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Abstract: This paper presents a visualization method to show virtual objects while handling the occlusion problem in Mixed 
Reality (MR) scenes. The occlusion handling is still a challenging problem in the MR applications. It is hard to precisely segment 
the foreground contour from the real scene in particular when the foreground has a complicated shape such as leaves and 
branches. We overcome this problem by semi-transparent visualization methods based on the human perception models 
estimated by the psychophysical experiments. Our method is composed by two blending methods. One is the visibility-based 
blending, which semi-transparently renders the virtual object with a constant and uniform visibility across different scenes. The 
other is the bistable-transparency blending, which blends a virtual object such that the virtual object can be seen naturally as 
being behind the real foreground objects. We show that the proposed method is robust for MR scenes where complicated 
foreground objects exist. 
Keywords: Mixed Reality, Augmented Reality, Occlusion problem, Transparency Perception, Human Visual System 

 
 

1. Introduction     

  In Mixed Reality (MR) applications, overlaying virtual 
objects on real scenes often causes contradictory occlusion in 
which a real foreground object is occluded by a virtual object 
that should be behind the real object. In such cases, users of the 
application often underestimate the depth and scale of the virtual 
object or simply perceive that the virtual object does not belong 
to the scene, resulting in the collapse of the original impact or 
presence of the MR scene. 
  Many previous studies have tried to solve the occlusion 
problem. [20] and [21] reconstructed depth information in a real 
scene to detect occlusion using a stereo vision-based technique. 
[24], [2], and [14] handled occlusion by constructing the visual 
hull [26] of objects using multiple cameras. Although some of 
these studies enabled real-time interaction in an MR scene 
without contradictory occlusion, the use of the applications was 
restricted to a specific local space and not applicable to arbitrary 
outdoor scenes. As for the methods that do not limit its use to a 
restricted space, [8] and [37] proposed an algorithm that enabled 
real-time foreground segmentation from a monocular video 
sequence. [18] and [40] further extended these methods and 
handled the occlusion problem caused by moving objects in an 
outdoor scene. Despite these efforts, however, there is still a 
difficulty in constructing a natural MR scene with an arbitrary 
environment especially when a complex object, which is 
difficult to precisely segment out in real time, exists in the real 
scene. 
  When walking around the outdoor scene, we frequently 
encounter many natural objects such as trees or bushes. All 
these objects are possible candidates for the occluder to be 
handled for an MR application used in an arbitrary scene. The 
goal of our research is to realize a system that can handle such 
situations and reduce contradictory occlusions robustly 
regardless of contents in the scene. Since computational cost of 
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foreground segmentation will increase with the complexity of 
the scene, we think it is necessary to consider a solution that can 
work in cases where only rough foreground information is 
available. 
  As such a solution, we propose a semi-transparent 
visualization method that blends a virtual object with a real 
scene so that the virtual object naturally appears to be behind the 
foreground region. Unlike the conventional approach, our 
method does not strictly mask the virtual object at foreground 
pixels. Thus, the method is more tolerant about errors of the 
given foreground information. 
   In realizing the semi-transparent visualization method, we 
addressed two problems. First one is that the visibility of a 
semi-transparently rendered object depends significantly on its 
background. Second one is that semi-transparently rendered 
objects can often be hard to see as being behind the foreground 
region. In this study, we solved these problems by designing 
blending methods based on the characteristics of the human 
visual system. 
   The paper is organized as follows. The following section 
addresses the visibility issue, and proposes the visibility-based 
blending, which renders a virtual object semi-transparently with 
a constant and uniform visibility. The third and fourth sections 
address the latter issue. Specifically, in the third section we 
conduct a psychophysical experiment to make a model that can 
predict the perceived depth order of overlapping 
semi-transparent objects. Based on that model, in the fourth 
section we propose the bistable-transparency blending, which 
blends a virtual object so that it appears to be behind a 
foreground region. Finally, we complete this paper with 
summary and conclusion. 

2. Visibility-based blending 

   In many interactive applications, one sometimes needs to 
render an object half-transparently on a background scene image. 
For example, in portable augmented reality systems, rendering 
virtual information in 100% opacity can be dangerous because 
obstacles in the real world are often occluded. Virtual objects 
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may also be rendered semi-transparently to be visualized as if 
they were behind the foreground real objects like in our case 
[12], [39]. In addition, when showing virtual objects in optical 
see-through systems, or structured augmented reality systems, 
virtual information is usually perceived semi-transparently. 
   Under all of those situations, one often wants to keep 
visibility of a rendered object constant. However, there is still 
no established method that can blend two images according to a 
subjective measure of visibility. In the conventional alpha 
blending method [34], we can change opacity of one image 
relative to another image by an alpha value. However, the size 
of the alpha value does not necessarily correspond with the 
visibility of an image against another image. For example, given 
a situation in which a virtual object is blended with a 
background image, visibility of the virtual object largely 
depends on intensities and textures of the background scene and 
the virtual object (left column in Figure 1). 
 

Visibility-based blendingAlpha blending

 
Figure 1. A virtual object is blended with two different 
background images by (Right column) the visibility-based 
blending, and (Left column) the conventional alpha blending 
with a constant alpha value (=0.4). 
 
   One possible solution to this problem is to predict the 
visibility, and optimize a blending parameter. In this work, we 
employed one of the error visibility models to predict visibility, 
which have been developed for the purpose of image quality 
assessment [25], [29]. In the error visibility model, visibility of 
image distortion is predicted by comparing simulated neural 
responses for an original image, and those for a distorted image. 
The simulation of neural responses is based on the 
computational model of the primary visual area (referred to as 
V1). In our case, the input images are replaced with an image 
before blending, and an image after blending; visibility of the 
blended image is predicted by comparing simulated responses 
for the two input images. 
   Based on the visibility model, we propose two blending 
methods. One is the visibility-based blending, which locally 
optimizes a blending parameter such that the visibility of the 
blended object achieves the arbitrarily targeted level. The other 
method is the visibility-enhanced blending for optical 
see-through systems, in which visibility of a virtual object is 
adaptively and locally enhanced. Using the proposed method, 
we can blend an object with constant visibility across different 

background scenes (right column in Figure 1). 

2.1 Basic features of the Human Visual System 
  In MR (or augmented reality, AR) visualizations, several 
studies have worked on improving legibility of virtual 
information rendered on background scenes [13], [17], [19], 
[35]. However, any of the methods proposed in those studies 
doesn’t apply to estimating a correct visibility level of a 
semi-transparent object. 
   To correctly predict the visibility level of a semi-transparent 
object on an arbitrary background, we adopted the framework of 
error visibility metrics for image quality assessment [5], [9], 
[25], [28], [43]. Those error visibility metrics usually take into 
account basic features of the human visual system that are 
particularly important for predicting visibility. Hereafter, we 
introduce each of the two features and their underlying 
mechanisms. 

2.1.1. Contrast Sensitivity 
   One of the key features that contribute to visibility can be 
observed as contrast sensitivity for stimuli with various spatial 
frequencies (known as contrast sensitivity function, CSF). As 
shown in Figure 2, contrast sensitivity of the human visual 
system has a band-pass nature, with its peak at around 2-5 
cycles per degree [6], [7]. Evidence from psychophysical and 
physiological studies has shown that several different neural 
mechanisms, each of which is tuned to separate, and a more 
limited band of spatial frequencies, underlie the CSF [6], [16]. 
Each of the spatial frequency detection mechanisms is also 
tuned to a specific range of orientations at a local position. It is 
believed that those mechanisms are implemented by neurons in 
V1. Thus, it can be said that in the early stage of the visual 
processing, visual stimuli are linearly decomposed by several 
different neural channels, each of which are tuned to a specific 
band of spatial frequencies, a specific range of orientations, and 
a specific location in the visual field.  

C
ontrast sensitivity

Spatial frequency

CSF

Spatial frequency

C
ontrast of grating

 
Figure 2. Contrast sensitivity function. (Left) Contrast 
sensitivity depends on spatial frequency. (Right) Schematic 
illustration of the contrast sensitivity function (solid line) and its 
underlying spatial frequency channels (broken lines). 

