Vol.35 No.7

Transactions of Information Processing Society of Japan

Regular Paper

Type Evolution in a Reflective Object-Oriented Language

IssaM A. HAMID' and SETSUO OHSUGA'!

This paper describes the design of the reflective concurrent object-oriented specification language
RMondel. RMondel is designed for the specification and modeling of distributed systems. It allows
the development of executable specifications which may be modified dynamically. Reflection in
RMondel is supported by two fundamental features that are: Structural Reflection (SR) and
Behavioral Reflection (BR). Reflection is the capability to monitor and modify dynamically the
structure and the behavior of the system. We show how the features of the language are enhanced
using specific meta-operations and meta-objects, to allow for the dynamic modification of types
(classes) and instances using the same language. RMondel specification can be modified by adding
or modifying types and instances to get a new adapted specification. Consistency is checked
dynamically at the type level as well as at the specification level. At the type level, structural and
behavioral constraints are defined to preserve the conformance of types. At the specification level,
a transaction mechanism and a locking protocol are defined to ensure the consistency of the whole

July 1994

specification.

1. Introduction and Motivations

The object oriented approach is known by its
flexibility for system construction. This is partly
due to the inheritance property which permits
class reuse and incremental construction of sys-
tems. We have developed a new object-oriented
specification language, called Mondel® that has
important concepts as an executable specifica-
tion language to be applied in the area of dis-
tributed systems. The motivations behind Mon-
del are: (a) writing system descriptions at the
specification and design level, (b) supporting
concurrency as required for distributed systems,
(c) supporting persistent objects and transaction
facilities, and (d) supporting the object concept.
Presently, our language Mondel has been
used for the development of executable specifica-
tions of problems related to network manage-
ment® and OSI directory system.”

In a wide spectrum of distributed applications,
software systems require modifications to accom-
modate evolutionary changes, particularly for
systems with a long expected lifetime (like
database systems). In general, evolutionary
changes are difficult to accommodate because
they cannot be predicated at the time the system

1 Department of Information Design, Tohoku Univer-
sity of Art & Design

Tt Research Center for Advanced Science & Technology,
University of Tokyo

1352

is designed. Therefore, systems should be suf-
ficiently flexible to permit arbitrary, incremental
changes. The evolution of such systems is
necessary to accommodate the evolution of
requirements and design decisions during the
software development and maintenance process.
We believe that software system modification are
most of the time incremental.?” They consist of
adding new functionalities or extending some
existing ones. In this paper, we consider that an
executable specification of a system is an imple-
mentation model of such system. Therefore, we
examine a method of supporting extensions of
distributed system specifications in the context of
the object-oriented specification language Mon-
del. A difficult and important issue is that of
making modification dynamically, without inter-
rupting the processing of those parts of the
specification which are not directly affected.
There has been little suggestion as to how such
dynamic modification should be specified
managed and controlled. For instance,
Database systems are mostly real world applica-
tions, and they are distributed system in nature.
Some part of those systems cannot stop running
because they are related to real world applica-
tion.'"” The model can be changed or evolved.
This change should be implemented as well. So
we cannot stop the system to allow the new
modification to be inserted. The new added
specification on the system should be checked

