
Journal of Information Processing Vol.23 No.3 252–257 (May 2015)

[DOI: 10.2197/ipsjjip.23.252]

Regular Paper

Anti-Slide

Kazuyuki Amano1,a) Shin-ichi Nakano1,b) Koichi Yamazaki1,c)

Received: July 31, 2014, Accepted: January 7, 2015

Abstract: The anti-slide packing is a packing of a number of three dimensional pieces of same size into a larger box
such that none of them can slide in any direction. In this paper, we consider the problem of how to find a sparsest
anti-slide packing. We give an IP formulation of this problem, and obtain the solutions for some small cases by using
an IP solver. In addition, we give the upper and lower bounds on the ratio of the volume occupied by the pieces when
the size of a box approaches infinity. For the case of piece size 2 × 2 × 1, we show that a sparsest anti-slide packing
occupies at least 28.8% and at most 66.7% of the total volume.

Keywords: anti-slide packing, integer programming, IP solver, puzzle

1. Introduction

Given a 4 × 4 × 4 box and a number of 2 × 2 × 1 pieces, con-
sider a problem of how to pack the pieces into the box in such
a way that none of them can slide in any direction. We assume
that there is no friction between the pieces and, of course, a piece
can never go out of the box. The object is to use the minimum
number of pieces starting from 16 pieces. This puzzle, named
anti-slide, was created by William Strijbos and won second place
at the 1994 Hikimi Puzzle Competition in Japan [1].

An optimal solution uses 12 pieces. There are three such solu-
tions [1]. One of them is shown in Figs. 1 and 2. The ratio of the
volume occupied by the pieces is 48/64 = 75%.

It is quite natural to ask whether this ratio, 75%, is the best
possible if we consider such an anti-slide packing in a larger box.
This problem, to find a sparsest anti-slide packing, is a main focus
of this paper.

One of the applications for a practical purpose is the follow-
ing: Imagine that you are a manufacturer of caramel. The size
of a caramel is 2 cm × 2 cm × 1 cm and you would like to sell
it packed in a box of a certain size, e.g., a box with each side of
length 4 cm. One cannot see the inside of the box. The prob-
lem is how to pack the caramels into the box. Assume that as the
manufacturer, you want to pack them as sparse as possible so the
contents do not rattle when the package is shaken!

Throughout the paper, we consider the integral and orthgonal

version of the problem. The integral means that we assume all the
coordinates of corner points of pieces are integers. The orthgonal
means that we assume that each piece is axis-aligned and that we
avoid sliding to any orthogonal direction, i.e., parallel to x, y or
z-axes. In what follows, we call such an anti-slide packing stable.
The density of a packing is defined to be the ratio of the volume

1 Department of Computer Science, Gunma University, Kiryu, Gunma
376–8515, Japan

a) amano@gunma-u.ac.jp
b) nakano@cs.gunma-u.ac.jp
c) koichi@cs.gunma-u.ac.jp

Fig. 1 A sparsest anti-slide packing of 2 × 2 × 1 pieces for 4 × 4 × 4 box.

Fig. 2 A packing of pieces in Fig. 1. Each number represents a piece of size
2 × 2 × 1.

occupied by the pieces in the packing. Under these restrictions,
the problem is to find a stable packing of pieces consisting of
2 × 2 × 1 unit cells into a large box with the lowest density. Hon-
estly speaking, at this moment, we do not know whether these
two restrictions affect the solution of the original problem.

In this paper, we first give an integer linear programming (IP,
in short) formulation of this problem for the case that the size of
a box is finite. Then by using an IP solver we obtain an optimal
solution for small boxes. Representing various puzzles by an IP
model is nowadays considered as one of the standard techniques
for analyzing and solving puzzles (see e.g., Refs. [3], [4], [5]).
These will be described in Section 2.