2.1.2. Contrast Masking 
   Visibility of a visual stimulus also depends on contrast of its 
background (a phenomenon known as contrast masking [27]). In 
Figure 3, a sinusoidal target with the same contrast is embedded 
on different backgrounds. In the leftmost image, the target is 
presented on a plain background, but in the center image, the 
same target is added on a background with a similar sinusoidal 
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pattern. Here, physical intensity increment and decrement 
relative to background, is exactly the same between both images. 
However, visibility of the target is lower in the center image. 
This contrast masking also occurs if the orientation of the 
background pattern is different from that of the target (see the 
rightmost image) though the effect becomes relatively smaller 
[11]. 
   The contrast masking can be explained by a non-linear 
contrast gain control process in V1. Currently, the most 
influential model of the gain control mechanism is the divisive 
normalization model [15]. According to the divisive 
normalization model, a response of each neuron is divisively 
normalized by the weighted sum of the responses of neurons 
that are tuned to the same location (including the neuron whose 
response is being normalized). Because the response to the 
target stimulus (or increment of the response regarding the 
target stimulus) is reduced due to the normalization when 
another pattern is added on the same location, perceived contrast 
of the target would also be reduced. The model can explain a 
vast variety of data, including physiologically measured neural 
responses and psychophysically measured contrast masking data 
[15], [38], [43]. 

 
Figure 3. Examples of the contrast masking effect. When the 
sinusoidal target is embedded on textured backgrounds, 
visibility of the target decreases though the physical intensity 
increment or decrement is kept constant across images. 

2.2 Visibility model 
  The error visibility metrics have been developed using 
computational models of V1 (V1 model) that can simulate the 
basic features of the human visual system described in the 
previous section. In this work, we developed the visibility model 
based on one such metric proposed by [25]. The blending 
methods proposed in this paper optimize a blending parameter 
according to the visibility of a blended object predicted by the 
visibility model. 
   A schematic of the visibility model is shown in Figure 4. In 
the visibility model, two input images, an image before blending 
and an image after blending, are first converted to a color space 
that is more appropriate to simulate the behaviors of the visual 
system. Next, the converted images are processed in the 
computational model of the visual mechanisms in V1, (V1 
model) and simulated neural responses of several neural 
channels are obtained for each location of each image. Then, 
differences of those neural responses between the two images 
are pooled across neural channels. Finally, the pooled difference 
is used as a measure of the subjective amount of visibility for 
that location. 
   Although most of the mathematical formulations are 

common between the visibility model used in this paper and that 
in [25], some modifications are incorporated to obtain better 
results, as well as to reduce computational cost. Those 
modifications are as follows: 
 
1. Using CIE L*a*b* color space instead of YUV 
2. Considering local lightness difference in addition to contrast 
difference 
3. Ignoring chromatic contrast difference 
4. Ignoring inhibition from surrounding pixels in the divisive 
normalization process 
 
In the following part, we show the details of the visibility model 
including explanations for these modifications. 

V1 model

Input images

r

Color conversion
RGB to L*a*b*

Wavelet decomposition
w

CSF simulation
linear gains S

L*

Divisive normalization

r’

Visibility map

Color conversion
RGB to L*a*b*

Wavelet decomposition
w

CSF simulation
linear gains S

L*

Divisive normalization

(4 frequencies x 3 orientaitons)

1 2

 
Figure 4. Schematic of the visibility model. The visibility of 
blending image (the right image) is calculated by comparing 
simulated neural responses for the blending image and a 
background image before blending (the left image). 

2.2.1. Color Conversion 
   In the first stage of the visibility model, input images are 
converted from RGB to the CIE L*a*b* color space. Although 
[25] used the YUV color space, the L*a*b* is better because the 
L* channel in the L*a*b* is more perceptually linear than the Y 
channel in the YUV. In addition, we only used L* channel to 
calculate visibility because sensitivity for iso-luminant color 
contrast is small compared to that for luminance contrast [30]. 
Since we assume use of the blending method for real-time 
applications, we gave priority to efficiency at the expense of a 
presumably small contribution of the color channels. 

2.2.2. Simulation of the Contrast Sensitivity Function 
   The input images are then linearly decomposed into several 
oriented frequency domains to simulate behaviors of the neural 
channels; each tuned to a specific range of spatial frequency 
bands and a specific range of orientation bands. In [25], the 
separable QMF wavelet transform (proposed in [36]) was used 
for the image decomposition. The QMF wavelet filter 
decomposes an image into 4 frequency bands and 3 orientation 
bands (horizontal, vertical, and diagonal), giving a vector w 
composed of 12 coefficients for each location. Although two 
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diagonal orientations (i.e., 45º and -45º) are confounded with 
each other in the separable QMF wavelet transform, it fits real 
time applications quite well since the calculation speed is very 
fast.  
   After the transformation, each of the 12 coefficients w is 
multiplied with linear gains S as follows: 

ci = Siwi
 (1) 

where ci and wi denote a wavelet coefficient of the ith filter, 
after and before the linear gain process, respectively. Si is a 
linear gain for the ith filter to simulate the CSF. In [25], Si is 
modeled by the following function: 

Si = S(e,o) = Ao exp −
4− e( )θ

sθ
"

#
$
$

%

&
'
'
 

(2) 

where e and o denotes the scale (e can be 1, 2, 3, and 4, from 
fine to coarse), and the orientation (o=1, 2, 3, each of which 
stands for horizontal, diagonal, and vertical, respectively). Ao is 
the maximum gain for the orientation o, s controls the 
bandwidth, and θ determines the sharpness of the decay. Here, 
the parameters Ao, s, and θ are given in [25]. The values of those 
parameters are shown in Table 1. 

2.2.3. Simulation of the Contrast Masking Effect 
   The coefficients are then divisively normalized to simulate 
the contrast masking effect. According to [25], we used the 
following equation to obtain the normalized response of neural 
channel i: 

ri = sign ci( )
ci

γ

βγ + Hik ck
γ

k=1

n
∑

 
(3) 

where γ is a constant given in [25]. βi is a saturation constant for 
the ith filter, which defines the point at which saturation begins 
(this is also necessary to prevent division by zero). The 
saturation constants are determined according to a standard 
deviation of each wavelet coefficient of 100 natural images 
sampled from a calibrated image database [31]. Since the 
standard deviations of wavelet coefficients can differ between 
different color spaces (L*a*b* in our model and YUV in [25]), 
we recalculated the standard deviations, and multiplied them by 
a scaling constant b to obtain βi. The scaling constant b was 
determined via optimization described in section 3.6. 
  In Equation 3, Hik denotes a weight that defines the size of 
influence of the kth filter to the ith filter. Hik is assumed to be 
larger if the kth filter is neighboring the ith filter in its 
dimension, and is defined as follows: 

Hik = H(e,o),( !e , !o ) = K exp −
e− !e( )2

σ e
2 +
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(4) 

where (e, o) and (e’, o’) indicates the frequency level and 
orientation to which each of the ith and kth filters is tuned. K is a 
normalization factor, which ensures that summation of Hik for 
all k equals one. σe and σo are given in [25]. In [25], they 
assumed not only interactions from nearby frequency levels or 
orientations, but also interactions from nearby pixels. However, 
it is quite time consuming to access surrounding pixels every 
time we calculate each of the divisive normalization responses. 

Since we need to iteratively calculate the visibility to optimize a 
blending parameter, in this work, we approximated the weight 
function Hik as in Equation 4, omitting the term related to the 
spatial interaction. In section 2.5.1, we show that the 
approximated model can predict visibility of a blended pattern 
quite well. A previous study also suggested that spatial pooling 
over space was very localized [43]. 

2.2.4. Responses for Local Lightness 
In [25], only 4 band-pass subbands are taken into consideration 
for visibility calculation. Thus, the visibility model in [25] 
cannot correctly predict visibility if the differences exist in the 
frequency range lower than that covered by those subbands. 
This defect can cause incorrect blending results due to visibility 
underestimation around pixels where both virtual object and 
background real scene have smooth surfaces (e.g. sky, less 
textured walls, darkly shaded regions, etc.). 
   To prevent this, in this work, we additionally consider 
responses for local lightness by using low-pass residual in the 
result of the QMF wavelet transform. We modeled the response 
for local lightness rL as follows: 

rL =ωwL  (5) 

where wL denotes a wavelet coefficient of the low-pass residual 
and ω denotes a linear gain. 

