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Abstract: Ghost is a popular word game played by two or more players. Players take turns adding a letter to the end
of a growing word fragment, trying not to be the first to complete a valid word. We show that the game, when played on
a regular language, is PSPACE-hard, and extend the result to four variants of the game. In addition, we take advantage
of a quirk of the German language — that German words can be concatenated together to form longer words — to give
a fun extension of our proof of PSPACE-hardness to subsets of the German language.
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1. Introduction

Ghost is a written or spoken word game, often played with no
materials or preparation. As with many spoken word games, it
is commonly played on long road trips, and its difficulty (and
entertainment value) relies heavily on a player’s skill and vocab-
ulary. The game is quite popular, having been referenced in sev-
eral American television shows, such as a 1962 episode of Car

54, Where Are You? and a 2003 episode of Buffy The Vampire

Slayer [13]. It has also appeared in the January 10, 1974 Doones-

bury comic strip [12], Chapter 7 of The Long Walk by Richard
Bachman (a pseudonym for Stephen King, 1979) [4], and The

Deer Park by Norman Mailer (1955) [6].
The dictionary is generally assumed to be English, and with a

perfect knowledge of vocabulary the game is solved: the game
tree of all words in the dictionary can be searched for a winning
strategy in polynomial time with a minimax algorithm. Randall
Munroe of xkcd used this algorithm to find winning strategies for
Ghost played with the Ubuntu dictionary [3], [7]. More generally,
the problem is uninteresting from an algorithmic standpoint when
the input size is equal to the dictionary size.

This motivates our analysis of Ghost with dictionaries that can
be expressed compactly. In particular, we focus on Ghost played
over regular languages, as the equivalence with regular expres-
sions allows such languages to be expressed with a small input
size.

We analyze Ghost as well as four popular variants—
Superghost, Superduperghost, Xghost, and Spook—as defined in
Section 2. In Section 3, we show that the classic version of the
game played on regular languages is PSPACE-hard and is in EX-
PSPACE. In Section 4, we extend the PSPACE-hardness and EX-
PSPACE result to Superghost, Superduperghost, and Xghost. We
then use a different approach to show that Spook is PSPACE-hard,
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though it remains open what complexity class Spook is in. In Sec-
tion 5, we consider the game played over subsets of the German
language and show that it is PSPACE-hard. We abuse the fact
that, in German, valid words are often formed by merely con-
catenating other words together, a feature that drastically impacts
play of games such as Ghost. We conclude with open problems
in Section 6.

2. Game Definitions

2.1 Classic Game Rules
The classic game is played with two or more players in a round

format. A round begins with one player naming a letter of the
alphabet to start a word. Gameplay continues with players taking
turns adding letters to the end of the growing fragment, under the
condition that at all times the fragment must be the valid prefix of
some word.

If a player suspects that the most recent move violates this con-
dition, s/he can challenge the player who played last to name the
full word. If the challenged player can name the word, s/he wins
and the challenger loses the round. Otherwise, the challenged
player loses the round. If no challenges occur, play continues un-
til one player has spelled out a valid word, at which point that
player loses the round. When a player loses a round, s/he picks
up a letter of the word G-H-O-S-T, and a player loses the game
after picking up five letters (as in the basketball game of H-O-R-
S-E). The last player to be eliminated is the winner. Often, words
with four letters or fewer are ignored.

2.2 Our Assumptions
We restrict our analysis of the game to the case where the dic-

tionary is a regular language. As mentioned earlier, regular ex-
pressions allow us to consider large (possibly infinite) languages
that can be specified by a short input.

Given this restriction, we can assume that each player has per-
fect knowledge of the game dictionary; given the regular expres-
sion, a player can check efficiently whether a string is a valid
word or the prefix of a valid word. This eliminates the need for
challenges in our analysis.
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We will focus our attention on the two-player version of the
game, and for simplicity we will assume that only one round of
the game is played.

2.3 Variants
We consider all variants of Ghost mentioned on

Wikipedia [13]. For clarity, we will sometimes refer to the
game played under the original set of rules as classic Ghost.
• Superghost: This is an extension of classic Ghost where

players now have the ability to add letters to the front of the
word fragment [2], [10].