Then, in Section 3, we give the upper and lower bounds on
the density of a sparsest stable packing when a box is sufficiently
large. The upper bound is obtained by observing that a pack-
ing for a small box can be extended by repeating its pattern in
a certain way. It is notable that we obtain the lower bound also
by solving an IP problem. We construct a non-trivial IP problem
whose objective value gives a lower bound on the density of a

c© 2015 Information Processing Society of Japan 252



Journal of Information Processing Vol.23 No.3 252–257 (May 2015)

sparsest stable packing. It is shown that the density of a sparsest
stable packing of 2 × 2 × 1 pieces for a sufficiently large box is
between 28.8% and 66.7%. The results of some experiments for
another size of pieces are also presented.

The conclusion to the paper is given in Section 4.
All experiments in this paper are done on a standard PC (Intel

Xeon E3-1240v3@3.40 GHz with 16 GB RAM on Windows 7)
using the IP solver Gurobi 5.6.2 [2].

2. IP Formulation

For positive integers p and q with p < q, [p] denotes {1, . . . , p}
and [p, q] denotes {p, p + 1, . . . , q}.

In this section, we give an IP model to obtain a sparsest stable
packing in a box of size � ×m × n. By the integral restriction, we
view the box as the three dimensional array of cells of unit size.
Each cell in the box is identified by (i, j, k) ∈ [�] × [m] × [n] in
the natural way. Throughout the paper, we assume without loss
of generality that l ≥ m ≥ n.

We say a piece is placed at (i, j, k) if the closest cell of the piece
to the origin of the box is (i, j, k). Also we say a piece is placed
with direction d ∈ {0, 1, 2} each of which is depicted in Fig. 3. For
example, if a piece of size 2 × 2 × 1 is placed at (1, 3, 2) with di-
rection d = 1, then the cells (1, 3, 2), (1, 3, 3), (2, 3, 2) and (2, 3, 3)
are occupied by this piece.

We introduce two types of 0-1 variables

{p[i, j, k, d] | (i, j, k) ∈ [�] × [m] × [n], d ∈ {0, 1, 2}}
and

{o[i, j, k] | (i, j, k) ∈ [�] × [m] × [n]}.
The variable p[i, j, k, d] takes value 1 when there is a piece

placed at (i, j, k) with direction d. The variable o[i, j, k] takes
value 1 when the cell (i, j, k) is occupied. If we cannot place a
piece at (i, j, k) with direction d inside the box, then the variable
p[i, j, k, d] is fixed to 0.

We below give a set of linear constraints such that the solution
of the model gives a stable packing.

We should place at least one piece in the box. This is expressed
as
∑

(i, j,k),d

p[i, j, k, d] ≥ 1, (1)

where the summation ranges over all (i, j, k) ∈ [�]× [m]× [n] and
all directions d ∈ {0, 1, 2}. We refer to this as the non-emptiness

condition.
The variable o[i, j, k] is expressed as

Fig. 3 The placement of a piece with direction d = 0 (left), d = 1 (middle)
and d = 2 (right). The arrow indicates the cell closest to the origin
of the box.

o[i, j, k] =
∑

(i′ , j′ ,k′),d

p[i′, j′, k′, d] (2)

where the summation ranges over all (i′, j′, k′) and d such that the
cell (i, j, k) is occupied when a piece is placed at (i′, j′, k′) with
direction d. We refer to Eq. (2) as the non-intersecting condition.

If we place a piece at (i, j, k) with direction d, then this piece
occupies a number of cells. This can be written by a set of con-
straints

o[i′, j′, k′] ≥ p[i, j, k, d] (3)

for each cell (i′, j′, k′) occupied by this piece. We refer to this
as the occupancy condition. Note that the occupancy condition
is actually implied by the non-intersecting condition and hence
we can omit this from our IP model without changing the solu-
tion. We leave this here since we observed from experiments that
adding this to the model helps to reduce the computation time in
some (but less than a half) cases.

Finally, we describe the condition that every piece does not
slide. Consider a piece P placed at (i, j, k) with direction d. In
order to avoid sliding P, for each face F of P, at least one cell
touching F should be occupied by another piece unless F meets
the boundary of the box. See Fig. 4.

This can be described as follows: For each face F of a piece
placed at (i, j, k) with direction d, except for F meeting the bound-
ary of the box, we add the constraint

∑

(i′ , j′ ,k′)∈F′
o[i′, j′, k′] ≥ p[i, j, k, d], (4)

where F′ is the set of cells touching F. We refer to this as the
anti-slide condition.