2.2.5. Pooling Simulated Responses 
After simulated responses are obtained for both input images, 
the differences of the responses between the two images are 
pooled across neural channels for each location. This process is 
modeled as an lp norm: 

dxy =
1
n+1

rL − "rL
p
+ ri − "ri

p

i=1

n
∑( )

1
p  (6) 

where dxy denotes the pooled difference of simulated responses 
for a local position (x,y). ri and ri’ are the simulated responses of 
the ith neural channel (filter) for each of the two input images. n 
is the number of neural channels and thus is equal to 12. rL and 
r’L are the simulated responses for local lightness for each of the 
two input images. 

2.2.6. Parameter Optimization 
   In [25], the parameters in the visibility model were 
optimized via fitting to a set of subjectively rated image quality 
data. They demonstrated that the optimized model not only 
explains a larger set of image quality data, but also reproduces 
basic trends in psychophysical data (i.e., contrast sensitivity and 
contrast masking). So as not to impair the compatibility of their 
optimized model, we used the parameters given in [25], except 
for the saturation constants β (in Equation 3), and a linear gain 
ω for local lightness (in Equation 5). Thus, in this paper, only 
two parameters (the scaling constant b and the linear gain ω) 
were optimized. 
  The parameters were optimized via fitting to the subjectively 
rated visibility of a pattern that was blended with various natural 
textures and with various transparencies. The detail of the data 
acquisition procedure is described in section 2.5.1. To compare 
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the visibility predicted by the model simulation with a 
subjective visibility score, the local visibility values dxy 
(Equation 6) were pooled across pixels according to the 
following equation. 

d = 1
m

dxy
q

(x,y)∈O∑( )
1
q  (7) 

where O denotes a group of pixels that belong to the pattern, and 
m is the number of pixels in O. Here, we used q=2.2, according 
to [25]. The parameters (b, ω) were optimized by minimizing 
the residual sum of squares as a result of linear regression 
between the subjective visibility scores and the predicted 
visibility d. 
   The obtained parameters (b, ω) were (10.3, 0.35). The 
saturation constants β scaled by b are shown in Table 1. It 
should be noted that the saturation constants β obtained in this 
paper are quite similar to those obtained in [25]. Thus, the 
changes in those parameters did not affect the predictability of 
the model optimized in [25]. 
 

Parameters Optimized values 

Ao 
40 when o=1 or 3 (horizontal or vertical) 
36.6 when o=2 (diagonal) 

s 1.5 
θ 6 
γ 1.7 
σe 0.25 
σo 3 
p 4.5 
ω 0.35 

βi =β(e,o) 
 e=1 e=2 e=3 e=4 
o=1,3 0.3 0.8 1.9 4.6 
o=2 0.2 0.5 1.1 2.7 

Table 1. Parameters of the visibility model used in this study. In 
these parameters, ω and β were optimized via fitting to the 
subjectively rated visibility data obtained in this work (section 
2.5.1). The other parameters were obtained from [25]. 

2.3 Visibility-Based Blending 
  Based on the visibility model described in the previous 
section, we propose the visibility-based blending. The 
visibility-based blending locally optimizes a blending parameter 
(α) such that the visibility of the blended object achieves the 
arbitrarily targeted level. The blending equation we assumed is 
as follows: 

I =αI1 + (1−α)I2  (8) 

where I1 denotes an image intensity of the to-be-blended object 
and I2 denotes an image intensity of the background scene (both 
colors are in the L*a*b* color space). 
   A schematic of the visibility-based blending is shown in 
Figure 5. In the first stage, the two input images are converted 
into CIE L*a*b* color space and the images in L* channel are 
decomposed by the 4-scale separable QMF filter. Those two 
images are a background image before blending and an image in 
which a to-be-blended object is rendered on the background 
image with 100% opacity. Since the QMF transform is a kind of 

linear transform, we can generate decomposed image data of 
any blending image with arbitrary transparency level by linearly 
combining these two decomposed images.  
   After the QMF transform, we have 12 coefficients (4 
frequency levels by 3 orientations) for every location of the 
input images. The next step is to find an optimum blending 
parameter to realize the target visibility for every location. The 
optimum α is searched for by the binary search method. In every 
step of the search algorithm, the visibility of the rendering result 
by the current α is calculated and whether the visibility is higher 
than the target visibility is checked. 
   The visibility at the current α is obtained as follows. Firstly, 
the coefficients of the blending image at the current α are 
generated by linealy combining the coeffients of the two input 
images using the current α and Equation 8. Here, I in Equation 8 
denotes the combined coefficients. I1 and I2 denote the 
coefficients of the input image 1 (background scene) and the 
coefficients of the input image 2 (the background + an opaque 
object), respectively. 
   The combined coeffients are then processed by the linear 
gains S, and divisively normalized according to Equation 3. The 
coeffients of the background image (the input image 1) are also 
processed by Equation 3. The responses for local lightness are 
also calculated for both images by Equation 5. Then, the pooled 
difference of those simulated responses is calculated by 
Equatioin 6. 
   The value d obtained in Equation 6 is used in comparison to 
the target visibility. The next α is decreased if the visibility d is 
higher than the target and the next α is increased if d is not 
higher than the target. The size of increment/ decrement is 
initially set 0.25, but it is halved at the end of every step. The 
initial blending parameter α0 is 0.5. The search is finished after 
8 iterations. 
   Finally, the blending is conducted according to Equation 8, 
using the optimized α. However, a locally optimized α can often 
cause artificial edge or discontinuity in appearance of a blended 
object because optimization is independent across pixels. 
Therefore, we averaged each α within a predifined window. The 
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Figure 5. Overview of the visibility-based blending. 
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size of the window is emperically given. 

2.4 Visibility-Enhanced Blending for OST displays 
   In usual optical see-through devices using half-mirrors, 
colours of a virtual object are added on colours of a real scene. 
Therefore, a virtual object the observer sees is always 
transparent to a certain extent. Under such circumstances, the 
visibility of a virtual object depends not only on incoming light 
intensity from the real scene and the display device, but also on 
textures or structures of the virtual object and its background 
real scene. Using the visibility model, we are able to take into 
consideration such attributes to predict visibility. Here, we 
propose a blending method that can adaptively enhance the 
visibility of a virtual object added on a real scene in OST 
displays. In our method, the visibility is enhanced by increasing 
intensities of local pixels where visibility is lower than the 
targeted level. 
   To accurately predict visibility of virtual objects in optical 
see-through systems, we need to know the exact location of the 
object in the scene in the user’s visual field. Moreover, we have 
to know the adaptation level of the user’s eyes to the current 
light level in the real scene. However, in the present work we 
assumed that the simulated MR/AR scene image under accurate 
calibrations is already given, and focused on describing the 
visibility enhancement method itself. 
   A schematic of the visibility enhanced blending is shown in 
Figure 6. As shown in the figure, the process of the 
visibility-enhanced blending is almost the same as that of the 
visibility-based blending in the previous section. The major 
difference is that we need three input images: (1) a background 
real scene image, (2) a simulated mixed reality scene, as an 
original rendering result, and (3) a simulated mixed reality scene 
in which the object is rendered with the maximum lightness 
level. To obtain the object’s color of the maximum lightness, the 
object’s image is first converted to CIE L*a*b* space and then 
the values in L* channel are replaced with the maximum value. 
The final blending result is obtained by linearly combining the 
original rendering result and the maximally enhanced result with 
a locally optimized weight (α) for each pixel using Equation 8. 
Here, I1 denotes the maximally enhanced image, and I2 denotes 
the original rendering result. 
   In the optimization process, the optimum α, which shows the 
nearest visibility to the target visibility, is searched for within a 
range between 0 and 1 by the binary search. In each step of the 
search algorithm, the visibility with the current α is calculated 
by Equation 6. Here, simulated responses for a simulated mixed 
reality scene, generated by a linear combination of the input 
images (2) and (3) with the current α, are compared with 
simulated responses for the background real scene. The other 
details in the optimization process are exactly the same as those 
of the visibility-based blending method. 
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Figure 6. Overview of the visibility-enhanced blending. 