• Superduperghost: This is an extension of Superghost
where players may now reverse the word fragment before
playing a letter [1].

• Xghost: This is an extension of classic Ghost where players
are now allowed to add letters before or after any other letter
in the word fragment [2].

• Spook: This variant works like classic Ghost, but the order
of the letters in the word fragment is independent of the or-
der in which letters were played. Thus, players add letters
to a set of letters, trying to avoid forming a set such that a
permutation of those letters would form a valid word. Just
as a word fragment in Ghost must be a valid prefix of some
word, the sets in Spook must be a valid subset of the letters
of some word.

3. Hardness of Classic Ghost

In this section, we analyze Ghost played over a regular lan-
guage. Formally, the problem can be defined as follows:
Instance: A regular expression R.
Question: Players 1 and 2 take turns playing Ghost with the

language generated by R. If player 1 starts, does s/he have a
winning strategy?

Theorem 1. The problem of determining whether player 1 has

a winning strategy in Ghost played over regular languages is in

EXPSPACE.

Proof. First, we argue that we only need to analyze determinis-
tic winning strategies. These are strategies that, given any move
by the opposing player, specify exactly one move. Suppose we
have a winning nondeterministic strategy. Every time the strat-
egy specifies multiple winning moves (moves that are part of a
winning strategy), we can simply play the character that comes
first in the lexicographic order of the choices. This new strategy
is deterministic and is as good as the nondeterministic one.

Let the regular expression have length n. We can build a de-
terministic finite automata (DFA) with 2p(n) states that recognizes
the corresponding language, where p(n) is a polynomial in n [9].
We claim that a player playing with a winning strategy makes at
most 2p(n) moves.

To see why, suppose the winning strategy takes more than 2p(n)

moves. Then in playing the game, there exists a state of the DFA
that is traversed twice (by the pigeonhole principle), and thus the
gameplay goes through at least one loop. Suppose the loop length
is even, and we are at the stage where the players have gone
through the loop once. The losing player (the one without the
winning strategy) can then play the same moves that caused the

players to go through the loop the first time, and since the win-
ning player’s strategy is deterministic, they will in fact go through
the loop. The losing player can do this infinitely many times to
avoid losing, which is a contradiction.

Now suppose the loop length is odd. Once the loop is traversed
once, the positions of the players are switched. In particular, the
losing player is now at the exact spot the winning player was in
before they went through the loop. By assumption, there was
a winning strategy at that spot, but this means the losing player
now has a winning strategy, which is a contradiction. This means
that if there exists a winning strategy, every game played using
this winning strategy takes at most exponentially many turns. So
the specification of the winning strategy is at most exponentially
long.

This bound on the winning strategy implies that we can
solve the game by expressing it as an exponentially-long fully-
quantified boolean formula where variables represent choices for
the two players. The formula simply needs to check whether pairs
of letters are said correctly and whether or not player 2 was the
first to complete a word [9]. If the fully-quantified boolean for-
mula is true, then it specifies a winning strategy for player 1. If
the formula is not true, then player 1 does not have an at most ex-
ponentially long winning strategy, and thus has no winning strat-
egy. �
Theorem 2. Determining whether player 1 has a winning strat-

egy when Ghost is played over regular languages is PSPACE-

hard.

Proof overview. The proof is by a reduction from Generalized
Geography, a problem known to be PSPACE-hard [9]. Recall that
the problem is defined as follows:
Instance: A directed graph G with a token placed on an initial

node s.
Question: Players 1 and 2 take turns moving the token from the

current node to an adjacent node along directed edges in G,
where player 1 starts with the token at s. A player loses when
s/he is unable to move the token to a node that did not have
the token previously. Does player 1 have a winning strategy?

We will use the graph G to build a nondeterministic finite au-
tomaton (NFA) that will give a regular expression to play Ghost
with. This construction will give an equivalence between games
played in Generalized Geography and Ghost, so a winning strat-
egy in one will correspond to a winning strategy in the other.
Proof. We give each edge in G a distinct, arbitrary label. We
then build the NFA by “redrawing” the graph G, with its labels,
as a diagram for the NFA. This means that vertices of G are
drawn as states of the NFA, and the directed edges become NFA
transitions which inherit labels from the corresponding edges in
G.