It is easy to see that a feasible solution satisfying all the con-
ditions described in Eqs. (1) to (4) is corresponding to a stable
packing. The objective function is to minimize the number of
pieces in the box. This is expressed by
∑

(i, j,k),d

p[i, j, k, d], (5)

where the summation ranges over all (i, j, k) ∈ [�]× [m]× [n] and
all directions d ∈ {0, 1, 2}.

The smallest number of pieces used in a stable packing for
small boxes obtained by an IP solver is shown in Table 1. The
density of packings varies from 2/3 to 1. The minimum is at-
tained when (�,m, n) = (6, 6, 2) and (6, 6, 4). A sparsest packing
for the 6×6×2 box is shown in Fig. 5, and the one for the 6×6×4
box is consisting of two layers of this packing.

The computation time is dramatically increased as the volume
of a box is increased. See Fig. 6. It seems that the logarithm of

Fig. 4 A cell touching a face of the piece.

c© 2015 Information Processing Society of Japan 253



Journal of Information Processing Vol.23 No.3 252–257 (May 2015)

Table 1 Optimal solutions for small boxes. The symbol “∗” indicates the
computation exceeds the time limit, which is set to 6 hours (=
21,600 seconds).

n = 2
m\� 2 3 4 5 6 7 8 9

2 2 3 4 5 6 7 8 9
3 4 6 6 7 8 9 10
4 8 8 9 11 13 14
5 10 11 14 15 17
6 12 15 17 19
7 18 21 22
8 24 ∗
9 ∗

n = 3
m\� 3 4 5 6 7 8 9

3 6 8 10 12 14 15 17
4 10 12 14 16 18 20
5 15 18 21 24 27
6 21 24 27 ∗
7 28 ∗ ∗
8 ∗ ∗
9 ∗

n = 4
m\� 4 5 6 7 8 9

4 12 15 18 20 24 ∗
5 19 22 26 ∗ ∗
6 24 ∗ ∗ ∗
7 ∗ ∗ ∗
8 ∗ ∗
9 ∗

n = 5
m\� 5 6

5 24 ∗
6 ∗

Fig. 5 A sparsest packing of 2 × 2 × 1 pieces for 6 × 6 × 2 box with density
2/3.

Fig. 6 The computation time. The data for boxes of volume < 60 is omitted.

the time tends to be proportional to the volume of a box. Note that
we did not use the occupancy condition (i.e., Eq. (3)) to obtain the
data for Fig. 6.

For example, the computation for 4 × 4 × 4 box (which gives
a solution in Fig. 1) finishes in less than two seconds, whereas
it takes around one hour to finish the computation for 5 × 5 × 5
box; which gives a packing with 24 pieces shown in Fig. 7. The
density of this packing is 76.8%, which is denser than the one for

Fig. 7 A sparsest stable packing of 2× 2× 1 pieces for 5× 5× 5 box, which
uses 24 pieces. Getting a development plan of this packing is left to
the readers.

Fig. 8 Constructing a stable packing by joining two reflected copies of
packing for a smaller box.

4 × 4 × 4 box, and in addition this is harder to pack.

3. Limit of Volume

It is interesting to see the density of a sparsest stable packing
when the size of a box approaches infinity. Consider a packing
using a × b × c pieces with a ≥ b ≥ c. Let C(a, b, c; n) de-
note the number of occupied cells of a sparsest stable packing for
n × n × n box. We denote by V(a, b, c) and V(a, b, c) the upper
and lower limits of the density of a sparsest stable packing where
n approaches infinity, i.e.,

V(a, b, c) := lim sup
n→∞

C(a, b, c; n)
n3

,

V(a, b, c) := lim inf
n→∞

C(a, b, c; n)
n3

.

We believe that the limit limn→∞C(a, b, c; n)/n3 exists, although
we could not give a proof of the convergence.