2.5 Experiment 
   In this subsection, we firstly test the validity of the visibility 
model, which we described in section 2.2 and used in the 
proposed blending methods. As for the original visibility model 
proposed in [25], they demonstrated that their model can explain 
subjective error visibility data for a large variety of image 
distortions. However, how well the model can explain perceived 
visibility of a blended object was not explicitly studied. 
Moreover, we modified their model in several points. Thus, we 
need to validate our version of the visibility model. After the 
validation of the visibility model, we tested the proposed 
blending methods using several real scene images and virtual 
objects. 

2.5.1. Validation of the Visibility Model 
   We conducted an experiment in which human observers 
rated the visibility of a pattern blended by various levels of 
transparency on various textures. The rated visibility data was 
used to test the visibility model as well as to optimize a couple 
of parameters in the model (see section 2.2.6 for the details of 
the parameter optimization). Here, we show the details of the 
data acquisition procedure and the results of comparison 
between the visibilities obtained from the visibility model and 
subjectively rated visibility data.  
 
2.5.1.1. Methods 
・	 Apparatus. Stimuli were presented in a dark room on a CRT 

monitor (Sony Trinitron Multiscan CPD-17SF9, 17 inch, 
1024 × 768 pixels, refresh rate 75 Hz, mean luminance 44.6 
cd/m2). Each subject placed his/her head on a chin-rest and 
used both eyes to view the stimuli. The viewing distance 
was 114 cm. According to [25], [29], the visibility model 
assumes that images are observed at a distance where the 
images are sampled at 64 cycles per degree. The viewing 
distance was determined by following this assumption. 

・	 Stimuli. In every stimulus, a checkerboard pattern was 
blended on a natural texture image (Figure 7). The 
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checkerboard pattern subtended 200 pixels (a visual angle of 
3.1 deg) both horizontally and vertically, and was composed 
of two colors, whose RGB values are (0, 0.8, 0) and (0.2, 0, 
0.2). 50 different photo images were used as the texture 
images. The resolution of the textures was 512 x 512 and 
subtended 8 deg in visual angle. The texture images were 
mostly taken from [33]. 48 homogeneous textures in frontal 
perspective were chosen from the database. Those textures 
included photos of bark, brick, fabric, flowers, food, grass, 
leaves, metal, sand, stone, and tile. 2 photo images of leaves 
were additionally taken by one of the authors. The 
checkerboard and the textures were blended by the simple 
alpha blending (Equation 8). For each natural texture image, 
5 blending images were produced using different α’s. The α 
was modulated approximately on a logarithmic scale so that 
visibility of the checkerboard varied as equally and broadly 
as possible. 

 

 
Figure 7. Examples of the stimuli. The observers rated the 
visibility of the checkerboard pattern blended on the natural 
texture image. 
 
・	 Static and Dynamic conditions. In addition to the static 

condition in which both the checkerboard pattern and the 
texture image were fixed at the center of the display, we also 
tested the dynamic condition in which the checkerboard 
pattern and the texture image were moving at different 
speeds, assuming practical situations. Under the dynamic 
condition, both the checkerboard pattern and the texture 
image were swinging horizontally in the same direction. 
Their speeds were modulated sinusoidally in the same 
temporal frequency, 1 Hz, but the widths of the swings were 
different: 0.8 deg for the checkerboard and 1.6 deg for the 
texture. 

・	 Participants. Ten observers, unaware of the purpose of the 
experiment (9 male and 1 female, aged 22–27), participated 
in the study. 9 of the observers completed both static and 
dynamic conditions. The other male observer participated 
only in the dynamic condition. 

・	 Procedure. Before starting the experiment, a training session 
was conducted. In training, the approximate range of 
visibility of the stimuli was presented, and the observers 
were told to make a consistent criterion to judge visibility. 
In the experiment, one of the stimuli was presented for 1.6 
seconds in each trial. After disappearance of the stimulus, 
the observer evaluated visibility of the checkerboard pattern 
in a numerical scale of 1 to 5, where 1 denotes “invisible,” 2 
denotes “barely visible,” 3 denotes “visible,” 4 denotes 
“fairly visible,” and 5 denotes “very clear.” Those words 
were always presented beside the corresponding numerical 

values. The observer could also choose an intermediate scale 
between arbitrary abutting scales. The observer performed 
the task by using a mouse. For each of the static and 
dynamic conditions, there were in total 250 stimuli. The 250 
stimuli were presented in a random order. For those who 
participated in both of the conditions, the observers 
completed the dynamic condition first, and the static 
condition was conducted on another day. A training session 
was conducted every time they started the experiment in that 
day. 

 
2.5.1.2. Results 
   We compared the visibility estimated by the visibility model 
described in section 3 with the subjectively evaluated visibility. 
The subjective data was converted into Z scores within 
observers using the following equation: 

z = v−µv

σ v

 
(9) 

where v denotes a raw score of visibility. µv and σv denote the 
average and the standard deviation of the raw scores for the 250 
stimuli, respectively. The z scores of individual observers were 
then averaged across observers for each stimulus, which was 
used as representatives for subjective visibility. 
   We calculated the visibility by the visibility model described 
in section 3 for each of the 250 stimuli. In calculating visibility, 
a stimulus image and a texture image of the stimulus were used 
as the input images. To obtain a representative value of visibility 
of the pattern as a whole, we pooled dxy in Equation 6 using 
Equation 7. 
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Figure 8. Subjectively rated visibility (z scores) plotted as a 
function of Predicted visibility d (left) and RMSE (right). ρs and 
ρd shown in each plot denote Pearson’s correlation of the static 
condition and the dynamic condition, respectively. 
 
   In the left plot of Figure 8, the subjective visibility (z scores) 
was plotted as a function of the predicted visibility (d values in 
Equation 7) for each of the 250 stimuli. Red circles show the 
data of the static condition, and blue circles show the data of the 
dynamic condition. As a comparison, in the right plot of Figure 
8, we also plotted the same subjective visibility data as a 
function of Root Mean Squared Error (RMSE) between a 
blending image and a texture-only image calculated in L*. The 
Pearson correlation of each plot was also shown in Figure 8. 
   As shown in the scatter plot and its Pearson correlation, the 
prediction by the visibility model was remarkably good, despite 
the fact that most of the parameters of the visibility model were 
obtained from [25]. Although the data of the subjective visibility 
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was slightly higher in the dynamic condition than in the static 
condition, the predicted visibility linearly correlated with those 
data in both conditions. 
   The reason why the subjective visibility was higher in the 
dynamic condition may be that the perceived visibility was 
temporally pooled in a winner-take-all fashion across frames in 
the dynamic condition. Another possibility is that adaptation of 
the detection mechanisms in the visual system may reduce 
responses to the checkerboard pattern in the static condition. 
Taking into consideration those behaviors in the visual system 
would further improve predictability of the model. 
   However, given the linearity and high correlation between 
the prediction and the subjective data, we can conclude that the 
model used in the present study was accurate enough for 
practical uses. 

2.5.2. Evaluation of the Proposed Blending Methods 
   In this subsection, we firstly describe the details about the 
implementation and evaluate the efficiency of the blending 
methods. Then, we show the effectiveness of each of the 
proposed methods using several experimental images. 
 
2.5.2.1. Imperimentation 
   We implemented all calculations in both of the proposed 
blending methods in the GLSL shader. The QMF transform in 
each scale was implemented in GLSL as shown in Figure 9. In 
the 1st and 2nd passes, the original image is horizontally 
convolved by a one-dimensional low-pass (1st pass) or high-pass 
(2nd pass) filter kernel, and down-sampled in the same direction. 
Those convolved images are rendered in the same frame buffer. 
Then, in the 3rd and 4th passes, the combined convolved images 
are vertically convolved by the low-pass (3rd pass) or high-pass 
(4th pass) filter kernel and down-sampled. A resultant low-pass 
image “LL” is then processed into the convolution process in the 
next scale. In this way, 6 convolutions in each frequency level 
are accomplished by 4 passes. The 4-scale QMF transform was 
thus completed after 16 convolution passes. 
 