Vol.35 No.7

while the system is running. Therefore the
executable specification should be run continu-
ously to allow the system to be evolved with its
environment. Using reflection in Mondel lan-
guage, we can have a mechanism to allow the
dynamic modification of the executable
specification while the system is running. There-
fore the executable specification should be run
continuously to allow the system to be evolved
with its environment. Using reflection in Mon-
del language, we can have a mechanism to allow
the dynamic modification of the executable
specification while the system is running. It is
necessary to provide facilities for controlling
changes in order to preserve the specification
consistency. The specification consistency con-
cerns both, behavior and structure. We use a
transaction based mechanism and a locking
protocol to ensure that the specification remains
consistent after its modification. We describe
formal and systematic approach for extending
distributed system behavior specifications. The
semantics of the behavior specifications are
modeled by Labeled Transition Systems. The
approach consists of building a new behavior
specification S, by adding a new behavior
described by Siises to a behavior specification
Soa and avoiding the feature interaction problem.
Providing certain sufficient conditions, the newly
derived behavior specification S,.. extends Sou
and Suaes. To achieve our goal that is the
construction of dynamically modifiable
specifications we define a reflective object ori-
ented language called RMondel (Reflective
Mondel) which is based on the Mondel lan-
guage. Recently, reflection®” has gained wider
attention as indicated by the first and second
workshops on reflection and meta-level architec-
tures in object-oriented programming®® held in
conjunction with OOPSLAs '90 and 91. A
language is called reflective if it uses the same
structures to represent data and programs. In
conventional systems, computation is performed
only on data that represent entities of an applica-
tion domain. In contrast, a reflective system
contains another type of data that represent the
structural and computational aspects of itself.
The original model of reflection was proposed in
Ref. 20) following Smith’s earlier work,2 where
a meta-object is associated with each object in
the system to represent information about the im-

Type Evolution in a Reflective Object-Oriented Language 1353

plementation and the interpretation of the
object. Meta objects for object-based concurrent
systems must represent not only an object’s methods
and state but also, object communication pro-
cedures.®) To define a reflective architecture one
has to define the nature of meta-objects and their
structure and behavior. In addition one has to
show how the handling of objects communica-
tions and operations look up are described
at the meta-level.

A model specification consists of a type
(class) lattice where nodes represent types and
edges represent the inheritance relation. To
allow for the construction of dynamically
modifiable specifications, we need to access and
modify types during execution-time. Therefore,
we developed RMondel that uses meta-objects to
provide facilities for the dynamic modifications
of types. Reflection in RMondel is supported by
two fundamental features which are: structural
reflection (SR) and behavioral reflection (BR).
For SR we consider that a type is an object and
types are instances of other types. For BR a
meta-object called interpreter object is associat-
ed with each object at creation time. An inter-
preter object deals with the computational aspect
of its associated object. Specialized or different
versions of interpreters may be defined for
monitoring the behavior of objects, or for
dynamically modifying their behaviors.

In RMondel modifications are explicitly
specified by an agent to the specification. The
specification may be modified by the application
of modification transactions. In addition to the
means for specifying and performing changes, it
is also, necessary to provide facilities for control-
ling change in order to preserve specification
consistency. Consistency is checked dynamical-
ly at the type level as well as at the specifica-
tion level. At the type level, structural and
behavioral constraints are defined to preserve
the conformance of types. At the specifica-
tion level, a transaction mechanism and a lock-
ing protocol are defined to ensure the consistency
of the whole specification. Structural consistency
concerns mainly the compiling constraints, i. e.,
checking dynamically the static semantics rules
of the language is use. Behavioral consistency
deals with preserving the consistency of the
behavior. This concerns mainly some properties
of distributed systems such as blocking.

1354 Transactions of Information Processing Society of Japan

The paper is organized as follows : In section
2 we introduce RMondel, a reflective version of
Mondel, and show how dynamic type modi-
fications are supported. In Sec. 3 we give the
type definitions and their relationships used in
our RMondel. To preserve types consistency a
set of invariant is defined in Sec. 4. In Sec. 5 we
define a set of primitives which are used to modi-
fy the structure and behavior of type defini-
tions. A transaction mechanism and a locking
protocol which ensure the consistency of the
whole specification are given in Sec. 6. Sec. 7
discusses related works. Conclusions are given
in Sec. 8.

2. Configuration of Reflection in RMondel

So far, we have introduced primitives for
structural and behavioral modifications and
invariant for preserving types consistency. To
allow for the construction of dynamically
modifiable specifications, we need to access and
to modify types during execution-time.” In this
section, we give an overview of Mondel and its
characteristics. Then we discuss reflection as
supported in RMondel and show how dynamic
type modifications and dynamic checking of type
consistency are implemented using RMondel
facilities.

2.1 Mondel overview

We have developed Mondel: An object-
oriented specification language® with certain
particular features, such as multiple inheritance,
type checking, rendezvous communication
between objects, the possibility of concurrent
activities performed by a single object, object
persistence and the concept of transaction.
Mondel is particularly, suitable for modeling
and specifying applications in distributed sys-
tems.