3.1 Upper Bounds
Given any stable packing P of a box B, we can construct a sta-

ble packing of a larger box L which is twice as large as B, as
follows. Assume L consists of two boxes B1 and B2, and each of
which is identical to B. First pack B1 by P, then pack B2 by P′ so
that P′ is the mirror image of P with respect to the shared face of
B1 and B2. See Fig. 8.

This procedure can be repeated arbitrary times in any direc-
tion. Hence we can get a stable packing of a large box whose
density is same as the one for the “base” packing. This says
that any packing obtained in the previous section gives an up-
per bound on V(2, 2, 1). The sparsest packing obtained is for
6 × 6 × 2 box (see Fig. 5). It uses 12 pieces and so we have
V(2, 2, 1) ≤ (12 · 4)/72 = 2/3 ∼ 66.7%.

If one would like to seek more regular patterns, the following
definition is useful.

Definition 1 A stable packing of pieces in a finite box is
called extendable, if we repeat its placement any number of times
in any direction then we can obtain a stable packing for a box of

c© 2015 Information Processing Society of Japan 254



Journal of Information Processing Vol.23 No.3 252–257 (May 2015)

Fig. 9 A stable but not extendable packing of 2 × 2 × 1 pieces. If we place
two copies of this packing side by side, then the piece No. 7 in the
right box will slide to the left.

Table 2 Optimal solutions for small toruses. The symbol “∗” indicates the
computation has timed out (= 6 hours). The values are identical to
those in Table 1 except for (�,m, n) = (7, 4, 4), which is underlined.

n = 2
m\� 2 3 4 5 6 7 8 9

2 2 3 4 5 6 7 8 9
3 4 6 6 7 8 9 10
4 8 8 9 11 13 14
5 10 11 14 15 17
6 12 15 17 19
7 18 21 22
8 24 ∗
9 ∗

n = 3
m\� 3 4 5 6 7 8 9

3 6 8 10 12 14 15 17
4 10 12 14 16 18 20
5 15 18 21 24 27
6 21 24 27 30
7 28 ∗ ∗
8 ∗ ∗
9 ∗

n = 4
m\� 4 5 6 7 8 9

4 12 15 18 22 24 ∗
5 19 22 26 ∗ ∗
6 24 ∗ ∗ ∗
7 ∗ ∗ ∗
8 ∗ ∗
9 ∗

n = 5
m\� 5 6

5 24 ∗
6 ∗

a certain size.
It is an easy observation that an extendable stable packing can

be obtained by a similar IP model as described in Section 2 in
which we treat the box in a torus-like fashion. More precisely,
when we build the constraints we consider that the top face of
the box meets the bottom face of (an another copy of) the same
packing. Similarly, the left and front faces are considered to meet
the right and back faces, respectively. Note that there is a packing
that is stable but not extendable. See Fig. 9 for example.

The number of pieces used in a sparsest extendable packing for
small boxes given by an IP solver is shown in Table 2. Interest-
ingly, the values are identical to those without extendable condi-
tion (shown in Table 1) except for (�,m, n) = (7, 4, 4). The density
of packings varies from 2/3 to 1. As to the case without extend-
able condition, the minimum attains when (�,m, n) = (6, 6, 2) and
(6, 6, 4). The packing obtained for (�,m, n) = (6, 6, 2) is, again,
the one shown in Fig. 5. Note that the packing for 4 × 4 × 4 box
shown in Fig. 1 is also extendable.

We also conduct some experiments for another size of pieces
such as 4 × 2 × 1. The sparsest stable packing of 4 × 2 × 1 pieces
obtained so far has the density of 50%. See Fig. 10.

Fig. 10 An extendable packing of 4 × 2 × 1 pieces for 8 × 8 × 4 box with
density 1/2.

In summary, we have
Theorem 2 V(2, 2, 1) ≤ 2/3 and V(4, 2, 1) ≤ 1/2.

3.2 Lower Bounds
In this subsection, we consider the lower bound on the density

of a sparsest stable packing. For a while, we restrict our attention
to the case that the size of a piece is 2 × 2 × 1.