 
Figure 9. Processes of the QMF wavelet transform in each scale. 
 
   In a preliminary experiment, however, we found that 
downsampling noises in the lower frequency subband images 
can cause temporal inconsistency in the blending result across 
frames. To reduce the downsampling noise while keeping the 
computational speed as fast as possible, we modified the 
algorithm of the QMF wavelet transform such that the 
downsampling is only applied in the two higher frequency levels. 
Accordingly, distances between sampling pixels for the 

convolution kernel were doubled in the lowest frequency level. 
   In the visibility-based blending, L* channel of the two input 
images are rendered in different channels of a single image, and 
every convolution is conducted together for both of the images. 
To reduce degradation of convolved image values due to 
quantization, we preserved the data in each pass using 2 
channels (16 bit) for each input image (i.e., R and G channels 
for one image, B and alpha channels for the other image). In the 
case of the visibility-enhanced blending, two of the three input 
images are rendered within a single image and the other input 
image is rendered on another image. Therefore, the QMF 
transform is conducted twice to obtain wavelet coefficients of 
the three input images. 
 
2.5.2.2. Computational Efficiency 
   In the experiment, we used a personal computer (OS: 
Windows 7, CPU: Corei7 2.93 GHz, RAM: 8GB, GPU: nVIDIA 
GTX 550Ti 1024MB). The resolution of the input images was 
640x480. The size of the window to average each optimized α 
was 65 x 65. Under this condition, both of the proposed 
blending methods worked at a frame rate higher than 100 FPS. 
 
2.5.2.3. Experiment on the Visibility-Based Blending 
   We tested the blending method assuming a situation in 
which a virtual object is blended with a static real-scene image. 
The resolution of the image was 640x480. 
   Firstly, we tested the visibility-based blending by blending a 
virtual object with two different real scene images (one had a 
relatively smooth texture and the other had a high-contrast 
texture) using 4 different target visibilities (vt=0.6, 1.2, 1.8, and 
2.4). As a comparison, we also blended the same virtual object 
with the same real scene images using the conventional alpha 
blending using 4 different alpha values (α=0.2, 0.4, 0.6, and 0.8). 
The results are shown in Figure 10. In the results of the 
visibility-based blending, the visibility of the virtual object (the 
colorful cubes) looks similar between the two vertically aligned 
images (an image pair in which the same target visibility was 
used). By contrast, in the results of the alpha blending, the 
visibility looks significantly different between the two vertically 
aligned images though the blending parameters (α) are the same 
for both of them. 
   In Figure 11, we show additional experimental results 
including a more practical situation. Here, a virtual model (a 
colorful cube or a tower-like building) was blended by the 
visibility-based blending (left column) and by the alpha 
blending (right column). In the results of the alpha blending, a 
constant alpha value was used for every region of the same 
scene. However, the visibility of the virtual object blended by 
the alpha blending looks different between regions within the 
image. 
   This problem of non-uniform visibility is found in both 
results of the alpha blending. On the other hand, in the results of 
the visibility-based blending, the problem is mitigated, and 
every part of the virtual object looks almost uniform in every 
image (the target visibility was 1.5). Therefore, the 
visibility-based blending will be useful when one wants to show 
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a virtual object with constant and uniform visibility across 
different scenes as well as across local regions within the same 
scene, irrespective of textures or structures in the scene. 
 
2.5.2.4. Experiment on the Visibility-Enhanced Blending 
   Here, we tested the visibility-enhanced blending described 
in section 2.4. To see how our blending method works under 
ideal calibrations, we first simulated rendering results in an 
optical see-through system within an intensity range between 0 
and 1 using Equation 8. Here, α represents relative influence of 
the light from the device to that of the incoming light from the 
real scene. I1 and I2 denote linearized RGB colors of a virtual 
object and a real scene, respectively. The parameter α we used 
in the experiment was 0.5. In Figure 12A, we show 
experimental results obtained by the simulation. In each image, 
a virtual object (a colorful cube or an ancient building) was 
blended on a real scene. In each row of the figure, the left image 
shows the result by the visibility-enhanced blending (target 
visibility=1.5), and the right image shows the original scene 
without enhancement. In the original images (right column), the 
virtual objects are partially hard to see. In the results of the 
visibility-enhanced blending (left), the visibility is improved in 
those regions, and we can perceive the whole contour of the 
virtual object.  

   Secondly, we tested the visibility-enhanced blending using 
an actual OST glasses (MOVERIO BT-200, EPSON). To 
analyze the real scene, we captured the real scene by a camera 
(Grasshopper2, Point Gray Research). In this experiment, the 
calibrations were manually conducted such that appearance of 
the input images for the blending pipeline and that of the actual 
scene seen through the glasses became as similar as possible 
(both photometrically and geometrically). Then, the optimized 
virtual scene was presented on the glasses. The resultant AR 
scene was captured from outside of one of the glasses by the 
camera (Grasshopper2). The results are shown in Figure 12B. 
Again, we can see that the visibility is improved in the result 
with visibility enhancement. 
 

A

B

With enhancement Without enhancement

 
Figure 12. Examples of the visibility-enhanced blending for 
optical see-through systems. (A) The experimental results 
obtained by simulation assuming ideal calibrations. (B) The 
experimental results obtained using an actual optical 
see-through device. 

2.6 Section Conclusion 
   In this section, we proposed two blending methods based on 
the visibility model. One is the visibility-based blending, which 
locally optimizes a blending parameter α such that the visibility 

Visibility-based blending

Vt=0.6 Vt=1.2 Vt=1.8 Vt=2.4

Alpha blending

Į 0.20 Į 0.40 Į 0.60 Į 0.80
 

Figure 10. Blending results by the visibility-based blending with 4 different target visibilities, vt (left images) and by the 
conventional alpha blending with 4 different alpha values (right images). 
Visibility-based blending Alpha blending

 
Figure 11. Examples of the visibility-based blending (Top 
images) and comparison results of the conventional alpha 
blending (Bottom images). 
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of the blended object achieves an arbitrarily targeted level. The 
other is the visibility enhanced-blending for optical see-through 
systems, in which visibility of a virtual object is adaptively and 
locally enhanced to an arbitrary targeted level. In the experiment, 
we demonstrated that the visibility model can linearly predict 
the visibility of a blended object on various natural texture 
images. Then, we showed that the proposed blending methods 
are effective to blend images with constant and uniform 
visibility. Since the proposed blending methods work at a 
sufficiently fast frame rate, they will not violate interactivity 
even in combination with other computations indispensable for 
constructing AR/MR scenes (e.g. tracking). 

3. The model of perceived depth order of 
bistable-transparency pattern 

   The visibility-based blending proposed in the previous 
section enables us to blend a virtual object with a constant 
visibility across different regions or different scenes. However, 
showing the object semi-transparently does not necessarily 
make it appear to be behind the foreground region in the real 
scene (see Figure 13). We think that the characteristics of 
human transparency perception are a key to resolve this issue. 
 

 
Figure 13. A failure case of the simple semi-transparent 
rendering. The virtual object does not appear to be behind the 
foreground tree. 

3.1 Phenomenal classification of perceptual transparency 
   The human visual system decomposes a 2D retinal image in 
the same location into two surfaces at different depths, even 
when a very simple pattern is presented. One of the major issues 
in this “perceptual transparency” is what photometric condition 
is important for the depth stratification. Regarding this problem, 
[1] and [3] proposed that the luminance pattern around an 
X-junction (a junction where 4 regions meet together) plays the 
main role in perceptual transparency, and argued that the 
perceived state of the surface decomposition depends on 
categories of the X-junction (the contrast polarity rule). They 
classified X-junctions into three categories according to polarity 
relationships of aligned contours. Those junctions are termed 
non-reversing junction, single-reversing junction, and 
double-reversing junction. 
   For example, the X-junction in Figure 14A is classified as a 
single-reversing junction since contrast polarity along vertical 
contours is reversed while contrast polarity along horizontal 
contours is preserved (see the magnified X-junction in the 
figure). In this case, the surface composed by the regions p and 
q (the bottom-left square) is always perceived as transparent and 

being in front according to their theory. This special case 
induced by the single-reversing junction was thus termed unique 
transparency. On the other hand, the X-junction in Figure 14B 
is classified as a non-reversing junction since contrast polarity 
along both horizontal and vertical contours is preserved. In this 
case, which surface is perceived as being in front remains 
ambiguous; sometimes the bottom-left square may appear to be 
transparent and in front, but sometimes the top-right square may 
appear to be transparent and in front. Thus, the perceptual 
transparency under this condition was termed bistable 
transparency. Finally, the X-junction in Figure 14C is classified 
as a double-reversing junction since contrast polarity along both 
horizontal and vertical contours is reversed. For the 
double-reversing junction, one barely experiences transparency 
perception. 