We then extend the construction: for each node x ∈ G, we make
another copy of G called Gx, and make it part of the NFA. For any
directed edge (x, a) pointing away from x with label l, we draw a
transition from x to a′ in Gx with label l, where the prime denotes
a corresponding vertex in Gx. In addition, we make x′ ∈ Gx the
only accept state among the states in Gx. If x ∈ G has no outgoing
edges, the corresponding x state in the NFA will have a transition,
labeled with all possible labels, to an accept state y.
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An example of the construction is given in Fig. 1 and Fig. 2.
In Fig. 2, the solid transitions correspond to the transitions from
G and the dashed transitions correspond to the transitions to the
copies of G.

From this NFA, we can generate an equivalent regular expres-
sion in polynomial time [9].

We claim that a winning strategy for Generalized Geography
corresponds to a winning strategy for Ghost, played on the lan-
guage generated by the corresponding NFA. Each move a player
makes in Generalized Geography corresponds to reading a label
in the NFA. Once a player reaches a node in Generalized Ge-
ography that has no usable outgoing edges (and has thus won),
the opposing player in the corresponding Ghost game is forced to
move to an accept state in the following move, which spells out a
word and loses the game for that player.

For the other direction of the equivalence, a winning strategy
in Ghost (played on the language of the NFA that corresponds to
the instance of Generalized Geography) gives a winning strategy
in Generalized Geography. The winning strategy in Ghost played
on the NFA is to follow valid edges and to avoid ever getting to
the accept state of some Gx, which corresponds to going back to
the same vertex in Generalized Geography. �

Fig. 1 Instance of Generalized Geography.

Fig. 2 Corresponding NFA.

4. Variants

Membership in EXPSPACE as well as PSPACE-hardness of
Ghost played on regular languages extends to Superghost, Su-
perduperghost, and Xghost, played on regular languages. Recall
that these variants merely extend the rules of the classic game:
Superghost allows players to also add letters to the beginning
of the string, Superduperghost extends Superghost so that play-
ers can reverse a word before playing a letter, and Xghost allows
players to play a letter anywhere in the word fragment (but does
not allow word reversal). We show that for each of these three
variants, membership in EXPSPACE follows easily from the fact
that Ghost played on regular languages is in EXPSPACE. We
then demonstrate ways to simulate classic Ghost played on a reg-
ular language within each of these variants, from which PSPACE-
hardness will follow.

Recall that in Spook, players add letters to a set of letters, try-
ing to avoid forming a set such that there is a permutation of those
letters that forms a valid word. We will show PSPACE-hardness
by reduction from Generalized Geography. However, we are un-
able to show membership in EXPSPACE for Spook.
Corollary 1. The problem of determining whether player 1 has

a winning strategy in Superghost, Superduperghost, and Xghost

played on regular languages is in EXPSPACE.

Proof. We note that we can still reduce the problem to the satis-
fiability of a fully-quantified boolean formula. We use the same
formula as in the proof of Theorem 1, except that now at each
player’s turn, there are additional variables specifying which po-
sition the letter was played at, and/or whether the word fragment
was reversed, depending on the variant under consideration. The
number of turns is exponential for a similar reason that the num-
ber of turns was exponential in classic Ghost. The additional ca-
pabilities in the variants add shortcut edges in the DFA, and going
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through a loop in the DFA is never in a player’s winning strat-
egy. There is a polynomially-sized multiplicative overhead for the
formula length, which means the formula is still exponentially-
sized. �
Corollary 2. Determining whether player 1 has a winning

strategy when Superghost is played over regular languages is

PSPACE-hard.

Proof. We simulate playing Ghost over a given regular language
with corresponding regular expression R. Given R, we generate a
regular expression R1 to play Superghost on.

We form R1 by taking R and prepending the new symbol #
twice at the front. This way, no words have # in the middle, so a
player cannot place a letter at the begining of the word. Because
we have added two symbols at the begining, we have maintained
the parity of the game. Note that this forces the # symbol to be
played twice at the start of every game.

Playing Superghost on R1 simulates playing Ghost on R, so the
proof follows. �
Corollary 3. Determining whether player 1 has a winning strat-

egy when Superduperghost is played over regular languages is

PSPACE-hard.