In order to obtain the lower bound, one possible approach is to
consider the linear programming (LP) relaxation of the IP model
shown in Section 2. We can obtain the LP relaxation of our
IP model by removing the boolean constraints for the variables
p[·, ·, ·, ·]’s and o[·, ·, ·]’s. Clearly, the optimum value of the ob-
jective function (i.e., Eq. (5)) of the LP relaxation problem gives
a lower bound on the number of pieces needed to construct a sta-
ble packing. Hence the multiplication of 4 and this bound must
be a lower bound on the number of occupied cells in any stable
packing.

Unfortunately, this approach does not seem to work. In fact,
we verify using Gurobi that the optimum value of an LP re-
laxation problem is 1 for every reasonable size of box (e.g.,
(�,m, n) = (20, 20, 20)). It seems that the non-emptiness con-
dition in Eq. (1) can be satisfied with equality. This means that
we should take an another approach.

A hole is a sub-box H consisting only of empty cells such that
each of the six faces of H does not meet the boundary of the box.

We first show that a large hole cannot exist.
Lemma 3 For every stable packing of 2 × 2 × 1 pieces for a

sufficiently large box, a hole of size 5 × 5 × 2 or larger cannot
exist.

Proof. We verify the lemma by giving an IP model such that
its feasibility corresponds to the existence of such a hole and then
verifying the infeasibility of the obtained model. We give no ob-
jective function in the IP model, because we are interested in only
the feasibility for the proof.

Given a stable packing for a sufficiently large box, suppose that
there is a hole of size 5 × 5 × 2 or larger. We can assume without
loss of generality that there is a hole H of size 5 × 5 × 2 such that
the upper 5× 5 face of H has a touching cell occupied by a piece.
We denote the set of all touching cells to the upper face of H,
which contains this occupied cell, by S . Note that H ∪ S forms a

c© 2015 Information Processing Society of Japan 255



Journal of Information Processing Vol.23 No.3 252–257 (May 2015)

sub-box of size 5× 5× 3 such that H is empty and S is not empty
(*).

We show below that in any packing with the hole H some piece
near H ∪ S cannot avoid sliding. To this end, we consider a sub-
box Z of size 9 × 9 × 7 consisting of H ∪ S together with all
surrounded cells of distance at most two to H ∪ S . We seek a
pseudo-stable packing in Z, which is intuitively a packing with
the assumption that every piece containing a cell outside of Z is
not sliding. More precisely, in a pseudo-stable packing, a piece
P will not slide to a certain direction even if there is no occupied
cells touching the face of P when one can place another piece Q

touching P so that Q contains a cell outside of Z. See Fig. 11.
It is easy to observe that, for any stable packing that contains

a sub-box H ∪ S satisfying (*), there is a pseudo-stable packing
for Z. Hence, in order to show the lemma, it is sufficient to verify
that there is no pseudo-stable packing for Z.

It is not hard to construct an IP model for checking the exis-
tence of such a packing by slightly modifying the model given
in the previous section. Let H = [3, 7] × [3, 7] × [3, 4], S =

[3, 7] × [3, 7] × {5} and Z = [9] × [9] × [7] as shown in Fig. 12.
We can use constraints describing the non-intersecting and the

occupancy conditions (in Eqs. (2) and (3)) without modification.
Then add the constraints
∑

(i, j,k)∈H
o[i, j, k] = 0,

which says H is empty, and
∑

(i, j,k)∈S
o[i, j, k] ≥ 1,

which says S is not empty. Note that without the constraint on S

a packing with no pieces will be a feasible solution to the model.
This is the reason why we introduce S .

We also introduce a new set of 0-1 variables r[i, j, k] for
(i, j, k) ∈ Z. The variable r[i, j, k] takes value 1 iff the cell (i, j, k)
is occupied by a piece, i.e., o[i, j, k] = 1, or there would be occu-
pied by a piece cut by the boundary of Z. Actually, in the case of
piece size 2 × 2 × 1, we add the following constraints: If at least

Fig. 11 A pseudo-stable packing. The piece Q touching the right face of the
piece P exceeds the boundary of Z. In such a case, we assume that
P does not slide to right even when Q is removed.

Fig. 12 The sub-boxes H, S and Z.

one of i, j and k is 1, or i = 9, j = 9 or k = 7, then

r[i, j, k] = 1,

and if otherwise

r[i, j, k] = o[i, j, k].

