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Abstract: When can t terminal pairs in an m × n grid be connected by t vertex-disjoint paths that cover all vertices
of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-
hardness proofs: Lynch’s 1975 proof without the “cover all vertices” constraint, and Kotsuma and Takenaga’s 2010
proof when the paths are restricted to have the fewest possible corners within their homotopy class. The latter restric-
tion is a common form of the famous Nikoli puzzle Numberlink. Our problem is another common form of Numberlink,
sometimes called Zig-Zag Numberlink and popularized by the smartphone app Flow Free.
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1. Introduction

Nikoli is a famous Japanese publisher of pencil-and-paper puz-
zles, best known world-wide for its role in popularizing Sudoku
puzzles [27]. Nikoli in fact publishes an entire range of such
puzzles, following rules of their own and others’ inventions; see
Ref. [23]. The meta-puzzle for us theoretical computer scientists
is to study the computational complexity of puzzles, character-
izing them as polynomially solvable, NP-complete, or harder [7].
In the case of Nikoli puzzles, nearly every family has been proved
NP-complete: Country Road [10], Corral [5], Fillomino [29],
Hiroimono [1], Hashiwokakero [2], Heyawake [9], Kakuro [24],
Kurodoko [15], Light Up [21], Masyu [6], Nurikabe ([8], [20],
[22]), Shakashaka [3], Slither Link ([28], [29]), Sudoku ([14],
[29], [30]), Yajilin [10], and Yosenabe [12].

In this paper, we study the computational complexity of one
Nikoli family of puzzles called Numberlink also known as Num-
ber Link, Nanbarinku, Arukone, and Flow. A Numberlink puzzle
consists of an m × n grid of unit squares, some of which contain
numbers, which appear in pairs. The goal of the player is to con-
nect corresponding pairs of numbers by paths that turn only at the
center of grid squares, do not cross any other numbered squares,
and do not cross any other paths. Furthermore, in most versions
of the puzzle, the paths should together visit every grid square. In
many puzzles, this constraint is in fact forced by any otherwise
valid solution*1. Figure 1 shows a simple example.
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Fig. 1 Sample 5 × 5 instance with 4 terminal pairs.

Although popularized and named by Nikoli, the history of
Numberlink-style puzzles is much older [13], [26]. The earliest
known reference is an 1897 column by Sam Loyd [17] (most fa-
mous for popularizing the 15 Puzzle in 1891 [25]). Figure 2 re-
produces his puzzle, called “The Puzzled Neighbors.” While the
puzzle statement does not require visiting every square, his so-
lution visits most of the squares, and a small modification to his
solution visits all of the squares. The same puzzle later appeared
in Loyd’s famous puzzle book [18]. Another early Numberlink-
style puzzle is by Dudeney in his famous 1931 puzzle book [4].
His puzzle is 8 × 8 with five terminal pairs, and while the puz-
zle statement does not require visiting every square, his solution
does.

Some Numberlink puzzles which we call Classic Numberlink

(following the Numberlink Android app) place an additional re-
striction on paths. Informally stated, restricted paths should not
have “unnecessary” bends. Although we have not seen a formal
definition, based on several examples, we interpret this restriction
to mean that each path uses the fewest possible turns among all
paths within its homotopy class (i.e., according to the other ob-
stacles and paths it loops around). This version of Numberlink

*1 This coverage constraint is absent from Nikoli’s Numberlink website
(http://www.nikoli.co.jp/en/puzzles/numberlink.html), but this may sim-
ply be an omission.
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Fig. 2 Sam Loyd’s “The Puzzled Neighbors” from 1897 [17]. Each house should be connected by a
path to the gate it directly faces, by noncrossing paths. Scans from http://bklyn.newspapers.com/
image/50475607/ and http://bklyn.newspapers.com/image/50475838/.

has already been shown NP-complete [16].
In this paper, we analyze the unrestricted version, which we

call Zig-Zag Numberlink (again following the Numberlink An-
droid app). Informally, this style of puzzle allows links to zig-zag
arbitrarily to fill the grid. Personally, we find this formulation
of the problem more natural, given its connection to both vertex-
disjoint paths and Hamiltonicity in graphs. When we only al-
low for one pair of terminals this problem reduces to finding a
Hamiltonian path in a grid given fixed start and end points and
which is known to be solvable in polynomial time [11]. Unfortu-
nately, for the case with several terminal pairs, as shown in Sec-
tion 3, the hardness proof of Ref. [16] does not (immediately)
apply to Zig-Zag Numberlink. Nonetheless, we construct a very
different and intricate NP-hardness proof, inspired by an early
NP-hardness proof from 1975 for vertex-disjoint paths [19].