Proof. The construction here is identical to the one in the proof
of Corollary 2; if we ever reverse a string, then the two # symbols
will be at the end and we will not have a valid prefix.

This effectively blocks the ability to reverse a word, so playing
Superduperghost on R1 simulates playing Ghost on R. �
Corollary 4. Determining whether player 1 has a winning strat-

egy when Xghost is played over regular languages is PSPACE-

hard.

Proof. The technique follows the strategy used in the proof of
Corollary 2. Given a regular expression R, we generate a regular
expression R2 to play Xghost on.

We introduce three new symbols, @, %, and &. To construct
R2, we replace each letter a in R with the three concatenated let-
ters %a&. In addition, prepend @ to the beginning of the expres-
sion. For example, if R = a(b∗ ∪ cd), then

R2 = @(%a&)
(
(%b&)∗ ∪ (%c&)(%d&)

)

The @ guarantees that we never prepend anything to the be-
ginning of the word and the % and & guarantee that there are
never any letters added in the middle. Also, because each letter is
replaced by three letters, we maintain the parity of the game.

In summary, this construction replaces each letter of R with
three letters in R2 in a way that forces players to obey the rules of
classic Ghost while playing Xghost. �

Our hardness result for Spook uses a wholly different tech-
nique. The fact that order does not matter in Spook offers players
significant freedom, which makes it difficult to simulate a classic
game of Ghost over a regular language. We note that the follow-
ing proof, with slight modifications, will work to show PSPACE-
hardness for Superghost, Superduperghost, and Xghost. How-
ever, the previous results generalize cleanly to subsets of the Ger-
man language, as we will show in Section 5.
Theorem 3. Determining whether player 1 has a winning strat-

egy when Spook is played over regular languages is PSPACE-

hard.

Proof overview. The proof is by a reduction from Generalized Ge-
ography. Given an instance of the problem, (G, s), we will build
a regular expression whose language is exactly the set of words
that represent an incorrect play history for Generalized Geogra-
phy. The idea is that the set of letters will always be a subset of
a set of letters that can be permuted to form a word in the lan-
guage. Because the language contains all incorrect play histories
of Generalized Geography, the gameplay of Spook will involve
players forming valid play histories of Generalized Geography.
Only when a player is stuck in Generalized Geography will s/he
be forced to form a set that is not a valid play history, losing the
game of Spook.
Proof. Given G = (V, E) where |V | = n, we will have a letter vi
for each v ∈ V and i ∈ [n]. The presence of the letter vi in the
word fragment will indicate that the token in Generalized Geog-
raphy was moved to v at turn i. Let Σ = {vi|v ∈ V, i ∈ [n]}. The
regular expression will contain three parts:
( 1 )

Ra =
⋃

v∈V

⋃

i, j∈[n]

(viv jΣ
∗)

This checks that each node in V is only visited once.
( 2 )

Rb =
⋃

v,w∈V,(v,w)�E

⋃

i∈[n−1]

(viwi+1Σ
∗)

This checks that only nodes with edges leading to them are
visited.

( 3 )

Rc =
⋃

v∈V

⋃

i∈[n]\{1}
(vi(Σ − ∪x∈V xi−1)∗)

This checks that nodes are visited in the correct order.
Thus, the expression

Ra ∪ Rb ∪ Rc

generates the language of all invalid play histories of Generalized
Geography.

This will ensure that the letters chosen in a game of Spook can
be arranged in a line that represents a valid play history of Gen-
eralized Geography. If player 1 can force a win in the Spook
game, this corresponds to player 2 being stuck in the correspond-
ing Generalized Geography game. Note that the expression is
polynomial in length and can be written down in polynomial time.
The proof follows. �

5. Playing on Subsets of German

In this section, we see how our analysis can be extended to a
real human language. As discussed in Section 2, a real language
is assumed to be specified with its exact dictionary, and thus we
still avoid that case here. However, we can make claims about
subsets of human languages specified by regular expressions, and
we focus on the German language in particular because of its
rules regarding word concatenation.
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5.1 Concatenating Words
The idea behind the proof of Theorem 1 can be used to show

that Ghost, played on subsets of the German language specified
by regular expressions, is PSPACE-hard. We focus on the Ger-
man language because it allows for compound words formed by
concatenating shorter words. For example, “wort,” “band,” and
“teil” are all valid German nouns, and thus concatenations such
as “wortteil” and “bandteil” are also valid nouns [11].