A B C

Unique
transparency

Bistable
transparency

No
transparency

a b
p q

a b
p q

a b
p q

 

Figure 14. Schematic explanation of the contrast polarity rule. 
 
   When blending a virtual object using the conventional 
blending equation (e.g. alpha blending), the resulting pattern 
often creates unique transparency such that the virtual object is 
always perceived as being in front (see X-junctions in Figure 
13). Thus, it would be ideal if we could find a new blending 
method that produces unique transparency such that a virtual 
object always appears to be behind a real foreground object. To 
create such a situation, however, we have to change the blending 
equation exactly at the border between a foreground region and 
a background region in the real scene because the contrast 
polarity at the edge of the foreground object must be reversed 
between outside and inside of the virtual object. Thus, unique 
transparency does not meet the purpose of this study since this 
kind of algorithm requires an accurate foreground mask. 
   In this paper, therefore, we focused on utilizing bistable 
transparency. This type of transparency can be easily obtained 
by a simple blending algorithm because contrast polarities at 
both edges around the X-junction are retained. As described 
above, the bistable transparency makes perceived depth ordering 
ambiguous, but previous studies showed that the probability that 
one surface is perceived as being in front of the other depends 
on contrasts between edges forming the X-junction [4], [10], 
[22], [23], [32]. If we know the behavior of the perceptual 
transparency as a function of contrasts around an x-junction, we 
will be able to control the perceived depth ordering of a virtual 
object. Thus, in this section we examine the situation and make 
a model of perceived depth ordering. 

3.2 Related works 
   Several researchers have already investigated how our 
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perception of transparency varies with luminance patterns 
around x-junctions by using stimuli inducing bistable 
transparency. For example, some previous studies [4], [22], [32] 
suggested the following tendency in perceived depth ordering: 
the more similar the lightness of abutting regions is to each 
other, the more often the surface composed by those abutting 
regions appears to be in front as a transparent filter. However, 
Delogu et al. [10] argued that a mathematical model 
incorporating this tendency alone could not explain their data. 
   In this study, we show that a model formulating the 
above-mentioned tendency in a more perceptually realistic way 
can explain the perceived depth ordering of various 
bistable-transparency patterns very well. 

3.3 Proposed model of perceived depth-order 
   Given a bistable-transparency pattern like Figure 15, the 
proposed model predicts the likelihood of occurrence of the 
perception that the left disk is in front of the right (left-in-front) 
as proportional to the following value ρ: 

ρ =
b− q − p− q
b− q + p− q

 
(10) 

where b, p, and q denotes lightness of each corresponding region 
in the pattern. The model basically indicates that the smaller the 
contrast between the left region (p) and the shared region (q) 
relative to the contrast between the right region (b) and the 
shared region (q), the larger the likelihood of “left-in-front” 
perception. Thus, the model is following the tendency suggested 
in [4], [22], [32]. The division by the sum of those contrast 
values (denominator) simulates the non-linear nature of the 
visual system (i.e., the visual system tends to overestimate the 
difference when the absolute levels of the contrasts are small, 
and underestimate the difference when they are large), which is 
not considered in Delogu et al.’s model [10].  
   We tested this model using a large number of 
bistable-transparency patterns in a psychophysical experiment. 
 

a
bp q

a
bp q

a
bp q

Type1 Type2 Type3

 
Figure 15. Three types of bistable transparency patterns. 
Bistable transparency patterns can be classified into three 
categories based on the contrast polarity along the edges of each 
region. 

3.4 Psychophysical Experiment 

3.4.1. Methods 
・	 Stimuli. A stimulus was composed of two disks of the same 

size (diameter was 5.1 deg). In the presentation we made the 
stimulus move horizontally in a symmetrical fashion because a 
previous study suggested that motion can reduce inconsistency 
in depth-order perception without distorting the mean 
response (Experiment 1 in [10]). For each presentation, the 
two disks first appeared at both sides of the screen. 
Immediately after the onset of the disks, the disks started 

moving horizontally toward the center of the screen. The 
movement of the disks was sinusoidally modulated and the 
disks reversed their motion direction when their center 
locations reached 0.63 deg away from the screen center. The 
disks disappeared when they returned to their initial onset 
locations. Thus, when the two disks were overlapping, the 
whole image of the stimuli had four different regions: 
background region (a), right-disk region (b), left-disk region 
(p), and shared region (q). When classified based on the 
contrast polarity along the edges of each region, each stimulus 
can be classified into 3 different types (Type1 to 3, see Figure 
15). Of all the 562 stimuli, 180 stimuli belonged to Type 1, 
208 stimuli belonged to Type 2, and 174 stimuli belonged to 
Type 3 of the bistable transparency pattern. We generated the 
stimulus patterns so that each luminance of the regions a, b, p, 
and q was independently and uniformly modulated in lightness 
domain. 

・	 Procedure. In each trial the stimulus was presented for 1.3 
seconds. After that a blank with a fixation point followed, 
during which time the observer performed a task of judging 
whether the left disk appeared behind or in front of the right 
disk by button press. However, the possible perceptual 
patterns were not restricted to those two alternatives. For 
example, the whole surface with a hole shaping a disk might 
be perceived as being in front. In this case and other such 
cases, the observer was told to cancel that trial by pressing the 
third button. The next trial started immediately after the 
observer pressed a key. In one session, 281 stimuli were 
randomly chosen from all of the 562 stimuli, and tested in a 
random order. The remaining 281 stimuli were tested in the 
next session. Twelve observers, who were unaware of the 
purpose of the experiment, (aged 22–42) completed 6 sessions. 
Therefore, 36 responses were collected for each stimulus. 

・	 Apparatus. Stimuli were presented in a dark room on a CRT 
monitor (Sony Trinitron Multiscan CPD-17SF9, 17 inch, 1024 
× 768 pixels, refresh rate 75 Hz, mean luminance 44.6 cd/m2). 
Each subject placed his/her head on a chin-rest and used both 
eyes to view the stimuli. The viewing distance was 86 cm. 

3.4.2. Results 
   We calculated the probability that the left disk was 
perceived as being in front of the right disk (%”left in front”) for 
each stimulus from the responses in the trials which the subjects 
did not cancel. The percentage of canceled trials in all the 
responses for each stimulus was 2.8% on average, and 22.2% at 
most. Because enough responses for calculating %”left in front” 
were obtained for every stimulus, we used the data from all the 
stimuli in the following analysis. 
   We examined how much the model defined in Equation 10 
can explain the data of %“left in front.” Here, we expected that 
lightness difference, not luminance difference, should be used as 
the contrast between the two abutting regions since lightness is 
the perceptually uniform scale. Here, we used the following 
equation to translate luminance into lightness: 

!l = ln  (11) 
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where l represents normalized luminance level (luminance 
divided by the maximum luminance 89.2 cd/m2), and l’ 
represents lightness value. We left the translation exponent be a 
free parameter and estimated the best one because what 
exponent best predicts the depth-order perception should also be 
an empirical matter. In order to estimate the best exponent as 
well as to establish a quantitative measure of goodness of 
prediction of the model, we fitted a sigmoid function (Equation 
12) to the data in logistic regression. 

y = 100
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x −m
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#
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(12) 

   The thick gray curve in Figure 16 shows the best-fit sigmoid 
function for the entire data set including all of the stimulus types. 
The best-fit parameters of the sigmoid function and R2 are 
shown in Table 2. The result showed that the proposed model 
can explain the data very well. The exponent obtained by the 
fitting analysis was 0.46. This is very close to the square-root 
exponent that was used to explain perceived lightness in some 
previous studies [41], [42]. Using the best-fit exponent n=0.46, 
we also fitted different sigmoid functions to different stimulus 
type data separately. The best-fit parameters of these sigmoid 
functions and R2s are also shown in Table 2. Those best-fit 
curves were very similar to each other, indicating that the visual 
system is indifferent to the stimulus types defined in Figure 15. 
 