-An identity ; Objects obtain a system wide
identifier when they are created. The identifier
of an object serves as a reference to it and is used
to refer to the object when it is passed as an
actual attribute to a newly created object, or as
a parameter or a result of operation.

-Attributes ; An object type includes a cer-
tain number of named attributes. Such that,
each object instance of that type have fixed
references to other object instances, one for each
attribute. An attribute can be declared non-
visible or internal.

July 1994

-Operations ; they define the functions and
procedures that the object can accept during
execution. The operations are externally visible
and represent actions that can be invoked by
other objects. An object have internal proce-
dures which can be called by other objects on a
rendezvous basis. Each operation declaration
(signature) is defined by its name, a list of
parameters and a result, if any. The types of
input and output objects required by an opera-
tion are often called the signature of an opera-
tion.

-Typing ; Mondel supports strong type check-
ing based on the declared object types. The type
consistency of the effective parameters of opera-
tion invocations and object instantiation can be
checked by a compiler. The language also,
includes an operator to dynamically determine
the type conformance relation between type
parameters.

-Behavior, which provides certain details as
constraints on the order of execution of opera-
tions by the object, and also determines prop-
erties of the possible returned results of these
operations by the object. Users observe object
“behavior” in terms of the operations that may
be applied to objects and the results of such
operations. These operations comprise an
object’s interface with its users. Changing the
state of an object means changing the collection
of object types that apply to that object. There-
fore, to change an object’s state, the applicable
object type must be identified. Object behavior,
therefore, is defined by its state-changing process
with respect to its structure. We call “behavior
of an object type” the information which known
about the execution of operations and the initial-
ization of a newly create object instance.

-Inheritance, Types can be related to each
other by means of the inheritance relation.
Mondel allows multiple inheritance where a
given type may inherit from several supertypes
as long as the inherited properties are without
contradictions. Class inheritance implements
the generalization hierarchy by making it pos-
sible for one class to share the data structure and
operations of another class.

A Mondel specification corresponds to a type
lattice. Tn such a lattice, nodes represent types,
and edges represent the inheritance relation.
The execution of a specification consists of a set

Vol.35 No.7

of objects that run in parallel. Each object has
its individual behavior which provides certain
details as constraints on the order of the execu-
tion of operations by the object, and determines
properties of the possible returned results of
these operations. Among the actions related to
the execution of an operation, the object may
also, invoke operations on other objects. Basi-
cally, communication between objects is syn-
chronous, based on rendezvous mechanism. The
basic statement of Mondel is the operation call,
which is syntactically represented by the “!”
operator. For instance, in the statement m/
InsertCoin (see line 27 of Fig.2), “m” desig-
nates the called objects, and InsertCoin is an
operation defined within the type of “m” (i. e,
the type Machine).

Mondel has a formal semantics which associ-
ates a meaning to the valid language sentences.
Such a semantics was defined based on the
operational approach. In this approach an
abstract machine simulates the real computer
role. The meaning of a specification is expressed
in terms of actions made by the abstract
machine. We have particularly, applied the
technique of Plotkin? where state/transition
systems are taken as machine models. the Mon-
del formal semantics was the basis for the veri-
fication of Mondel specifications,” and has been
used for the construction of an interpreter.’?

(a) Object structure and its semantics

In Mondel, the structure of an object is con-
sidered as a triple <Id, Bind, Stat>. Where Id is
a unique identifier generated for the object, Bind
is a binding which associates actual values to
formal attributes, and Stat represents the state-
ment being executed by the object. As an exam-
ple, we consider the following object type
definition :

type A=object with
Xx: B;
behavior
new C(x);
endtype A
Object instances of type “A” have an attribute
“x” of type “B”. Their behavior consists of the
single statement “new” which creates an instance
of type “C”. A particular instance of type “A”
could be represented as the following triple:
ddl, {id2/x}, new C(x)>, where idl is a unique
identifier generated for this object, {id2/x} is a