Finally, we place a similar constraint to the anti-slide condition
described in Eq. (4), in which o[i, j, k] is replaced by r[i, j, k].

By using an IP solver, it is easy to verify that the above model
is infeasible, which implies the conclusion of the lemma. �

Remark that the size 5×5×2 in Lemma 3 is optimal in a sense
that we cannot refute the existence of a smaller hole by an argu-
ment used in the proof of Lemma 3. This does not mean that a
smaller hole such as 5 × 4 × 2 can exist in a stable packing. In
fact, we do not know the size of a largest hole of a stable packing.
It is known that we can create a 4 × 2 × 2 hole by stacking two
copies of placements in Fig. 5 with upside-down which yields a
stable packing for 6 × 6 × 4 box.

We now turn to the lower bound on V(2, 2, 1). Lemma 3 im-
mediately implies V(2, 2, 1) ≥ 1/(5 × 5 × 2) = 0.02 since every
5 × 5 × 2 sub-box contains at least one occupied cell.

As expected, we can obtain a better lower bound by consider-
ing a larger sparse but non-hole sub-box.

We below give an IP model L such that the optimal value of
the objective function, denoted by Obj(L), gives a lower bound
on the number of occupied cells in any � × m × n sub-box of a
stable packing. Once this is shown, the lower bound

V(2, 2, 1) ≥ Obj(L)
�mn

is obvious.
The model L is almost same to that in the proof of Lemma 3.
Let H be a sub-box of size � × m × n not smaller than

5 × 5 × 2. We put H = [3, � + 2] × [3,m + 2] × [3, n + 2] and
Z = [� + 4] × [m + 4] × [n + 4], and seek a pseudo-stable packing
for Z.

As before, we use three types of variables : (i) p[i, j, k, d]
which indicates if a piece is placed at (i, j, k) with direction d,
(ii) o[i, j, k] which indicates if the cell (i, j, k) is occupied, and
(iii) r[i, j, k] which indicates if the cell (i, j, k) is occupied or it
can be occupied by a piece cut by the boundary of Z.

The objective function is to minimize
∑

(i, j,k)∈H
o[i, j, k],

which is the number of occupied cells in H. Note that in the ob-
jective function, the variables o[·, ·, ·] are considered rather than
the variables p[·, ·, ·, ·] (cf. IP formulation given in Section 2).

By Lemma 3, we can assume that H is not empty, i.e.,
∑

(i, j,k)∈H
o[i, j, k] ≥ 1.

We use constraints describing the non-intersecting and the occu-
pancy conditions (i.e., Eqs. (2) and (3)) without modification. We
put

o[i, j, k] =
∑

(i′ , j′ ,k′),d

p[i′, j′, k′, d] (∀(i, j, k) ∈ Z),

c© 2015 Information Processing Society of Japan 256



Journal of Information Processing Vol.23 No.3 252–257 (May 2015)

where the summation ranges over all (i′, j′, k′) and d such that the
cell (i, j, k) is occupied when a piece is placed at (i′, j′, k′) with
direction d. In addition, for every possible (i, j, k) and d, we add
a set of constraints

o[i′, j′, k′] ≥ p[i, j, k, d],

for each cell (i′, j′, k′) occupied by the piece placed at (i, j, k) with
direction d.

As to the proof of Lemma 3, we seek a pseudo-stable packing
and introduce r-variables satisfying

r[i, j, k] =

⎧⎪⎪⎨⎪⎪⎩
o[i, j, k] (i, j, k)∈ [2, �+3]×[2,m+3]×[2, n+3],
1 otherwise.

The final constraints express the anti-slide condition, which is
similar to Eq. (4). For each possible (i, j, k) and d, and for each
face F of the piece placed at (i, j, k) with direction d, we add a set
of constraints

∑

(i′ , j′ ,k′)∈F′
r[i′, j′, k′] ≥ p[i, j, k, d],

where F′ is the set of cells touching F. This finishes the de-
scription of L whose optimal value gives a minimum number of
occupied cells in H by a pseudo-stable packing for Z.