%
 “Left-disk (surface pq) in front”
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Figure 16. % “left in front” plotted as a function of the relative 
contrast ratio ρ (Equation 10). The thick gray curve shows the 
best-fit sigmoid function for the entire data set. The red, green, 
and blue curves show the best-fit sigmoid functions for the data 
of Type 1, Type 2, and Type 3 stimuli, respectively. 

 
Stimulus type Best-fit parameters R2 
All n=0.46, m=-0.01, s=0.38 0.88 
Type1 m=-0.04, s=0.40 0.91 
Type2 m=0.00, s=0.39 0.90 
Type3 m=-0.11, s=0.35 0.89 

Table2. The results of the fitting analysis. 

3.5 Section Conclusion 
   To render a virtual object so that the virtual object appears to 
be behind a foreground region, we decided to utilize the 
bistable-transparency perception. In this section, we conducted a 
psychophysical experiment and estimated a model that can 
predict perceived depth order of bistable transparency patterns. 

The model indicated that the more similar the contrast between 
two abutting regions is to each other, the more often the surface 
composed by those abutting regions appears to be in front. The 
likelihood that the surface is perceived as in front was closely 
related to the perceived size of difference between the contrast 
within one surface and the contrast within the other surface. 

4. Semi-transparent visualization for occlusion 
handing 

   In the previous section, we estimated a model that can 
predict the perceived depth ordering of bistable-transparent 
layers. Based on this model, in this section we first propose 
“bistable-transparency blending,” which blends a virtual object 
on a real scene image such that the virtual object can appear to 
be behind the foreground region in the real scene. Then, we 
implement the semi-transparent visualization method, 
combining the bistable-transparency blending and the 
visibility-based blending proposed in the section 2. 

4.1 Bistable-Transparency Blending 
   We designed the algorithm of the bistable-transparency 
blending based on the model we estimated in the previous 
section. The simple bistable-transparency pattern used in the 
psychophysical experiment could correspond to a MR scene as 
shown in Figure 17. 
 

a
bp q
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Figure 17. Topological correspondence between the abstract 
stimuli used in the experiment and a MR scene. 
 
   To make a bistable transparency pattern, regions with which 
a virtual object is blended must consistently become darker, or 
inversely, consistently become brighter after the blending. As 
such blending equations, here we used multiplicative blending, 
which is as follows: 

€ 

IM Ir,Iv( ) = IrIv (13) 

and inversed-multiplicative blending, which is as follows: 

€ 

II Ir,Iv( ) =1− 1− Ir( ) 1− Iv( )  (14) 

where IM and II are the intensities resulting from each blending 
method, and Ir and Iv denote the intensity of a real-scene image 
and a virtual object, respectively. Here, the range of the intensity 
should be scaled within 0-1. Multiplicative blending applied to a 
real scene where the intensity of a foreground object is lower 
than that of the background leads to the type-1 pattern in Figure 
15. Multiplicative blending applied to a real scene where the 
intensity of a foreground object is higher than that of the 
background leads to the type-2 pattern in Figure 15. Likewise, 
inversed-multiplicative blending applied to a real scene where 
the intensity of a foreground object is lower than that of the 
background leads to the type-2 pattern in Figure 15. Finally, 
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inversed-multiplicative blending applied to a real scene where 
the intensity of a foreground object is higher than that of the 
background leads to the type-3 pattern in Figure 15. 
   Next, we introduced a new parameter λ to modify the 
blending results based on the model we proposed in the previous 
section. λ modulates transparency of a blended virtual object as 
follows: 

IM = λIrIv + 1−λ( ) Ir  (15) 

for multiplicative blending, and 

II = λ 1− 1− Ir( ) 1− Iv( ){ }+ 1−λ( ) Ir  (16) 

for inversed-multiplicative blending. Because our model 
predicts that the likelihood of “surface-pq behind” increases as 
the contrast |p-q| increases against the contrast |b-q|, we can 
monotonically increase the likelihood of “virtual behind” by 
decreasing λ.  However, we want the transparency of the virtual 
object to be as low as possible at the same time. Therefore, we 
choose the largest λ among those that can make %”virtual 
behind“ larger than 50%. 
   The calculation of λ is conducted as follows. In the case of 
the multiplicative blending, given the lightness of the virtual 
object Iv, the lightness of the background region of the real 
scene Ib, and the lightness of the foreground region of the real 
scene If, the lightness of the regions (b, p, q) can be described 
as: 

b = I f
p = λIvIb + (1−λ)Ib
q = λIvI f + (1−λ)I f

"

#
$

%
$

 
(17) 

In the case of the inversed-multiplicative blending, (b, p, q) can 
be described as: 

b = I f
p = λ 1− (1− Iv )(1− Ib )+ (1−λ)Ib{ }

q = λ 1− (1− Iv )(1− I f )+ (1−λ)I f{ }

"

#
$$

%
$
$

 
(18) 

By substituting those values into |p-q| ≥ |b-q| and solving the 
inequality for λ, we can find the largest λ that render the virtual 
object so that %”virtual behind“ is not less than 50%. In the case 
of the multiplicative blending, such λ is specified as follows: 

λ =min
Ib − I f
Ib(1− Iv )

,1
"

#
$

%

&
' ( if I f < Ib )

λ =min
I f − Ib

(2I f − Ib )(1− Iv )
,1

"

#
$$

%

&
'' ( if I f > Ib )

(

)

*
**

+

*
*
*

 

(19) 

In the case of the inversed-multiplicative blending: 

λ =min
Ib − I f

(1+ Ib − 2I f )Iv
,1

"

#
$$

%

&
'' ( if I f < Ib )

λ =min
I f − Ib
(1− Ib )Iv

,1
"

#
$

%

&
' ( if I f > Ib )

(

)

*
**

+

*
*
*

 

(20) 

   The next problem to consider is which of the two blending 
equation we should use. One of the important determinants to 
take into account is the visibility of the virtual object. In this 
paper, we defined the visibility as |a-p|, a contrast between the 

virtual object and the background region. In Figure 18, we show 
the values |a-p| as a function of various combinations of Ib and If. 
Here, Iv was set constant to 0.5, but the qualitative patterns of 
the results did not change depending on Iv.  
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Figure 18. Visibility of the virtual object as a function of (If, Ib). 
 
As shown in Figure 18, it is clear that the visibility becomes 
quite low when If > Ib in the case of multiplicative blending, and 
when If < Ib in the case of inversed-multiplicative blending. 
Thus, we used multiplicative blending when the intensity of the 
foreground region is lower than that of the background, and 
used inversed-multiplicative blending when the intensity of the 
foreground region is higher than that of the background. 
   As an overview, our blending method can be described as 
follows: 
1. Input If (lightness of a foreground region in the real scene 
image), Ib (lightness of a background region in the real scene 
image), and Iv (lightness of a virtual object). 
2. Selection of blending equation If If > Ib, multiplicative 
blending (Equation 15) is selected. If If < Ib, 
inversed-multiplicative blending (Equation 16) is selected. 
3. Determining the blending parameter λ   When the 
multiplicative blending is selected, λ is determined by Equation 19. 
When the inversed-multiplicative blending is selected, λ is 
determined by Equation 20.  
4. Output Using the blending equation selected in 2 and the 
blending parameter λ obtained in 3, the final blending between the 
virtual object and the real-scene image is conducted. 