This concatenation process often leads to nonsensical words,
but for the sake of mathematical analysis, we assume a relaxed
form of the standard concatenation rules of German. This allows
us to describe subsets of the German language with regular ex-
pressions by having the characters of the regular expression be
complete German words.

For example, the regular expression

teil(wort ∪ band)teil

describes the regular language {teilwortteil, teilbandteil}.

5.2 PSPACE-hardness
We consider the following special case of Ghost, called Ger-

man Ghost:
Instance: A regular expression R where the language generated

by R consists of valid German words.
Question: Players 1 and 2 take turns playing Ghost with the

language generated by R. If player 1 starts, does s/he have a
winning strategy?

Theorem 4. The problem of determining whether player 1 has

a winning strategy in Ghost played over subsets of the German

language is PSPACE-hard.

Proof. We use a reduction similar to the one in the proof of The-
orem 2. However, here we consider Planar Generalized Geogra-
phy, which is still PSPACE-hard [5]. Given an instance of Planar
Generalized Geography, we can four-color the graph in polyno-
mial time [8]. Each edge is then labeled with the color of the
vertex it points to. Given this labeling of the graph, we build a
corresponding NFA following the procedure in the proof of The-
orem 2. The only change we make is that the labels in the graph
are mapped to German nouns of odd length that start with dif-
ferent letters. For the sake of concreteness, we choose the nouns
“junge” (boy), “mädchen” (girl), “tag” (day), and “nacht” (night).
Thus, all edges that are colored one color might give transitions
labeled with “tag,” for example.

Because we refer to concatenated nouns as valid words, the
subset of words accepted by the NFA will be grammatically valid
German words. Because the words are all of odd length, when the
word finishes, the next player can pick the next word. This cor-
responds to picking an edge in the NFA, except each transition
may take multiple turns. Because the first letter of all the words
chosen above are different, starting a word specifies the whole
word. This construction builds an NFA that accepts a subset of
the words in the German language. �
Corollary 5. Superghost, Superduperghost, and Xghost are all

PSPACE-hard when played on subsets of the German language.

Proof. The reduction in the proof of Theorem 4 can be eas-
ily modified to work with the reductions given for Superghost

(Corollary 2) and Superduperghost (Corollary 3). The new sym-
bol # just becomes another German word of odd length with a
distinct first letter; for example, “sonne” (sun) will work.

The reduction for Xghost (Corollary 4) is the same as the one
for classic Ghost, because if a letter is not added to the end of a
word, the word is no longer a valid prefix. �

6. Conclusion

We determined that the problem of finding a winning strat-
egy for Ghost and the variants Superghost, Superduperghost, and
Xghost when played over regular languages is in EXPSPACE and
is PSPACE-hard. We used the same reduction structure to show
that finding a winning strategy for Ghost and these three vari-
ants, when played over subsets of the German language, is also
PSPACE-hard.

We also considered a fourth variant called Spook, in which the
order of the letters does not matter. We showed finding a winning
strategy in Spook played over regular languages is PSPACE-hard,
but we have not determined which complexity class Spook is a
member of.

Many related questions remain open:
( 1 ) Are the problems of finding winning strategies for Ghost,

Superghost, Superduperghost, and Xghost, played over reg-
ular languages, in PSPACE?

( 2 ) Is the problem of finding a winning strategy for Spook
played over regular languages in PSPACE? Is it even decid-
able? Can we bound the number of turns in the winning
strategy?

( 3 ) It would be interesting to consider the same games played
over other classes of languages. For example, does playing
Ghost over a context-free language make finding a winning
strategy harder? Is it in PSPACE?

( 4 ) Finally, we were able to encode some subsets of the German
language in terms of regular expressions. We would like to
somehow encode subsets of the English language and show
that finding a winning strategy in English is PSPACE-hard.
It seems like such a goal would require a radically different
approach, as word concatenation will not be available.
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