It would be natural to expect that a larger lower bound can be
obtained by considering a larger sub-box. In fact, the optimal
values of the model L for (�,m, n) = (5, 5, 2), (5, 5, 3) and (5, 5, 4)
are 1, 7 and 24, respectively. The lower bounds on V(2, 2, 1) ob-
tained by them are 1/(5 × 5 × 2) = 0.02, 7/(5 × 5 × 3) > 0.093
and 24/(5 × 5 × 4) = 0.24.

However, solving L is quite time consuming. So far, we could
solve L only up to (�,m, n) = (5, 5, 5). The optimal value for this
case is 36, which implies the following theorem.

Theorem 4 For every stable packing of 2 × 2 × 1 pieces for
every sufficiently large box, every 5 × 5 × 5 sub-box contains at
least 36 occupied cells. Hence V(2, 2, 1) ≥ 36/53 = 0.288. �

There still is a large gap between the upper and lower bounds
on the density of a sparsest packing that we have obtained.

4. Concluding Remarks

In this paper, we give an IP formulation of the problem to find
an anti-slide (stable) packing and give the upper and lower bounds
on the density of a sparsest stable packing.

There are many interesting problems to be pursued in future
studies. Apparently, the most interested one is to determine the
sparsest packing of various piece sizes. We conjecture that the
current best solution (given by the repeated use of the pattern
shown in Fig. 5) is in fact the sparsest packing of 2× 2× 1 pieces.
If this is true, how can it be proven? We list below some of other
problems.
• Does the limit limn→∞C(a, b, c; n)/n3 exist?
• What is the size of a largest possible hole in a stable packing?
• Repeated use of a small pattern appears to always give the

optimal packing. Can we show this formally?
• Is it true that the integral and orthogonal restrictions do not

affect the density of the sparsest stable packing?
Acknowledgments The authors would like to thank anony-

mous referees for their helpful comments. This research was

partially supported by KAKENHI Grant Number 24500006,
24500007, 24106006 and 26330004.

References

[1] Anti-Slide, available from 〈http://www.johnrausch.com/Puzzleworld/
puz/anti slide.htm〉 (retrieved July, 2014).

[2] Gurobi Optimization Inc. Gurobi Optimizer, available from
〈http://www.gurobi.com〉.

[3] Barlett, A., Chartier, T.P., Langville, A.N. and Rankin, T.D.: Integer
Programming Model for the Sudoku Problem, J. Online Mathematics
and its Applications, Vol.8, Article ID 1798 (2008).

[4] Demaine, E.D., Okamoto, Y., Uehara, R. and Uno, Y.: Computa-
tional Complexity and an Integer Programming Model of Shakashaka,
IEICE Trans. Fundamentals of Electronics, Communications and
Computer Science, Vol.E97-A, pp.1213–1219 (2014).

[5] Meuffels, W.J.M. and Hertog, D. den: Puzzle–Solving the Battleship
Puzzle as an Integer Programming Problem, INFORMS Trans. Educa-
tion, Vol.10, No.3, pp.156–162 (2010).

Kazuyuki Amano received his M.E. and
D.E. degrees in information sciences from
Tohoku University in 1993 and 1996, re-
spectively. Presently, he is a professor in
Department of Computer Science, Gunma
University, Kiryu, Japan. His research
interests include the theory of computa-
tion and combinatorics. He enjoys writ-

ing computer programs to solve puzzles and problems of discrete
mathematics.

Shin-ichi Nakano received his M.E. and
D.E. degrees in engineering from Tohoku
University in 1987 and 1992, respectively.
Presently, he is a professor in Department
of Computer Science, Gunma University,
Kiryu, Japan. His research interests in-
clude graph algorithms and combinatorial
algorithms.

Koichi Yamazaki received his M.E. and
Ph.D. degrees in 1989 and 1995, respec-
tively from Tokyo Denki University. He is
a professor in Department of Electronics
and Informatics, Gunma University. His
research focuses on discrete mathematics
(graph theory, graph/approximation algo-
rithms, combinatorial optimization, etc.).

c© 2015 Information Processing Society of Japan 257