4.2 Implementation and Experiment 
   Based on the bistable-transparency blending and the 
visibility-based blending, we developed a blending algorithm 
that is applicable to any real scene with any virtual object. Our 
method requires a probability map of foreground regions in the 
real scene, but the map does not need to be accurate. 
Theoretically, the probability map can be obtained by various 
ways including depth map, foreground segmentation, and 
optical flow. Hereafter we assumed that an image of the 
probability map, which shows the probability density of the 
existence of occluders at each pixel, is already obtained. 
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4.2.1. Implementation 
   Basically, the bistable-transparency blending provides the 
best blending results when a foreground or background region in 
a given real scene image has a single color. However, such a 
case is quite rare in the actual outdoor scene to which we want 
to apply our method. Thus, we overcame this limitation by 
applying our blending method in a pixel-wise fashion. The 
algorithm we propose here scans along pixels where virtual 
objects exist and calculates the best blending equation and 
parameter λ based on the information within a local window 
centered at that pixel. Since neighboring pixels share most of the 
pixels within their windows, the blending parameter varies 
smoothly over pixels. Even transition between different 
blending equations does not cause any noticeable problem in 
appearance because the virtual object becomes completely 
transparent at the area around the switching pixel. 
   Hereafter we show the details of our blending algorithm. Let 
(x,y) denote the current coordinates in the scanning pixels and 
let Pr, Pv, and Pm denote an image of a real scene, virtual object, 
and probability map, respectively. For each pixel at Pr(x,y), 
Pv(x,y), and Pm(x,y), the intensities within a square window of a 
specific size centered at that pixel are examined, and the 
averaged intensity of the virtual object Iv, the background region 
Ib, and the foreground region If at the current pixel are calculated 
as follows: 

€ 

Iv =
1
Av (p,q)

(p,q )∈W
∑

Pv p,q( )
p,q( )∈W
∑ Av (p,q)

 
(21) 

€ 

Ib =
1

1− Pm (p,q){ }
p,q( )∈W
∑

Pr p,q( ) 1− Pm (p,q){ }
p,q( )∈W
∑

 
(22) 

€ 

I f =
1
Pm (p,q)

p,q( )∈W
∑

Pr p,q( )Pm (p,q)
p,q( )∈W
∑

 
(23) 

where W denotes a group of pixels in the window, and Av 
denotes an alpha-channel array of the virtual objects’ image, 
which indicates the existence of a virtual object at each pixel 
(we assume that the virtual object is rendered on an off-screen 
frame buffer). Using those values as inputs for the 
bistable-transparency blending, the blending result at the current 
pixel (x,y) is obtained as: 

Pblend =
αPv (x, y)Pr (x, y)+ 1−α( )Pr (x, y),
α 1− 1−Pv (x, y){ } 1−Pr (x, y){ }"# $%+ 1−α( )Pr (x, y),

&
'
(

)(

if I f ≤ Ib

if I f > Ib

 
(24) 

   When most of the pixels in a window of the current pixel are 
within the foreground region, we blend the virtual object by the 
visibility-based blending proposed in section 2. One might think 
that we should not render the virtual object at all when it is 
completely occluded by the foreground region. In this work, 
however, we assume situations in which accurate and reliable 
foreground information is not available; it is possible that 
background scene is seen through gaps between leaves or 
branches even if the system judge that the area is covered by the 

foreground object. If we do not render the virtual object on such 
areas of the scene, the user might perceive the MR scene as if a 
part of the virtual object disappears around the foreground 
object. To keep showing a consistent MR scene, therefore, the 
virtual object should be always presented at least 
semi-transparently at a certain visible level. 
   By contrast, if all the pixels in a window of the current pixel 
are within a background region, the color of the virtual object is 
directly substituted for this pixel. To make a blending result 
smooth between these pixels and the other pixels, we introduce 
the next equation:  
Poutput x, y( ) = 1−ψin −ψout( )Pblend (x, y)+ψinPvis (x, y)+ψoutPv (x, y)  (25) 

where Poutput(x,y) is the final output of our blending algorithm at 
the current pixel (x,y). Pvis(x,y) is the result of the 
visibility-based blending at the current pixel (x,y). ψin and ψout 
are weight functions that switches different blending results 
smoothly. ψin and ψout are defined as: 

ψin = t(r;m, s)  (26) 

ψout = t(1− r;m, s)  (27) 

where  

t(x;m, s) =

0 if x ≤m− s

1
2
+
1
2
sin π (x −m)

2s
if m− s < x <m+ s

1 if m+ s ≤ x

#

$

%
%
%

&

%
%
%

 

(28) 

r =
Pm (u,v)(u,v)∈W∑
N

 

(29) 

In Equation 29, N denotes the number of pixels in the window. 
m and s are empirically given. 

4.2.2. Experiment 
   We tested our method using several static images of real 
scenes in which foreground objects can cause the occlusion 
problem. The resolution of the images was 640x480. Images of 
the probability map of foreground regions were manually 
generated, but we intentionally made it not so precise that they 
were not appropriate for usual methods that simply cut out the 
overlapping region from the virtual objects. In the experiment, 
we used a personal computer (OS: Windows 7, CPU: Corei7 
2.93 GHz, RAM: 8GB, GPU: nVIDIA GTX 550Ti 1024MB). 
The size of the averaging window (W) was 65x65. m and s (in 
Equations 26 and 27) were both set to 0.1. The target visibility 
of the visibility-based blending was set to 0.8. Because our 
algorithm proposed in the previous section calculates the 
blending parameter in a pixel-wise fashion, we could implement 
it on the programmable shader (GLSL). To keep an interactive 
frame rate, we slightly modified the algorithm so that it sampled 
every 4th pixel within a window when calculating If, Ib, and Iv. 
The actual frame rate depended on the number of pixels around 
and within a foreground region, but it worked at a frame rate 
higher than 60 FPS on most of the cases. 
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   The blending results are shown in the second column in 
Figure 19. Their neighbors to the right are images for 
comparison and were obtained without bistable-transparency 
blending. We made those results by just substituting the result of 
the visibility-based blending instead of that of the 
bistable-transparency blending in Equation 25. We also 
generated results in which the semi-transparent visualization is 
not used at all (the rightmost column). Although the borders 
between foreground and background are uncertain in the 
probability maps, the blending results obtained by our proposed 
method did not cause any sense of contradictory occlusion. On 
the other hand, the comparison results obtained without 
bistable-transparency blending (the third column) sometimes 
showed the impression of contradiction (i.e., the virtual object 
appeared to be in front of the foreground object). In the 
rightmost column, the virtual object appears to unnaturally fade 
away around the foreground region. Thus, when correctly 
segmented foreground information is not available, the proposed 
semi-transparent visualization works most robustly. 

4.3 Section Conclusion 
   Based on the model of perceived depth order of bistable 
transparency, we made the bistable-transparency blending that 
can effectively reduce the contradictory occlusion information 

in MR scenes. The proposed method blends a virtual object such 
that the virtual object is perceived as behind a foreground region 
in the real scene given only an obscured foreground probability 
map. The experimental results showed that our method is robust 
for an MR scene where very complicated foreground objects 
exist. By combining our method with a low-cost foreground 
detector, we will be able to make an MR application that can 
handle occlusion problems in arbitrary scenes in real time. 

5. Conclusion 

This paper proposed the semi-transparent visualization method 
for occlusion handling in MR scenes. In the section 2, we first 
developed the visibility-based blending, which render a virtual 
object semi-transparently with a constant and a uniform 
visibility on any arbitrary scenes. In the section 3, we conducted 
a psychophysical experiment and modeled the perceived depth 
ordering of partially overlapping semi-transparent surfaces. 
Based on the model, in the section 4 we developed the 
bistable-transparency blending, which blends a virtual object 
such that the virtual object appears to be behind a foreground 
region in a real scene. 
   Combining the visibility-based blending with the 
bistable-transparency blending, we implemented the 
semi-transparent visualization method, which renders a virtual 

Real scene /
Foreground
-probability map

With
bistable-transparency blending

Without
bistable-transparency blending Conventional method

 
Figure 19. Comparison between the proposed semi-transparent visualization method (images in the second column) and others 
(images in the third and the fourth column). 
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object semi-transparently with a constant visibility while 
modulating its lightness such that it appears to be behind 
foreground regions. We showed that the proposed method works 
robustly in cases where accurate foreground segmentation is not 
available. By combining our method with a low-cost foreground 
detector, we will be able to make an MR application that can 
handle occlusion problems in more arbitrary scenes in real time. 
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