2. Definitions

Next we formally define the puzzle Zig-Zag Numberlink.
Definition 1. A board Bm,n is a rectangular grid of mn equal sized

squares arranged into m rows and n columns. We will identify the

squares with an ordered pair consisting of their column and row

position. The top left corner is defined to be position (1, 1).
Definition 2. A terminal pair is a pair of distinct squares. An

instance of Zig-Zag Numberlink is a tuple F = (Bm,n,T ) where

Bm,n is a m × n board and T = {(T1,T ′1), . . . , (Tt, T ′t )} a set of

terminal pairs. All terminals are distinct, that is, any square of

the board may contain at most one terminal.

Definition 3. Two squares (x, y) and (p, q) are adjacent if either

x = p and |y − q| = 1, or y = q and |x − p| = 1. A sequence of

Fig. 3 Squares colored to illustrate parity.

squares P = s1, . . . , sk is a path of length k if si is adjacent to si+1

for i ∈ [1, k − 1] and si � s j for all i � j. Two squares are linked

in P if they appear successively in P.

Definition 4. A solution to a Zig-Zag Numberlink instance F =
(B,T ) is a set of paths S = {P1, . . . , Pt}, where Pi = si,1, . . . , si,ki ,

so that:

(i) Every terminal pair (Ti,T ′i ) is connected by path Pi, i.e.,

si,1 = Ti and si,ki = T ′i .

(ii) Each square in B is contained in exactly one path in S.

We call an instance of Zig-Zag Numberlink solvable if there
exists a solution and otherwise call it unsolvable. We say that
two squares are linked by a solution S if they are linked in some
path P ∈ S. In the case of t = 1, we will abuse the above notation
and identify the solution by a single path.

Finally, we will talk about parity. To illustrate this concept, we
will color the squares alternating black and white as on a checker-
board (cf. Fig. 3) and assume that (1, 1) is colored black. The im-
portant aspect of parity is that any path of a solution necessarily
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alternates between white and black squares. In the construction
of our gadgets, parity helps to ensure that a combination of gad-
gets still allows a solution. As it will turn out, parity along with
terminal position is crucial to determine whether instances with
only one terminal pair are solvable.

3. NP-hardness

Our NP-hardness reduction for Zig-Zag Numberlink mimics
the structure of a very early NP-hardness proof for vertex-disjoint
paths among k terminal pairs in grid graphs by Lynch [19]. The
important differences are that Lynch’s reduction (1) allows ob-
stacles (untraversable squares), and (2) does not require every
traversable square to be covered by some path. The first issue
is relatively easy to deal with because terminals serve as obsta-
cles for all other paths. For the second issue, we replace all of
Lynch’s gadgets with more complicated gadgets to make it possi-
ble to cover every square of the grid in all cases.
Theorem 1. Zig-Zag Numberlink is NP-complete for k terminal

pairs in an n × n square.

Proof. Zig-Zag Numberlink is in NP because the solution paths
can be expressed in O(n2 log k) space and checked in the same
amount of time.

To prove NP-hardness, we reduce from 3SAT. Figure 4 il-
lustrates the high-level picture. We construct one terminal pair
(v′i , v

′′
i ) for each variable vi, and two candidate paths Vi,−,Vi,+

for connecting this pair, Vi,− representing the false setting and
Vi,+ representing the true setting. We construct one terminal
pair (c′j, c

′′
j ) for each clause c j, and three candidate paths C j,1,

C j,2, C j,3 for connecting this pair, one per literal in the clause
c j = c j,1 ∨ c j,2 ∨ c j,3. Say for example that for each clause lit-
eral c j,k = ±vi, the corresponding literal path C j,k intersects just
the variable path Vi,∓ corresponding to the setting that does not

satisfy the clause literal. Thus, setting the variable in this way
blocks that clause path, and a clause must have one of its paths
not blocked in this way (corresponding to satisfaction). It follows
that any noncrossing choice of paths corresponds to a satisfying

Fig. 4 High-level sketch of NP-hardness proof: two paths per variable, three
paths per clause, and crossover gadgets (faded underpasses). Circles
indicate terminals; squares indicate actual crossings. Whitespace in-
dicates obstacles where paths cannot go.

assignment of the 3SAT instance.
The reality is more complicated because in a square grid all

variable paths will intersect all clause paths. However, we can
simulate the nonintersection of two paths using the crossover

gadget shown in Fig. 5. The idea is to split the two variable paths
Vi,−, Vi,+ into two classes of variable paths, top and bottom, with
nonintersection of the paths forcing alternation between top and
bottom classes. A variable starting with a top path corresponds to
a false setting (blue in the figure), and starting with a bottom path
corresponds to a true setting (red in the figure). The crossover
gadget must work when the vertical clause path is either present
(chosen to satisfy the clause) or absent (having chosen a different
of the three paths), resulting in four total cases.