Type Evolution in a Reflective Object-Oriented Language 1355

binding which associates the object reference id2
to the formal attribute “x”, and new (x) repre-
sents the statement being executed by the object.
When “new C (x)” is executed the system state is
extended with a new object instance of type “C”.
The execution of a Mondel specification is

modelled by a set of states with transitions
between them, starting from a specific initial
state. The transitions are given by a transition
relation denoted “--”. The transition relation is
defined inductively by a set of inference rules.
The dynamic semantics of Mondel has therefore,
the two aspects of representation of states and
definition of inference rules. A state is a set of
active objects (as shown in the above example).
In general the semantics of an active object is
obtained by combining together several infer-
ence rules. As an example we show the rules
related to object creation. At the object level we
have the following rule :-

if

obj=<Id, T, Bind, new TypeName

(Idy, ---Idn)> (1)
fattr (TypeName) = AttrName,,
-+, AttrName, (2)
Bind = {Id/AttrName,,

<+, Ida/AttrName,} (3)
Newld =newsym (4)
Obj’= <Id, T, Bind, Newld> (5)
then
— (Obj, new (TypeName, Bind, Newld),

0bj’) (6)

This rule says, on line 6, that the object Obj
can execute the action new (TypeName, Bind,
Newld) and transforme into Obj" if the precon-
ditions of lines | to 5 are fulfilled. Line | defines
the structure, i. e., the state, that Obj must have.
On line 2 the function fattr yields for every type
name its ordered list of formal attributes. This
list is used on line 3 to define the binding of the
created object for which a new identifier is
generated on line 4 by the newsym function.
The newsym function is not in pure first order
logic and is introduced for the sake of simplicity.
It can be easily be translated into pure logic by
keeping track, from one state to another, of
identifiers in use. At last, line 5 defines the
successor state Obj” of the creator.

The full definition of object creation also,
requires a higher level inference rule defining the
transition from a set objects to a new set of

1356 Transactions of Information Processing Society of Japan

objects which will contain the new instance :-
if

S=A+{0bj} (1)
— (Obj, new (TypeName, Bind, Newld),
obj (2)
S’=A+{0bj’, {<Newld, TypeName, Bind,
getinitbeh (TypeName)> (3)
then
— (S, new (TypeName, Bind, Newld), S)
(4)

This rule defines on line 4, a state change of the
set of objects S on action new (TypeName, Bind,
Newld) with successor state S’. Line | describes
the structure of S which is a set of objects A plus
an object Obj. On line 2 we say that Obj is the
creator of the new object. Here we apply the
object level inference rule defined above. Line 3
defines the structure of the successor object set.
The function getinitbeh yields for every type
name the corresponding initial behavior.

(b) Conformance relation and inheritance

Mondel allows for a form of multiple inheri-
tance where a given type may inherit from sev-
eral supertypes, as long as the inherited prop-
erties are without conflict. The intention is that
an instance of a subtype can be used in any
specification context where an instance of one of
its supertypes can be used. Henceforth we call
this relation “conformance”: a subtype con-
forms to the more general supertype. There are
different aspects of object behavior that are
relevant to the conformance relation such as the
following.¥ (1) Set of Values: The set of
objects belonging to a subtype is included in the
set of objects belonging to its supertype. (2)
Attributes : A conforming object has (at least)
all the attributes defined for the more general
object type. The attributes may be more special-
ized (conforming). (3) Operation signatures :
A conforming object has (at least) all the opera-
tions defined for the more general object type,
where the operation result must be conforming

July 1994

and the input parameters must be inversely
conforming. (4) Behavior of operations: The
effect of the operations of the refined type satisfy
the requirements specified for the more general
object type.

(¢c) Object persistence and transactions

A Mondel specification has certain aspects
related to databases; in particular, persistent
objects can be accessed through the equivalent of
database queries. The concept of transactions
(atomic operations) is also supported to provide
distributed, fail-safe implementations of Mondel
specifications by using standard fault recovery
procedures developed for distributed databases.
Certain operations of objects may be declared as
“atomic”. If several atomic operations are
executed in parallel, they are assumed to be
executed in a serializable manner. The concept
of invariants, associated with the atomic opera-
tions concept, allow the specification of condi-
tions, such as conventional database integrity
rules.

