-
ner. For example, Pi wins in the first round and obtains [0, x]
and exits, remaining player Pj thinks that the remaining cake is
(n − 1)/n + μ j([x, x j,1]), where μ j([0, x j,1]) = 1/n. In the next
round, the player Pk wins whose xk,2 is smallest among the re-
maining players, but the value of the extra part μk([x, xk,1]) might
not be large among the remaining players.

In the cryptographic moving-knife protocol, next round call is
done for all of the remaining cake, thus the extra part (such as
[x, x j,1]) is also considered by the remaining players. The next
round winner is satisfied with a relatively ‘small’ portion of the
cake because of the extra part, thus the next round remaining cake
can be larger than in the Sgall-Woeginger protocol. Thus, in the
view of the social surplus, the cryptographic moving-knife proto-
col is more desirable than the Sgall-Woeginger protocol.

We verified the above presumption through a computer simu-
lation. In the simulation, a random utility function is generated
for each player as follows. The interval [0, 1] is divided into k

random intervals [x j, x j+1]( j = 0, . . . , k, x0 = 0, xk+1 = 1). The
utility density function ui for each interval is randomly set be-
tween [0, 1]. ui(x) = ri for xi ≤ x ≤ xi+1, that is, the utility
is uniform for each interval. The utility is normalized such that
the total utility

∫ 1

0
ui(x)dx = 1. Uniform utility function is com-

monly used in the discussion of cake-cutting protocols [5], [16]
and any random function can be approximated by a set of uni-
form functions if the intervals are small. In this experiment we
set k = 100 but we obtain similar results for larger and smaller
k (k=10 and k=200). For the same set of players, static protocol
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(Sgall-Woeginger protocol) and dynamic protocol (cryptographic
moving-knife protocol and Endriss protocol with truthful players)
are executed. Note that the assignment result of Endriss protocol
is just the same as the one of cryptographic moving-knife proto-
col when every player is truthful.

For each number of players, 3,000 instances are executed. So-
cial surplus is the sum of utilities each player obtained. Figure 5
shows the average of social surplus of 3,000 time experiments
when n, the number of players, is changed from 2 to 10. Note
that when n = 2 the assignments are the same. The error bar is
standard deviation. According to the t-test there is a significant
difference between the mean social surplus by the two protocols
for each of n = 3 to 10 (P < 0.001).

Figure 5 shows the social surplus of cryptographic moving-
knife protocol is better than that of the Sgall-Woeginger protocol.
The difference increases when the number of players increases.
The simulation result matches with the above presumption.

6. Conclusion

This paper proposed a cryptographic cake-cutting protocol.
The protocol is discrete and truthful. It achieves approximate
simple fairness with the minimum number of cuts. Its social sur-
plus is better than the Sgall-Woeginger protocol.

Further study will include the use of cryptography in other
cake-cutting protocols.
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