We simulate obstacles between paths using many pairs of ter-
minals at unit distance (black in the figure). These obstacle pairs

can be connected by a unit-length edge (as drawn in black) or
by a longer path (drawn lighter, as a replacement for the black
path, though the black path is still drawn). Such longer paths can
only prevent choices for the variable/clause paths, so any non-
intersecting set of paths still solves the 3SAT instance. Further-
more, by connecting the obstacle pairs by the lighter longer paths
illustrated in the figure, in each of the four cases, we can turn
any solution to the 3SAT instance into a valid solution to Zig-Zag
Numberlink (which in particular visits every square)*2.

This crossover gadget necessitates nontrivial crossing gadgets,
because the two variable paths in the high-level picture (Fig. 4)
have been replaced by alternation between two classes of paths.
Figure 6 respectively illustrates two gadgets for crossing (pre-
venting) the false and true settings. Each of these gadgets adds
just a single obstacle pair to the crossover gadget of Fig. 5. These
obstacles suffice to block the clause path in the prevented variable
setting, but are consistent with the solutions in Fig. 5 both with
and without the clause path, so they still allow the other variable
setting.

Finally, we can form the two-way branches on the left side v′i
and the right side v′′i , and the three-way branches at the top side
c′j and the bottom side c′′j ), using the split gadget in Fig. 7. This
gadget allows the incoming path on the top to exit at either of the
two bottom ports, while still covering all squares, provided the
exit ports both have the same parity (color on the checkerboard).
A key property of the crossover and crossing gadgets (and the rea-
son for the strange fifth column) is that they have even numbers
of rows and columns. As a result, when we build a grid of these
gadgets, the top entrance ports all have the same parity, as do all
the left entrance ports. Therefore the split gadgets can correctly
connect to the ports on the left, right, top, and bottom sides of the
grid. �

Figure 8 illustrates why the NP-hardness proof for the re-
stricted game [16] does not immediately apply to Zig-Zag Num-
berlink. The illustrated gadget, from Fig. 7 of Ref. [16], con-
sists of a 1-in-4 SAT clause connected to four wires. Figure 8 (a)

*2 Our careful and deliberate placement and orientation of obstacle pairs to
enable such “filling” in all cases is the main novelty to our proof. Lynch’s
crossover gadget has the same nonobstructed paths as our Fig. 5 a, but as
his proof allowed obstacles it lacked the complexity of obstacle pairs and
the four cases.
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Fig. 5 Crossover gadget.
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Fig. 6 Crossing gadget, with paths drawn only between obstacle pairs. The
highlight indicates the unique added obstacle pair.

Fig. 7 Split gadget.

shows the intended solution, which has one wire in the opposite
state from the three other wires. But Fig. 8 (b) shows another pos-
sible solution in Zig-Zag Numberlink where the wires are all in
the same state (or two in each state, depending on the definition of
state). Thus the reduction does not immediately apply to the zig-
zag case. An interesting question is whether the proof (which is
rather different from ours) can be adapted to Zig-ZagNumberlink

Fig. 8 The 1-in-4 SAT clause from [16] does not immediately work for
Zig-Zag Numberlink. Shaded regions represent obstacles (made by
obstacle pairs).

by modifying the gadgets from Ref. [16].

4. Open Questions

There is still more fun to be had out of this game. Is there a
polynomial solution to the problem for more than one pair of ter-
minals? Our reduction from 3SAT creates instances with a huge
number of terminals. Therefore we cannot exclude the possibil-
ity that for any constant number of terminals, the problem can be
solved in polynomial time. If so, it would be especially interest-
ing to know whether the problem is fixed parameter tractable, i.e.,
solvable in f (k) · nO(1) time for some function f . More sophisti-
cated tools such as multiterminal flow algorithms might help an-
swer these questions.
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