2.1.1 Example of a Mondel specification

The following example will be used through-
out the paper. Let us consider a vending
machine which receives a coin and delivers
candies to its user, as shown in Fig.1l. We
distinguish two types of objects: the type
Machine and the type User, as shown in the
Mondel specification of Fig.2. The relation
between the Machine and the User is expressed
by the fact that the user knows the machine.
Such a relation is modeled by the attribute “m”
defined in the User type.

The behavior of the User type is specified
within the behavior clause as shown in lines 23
to 33 of Fig.2. The user is initially in a
Thinking state, and when he decides to buy a
candy he inserts a coin. After the coin has been
accepted, the user enters the GetCandy state.
Then the user pushes the machine’s button to get
a candy. Once the candy is delivered, the user

Machine

User

Accept InsertCoin

Accept PushButtonAndGetCandy

m! InsertCoin
GetCand

m! PushButtonAndGetCandy

Fig. 1 State/transition diagram of the vending machine

example.

Vol.35 No.7

Type Evolution in a Reflective Object-Oriented Language

G unit spec =

I type Machine = object with
2 operation

3 InsertCoin;

4 PushAddGetCandy;

5 behavior

6 Ready

7 where

8 procedure Ready =

9 accept InsertCoin do
10 return;

11 end;

12 DeliverCandy;

13 endproc Ready

14 procedure DeliverCandy =
15 accept PushAndGetCandy doj

16 return;
17 end;
18 Ready;

19 endproc DeliverCandy

21 type User = object with)
22 m: Machine;

23 behavior

24 Thinking

25 where

26 procedure Thinking =
27 m! InsertCoin;

28 GetCandy;

29 endproc Thinking

30 procedure GetCandy =
31 m! PushAndGetCandy;
32 Thinking;

33 endproc GetCandy

34 endtype User

(the vending machine system behavior)
35 behavior

36 define Amachine = new (Machine) in
37 eval new (User (Amachine));

1357

20 endtype Machine

39 endunit spec

38 end;
. J

Fig.2 Mondel Specification of the vending machine

example.

enters the Thinking state again. The behavior of
the Machine type is specified as shown in lines 5
to 19 of Fig. 2. The machine is initially in the
Ready state, ready to accept a coin. Once a coin
is inserted, the machine accepts the coin and
then enters the DeliverCandy state. After the
user has pushed the button of the machine, the
latter delivers a candy and becomes Ready to
accept another coin.

Note that object operations model the occur-
rences of events. The behavior of the vending
machine system is defined as the composition of
interacting objects (i.e., Machine and User
objects, see lines 35 to 38 of Fig.2). The
object’s behaviors are specified using a state
oriented style.® The internal state of an object
is modeled as a Mondel procedure.

2.2 Reflection in RMondel

In Mondel definition, computation is perform-
ed on data that represent entities of the real
world application. In the formalism used to
define the semantics of Mondel, types are static
and used as templates for object creation. Only
the instances of a type are considered as objects.
In order to modify types dynamically, types must
be objects. Therefore, types will be accessible
and may be modified during execution time. For
this purpose, reflection is a promising choice.

RMondel (Reflective Mondel), is a reflective
object-oriented concurrent language, where each
object is an instance of a type, and the type of an
object can be considered as its meta-object from

the structural reflection (SR) point of view
From the computational reflection (CR) poir
of view, each object has an associated interprete
object defined as an instance of the INTER-
PRETER type or of one of its subtypes. To
define a reflective architecture, one has to define
the nature of meta-objects and their structur
and behavior. In addition, one has to show how
the handling of object communications and
operations look up are described at the meta-
level.' In RMondel, types are used for struc-
tural description (i.e., for the definition of the
structure of objects and of applicable opera-
tions), and interpreters are used for the be-
havioral description (i.e., how the rendezvous
communication is interpreted and the operations
are applied) of their associated objects, called
referents. Types are considered to be structural
meta-objects, while interpreters are behavioral
meta-objects. Types and interpreters are
instances of the kernel types TYPE and INTER-
PRETER respectively. This approach shows
many advantages.

-Types are objects, instances of the type TYPE

which is defined at a meta-level.

-Operations for type modifications can be

defined at the meta-level (i.e., within

TYPE).

-An object behavior may be modified accord-

ing to the modifications of its type.

-An object behavior can be monitored by its

interpreter.

1358 Transactions of Information Processing Society of Japan

-New communication strategies can be defined
by creating subtypes or different versions of
INTERPRETER.

-Communication between the baselevel and

the meta-level is possible.

-The definitions of the structure and the

behavior of objects are dynamically acces-

sible.

In the following we introduce the enhance-
ments of the Mondel original language in order
to define the structural reflection (SR), and the
behavioral reflection (BR) that are the funda-
mental features of reflection in RMondel.

2.2.1 Structural reflection

Like in databases, to integrate data schema
and meta-schema,”® we need to design a meta-
schema which describes the class of acceptable
schemas for the data model in use. In RMondel
we have to consider also the behavior of objects.
In RMondel, the design of a meta-schema corre-
sponds to the design of a meta-model based on
Mondel type definitions.

In Mondel objects with the same properties
are grouped within the same type. In RMondel,
a type and its components such as attributes,
operations, and behavior, are considered as
objects which are instances of specific types,
called kernel types, as shown in Fig.3. This
allows for the access of the different components
of a type, and give more flexibility in order to
dynamically modify types. The structure of
RMondel is supported by instantiation and
inheritance graphs. The instantiation graph
represents the instance-of relationship, and the
inheritance graph represents the conforms-to
relationship. The objects TYPE (called CLASS

July 1994

in other language) and OBJECT are the respec-
tive roots of these two graphs.”

The structural reflection (SR) is supported in
a similar manner as in ObjVlisp.'" The Obj-
VLisp model addresses mainly the structural
aspects of reflection, whereas BR is not ade-
quately supported. In contrast to the ObjViisp,
we consider not only the structural aspect (i. e.,
SR) of reflection, concerning the language struc-
ture of object classes and instances, but we also,
address interactively the reflectivity for object
attributes, operations (methods) and behaviors.
This will make the implementation related to
dynamic adaptation more flexible and tractable
in comparison to ObjVliisp. The implementation
of dynamic behavior is possible when we con-
sider both the SR and BR in the language. For
example, a user may want to tune language
system to adapt to a specific application to
improve its efficiency. This case is difficult in
ObjVlisp, because the behavior of the run-time
kernel cannot be changed by the user. Tying the
behavioral aspects of modeling to the structural
aspects (as in our language) is very important.
Without this modeling integration, object-
oriented implementation would not be possible.
Also, for the BR, a meta object called inter-
preter object, is associated with each object at
creation time. A meta-object deals with the
computational aspect of its associated objects.
The SR concerns static structure of objects in the
system, while BR is directed toward dynamic
computational process. SR involves the semantic
domain elements such as objects and message
environments which constitute structural
aspects. BR concerns with semantic domain

Inherit

N
>

Appearsin

o Sl prry

AppearsIn

Fig.3 A meta-model of Mondel type definition.

Vol.35 No.7

elements such as environment, continuation, and
object table which appear as the arguments to
the valuation functions. The most important
aspect of SR in RMondel, is that each object is
an instance of a type, and types are objects. For
each object we introduce the attribute MyType
that links the object to its sype, as shown in Fig.
4. Another aspect of SR is that the RMondel
statements and expressions are objects. For

Type Evolution in a Reflective Object-Oriented Language

1359

instance, one can specify the operation call, and
accept statements as instances of the Opcall and
Accept types, respectively, as shown in Fig. 5.
Each statement object accepts the Eval/ opera-
tion, that implements the semantics rule associat-
ed with such a statement.

(a) The structure of RMondel objects

In RMondel, the structure of an object is
considered as a finite set of attributes represented

Meta..meta-level

Kernel types

TypeName
Behavior Def,

Operation

Attribute Statement

evel

——P®» instance-of relarionship
N\ J/
Fig. 4 Structural reflection basis.
(I
1 type Statement = OBJECT endtype Statement
2 type Expression = OBJECT endtype Expression
{Details on the definitions of the statement and expression objects are given in [Erra92)
3 type Accept = Statement with
4 OpName :string;
5 AcceptBody :Statement;
6 operation
7 Eval;
8 behavior
9 { semantics rule of the accept statement)
10 endtype Accept
11 type OpCall = Statement with
12 Callee : Expression; {restricted to object identifier, for simplicity}.
13 OpName : string;
14 operation
15 Eval;
16 behavior
17 {semantics rule of the operation call statement }
_18 _ endtype OpCall _)

Fig.5 Example of the specification of a subset of

RMondel statements.

1360 Transactions of Information Processing Society of Japan

by pairs. Each attribute is represented by a pair
(Nameyyi, Iduwwn) which is a substitution (i.e.,
binding) assigning an object identifier (Id.i) to
an attribute name (Name.«i). In the following,
we will use the term attribute to designate such
a pair. We have two types of attributes : initial
attributes and effective attributes.

(1) The initial attributes are :

(i) the unique object identifier, named Ob-
jecld, is commonly known as self. Such
identifier is generated automatically. For the
sake of readability we will consider that object
identifiers, for types are constructed by means of
the type name prefixed by “Id” (e. g., the type
Machine of Fig. 2 is identified by IdMachine).

(ii) the identifier if the type the object,
named MyType which is the type of the created
object.

(iii) the identifier of the object behavior,
named Behavior, which represents the initial
behavior of the created object. The value of the
Behavior attribute can change as the execution
of the object’s behavior evolves. It is important
to mention that an object’s behavior is also an
object.

(2) The effective attributes are separately

July 1994

created by the NewAttr operation defined in the
OBJECT type which defines the common
behavior of each object in the system. These two
kinds of attributes, initial and effective attrib-
utes, constitute the explicit definition of an
object in the following form:
O=<(Objectld, Ido), (MyType, Idiyp),
(Behavior, Tdoen),
{"'(N’dmeumi, Iduun), }>

where Ido, Idype and Tdeen designate the initial
attributes of the object O. The set {---, (Nameuu,
Iduuri),+++} contains the effective attributes of O.

(b) The kernel type specifications

In the following subsections we will describe
the components of RMondel structure. These
components consist of the kernel types shown in
Fig. 4.

(b.1) The type TYPE

The type TYPE initially exists in the system as
an instance of itsell. Tt defines the behavior for
types, €. g., the type Machine of Fig. 2 is created
as an instance of TYPE. Tt holds the effective
attributes TypeName, BehaviorDef, SuperType
etc--- which refer to the name of a type, the
behavior defined in such a type, its parent, etc.
Figure 6 gives a definition of the type TYPE.

ﬁ type TYPE = OBJECT with
TypeName :string;
BehaviorDef :var[Statement];

Attributes :set[AttributeDef];
Operations :set{Operation];
Procedures :set[Procedure];

LN s W

8 operation

9 New :OBJECT,

Il behavior
12 LookUpProc; «»

22 endproc LookUpProc

N\ endtype TYPE

SuperType :TYPE; { for simplicity, we consider here single inheritance only }

{ the operation New creates an object according to RMondel sructure }

<: (t: TYPE) : Boolean; { checks if a type t conforms-to with self }
{ the operation LookUp checks if the operation "OpName" is defined for an
object’s type or for one of its supertypes; then returns the associated statements.
The <: relation is the clousre of the inheritance relation. }

10 LookUp (OpName : string) : Statement;

where
13 Procedure LookUpProc =
14 Accept LookUp do
15 ifexist Op:Operation suchthat
16 Operations.contains(Op) and Op.OpName = OpName
17 then { let AcceptBody be the object of types Statement that is associated
with the operation defined by Op. }
18 return (AcceptBody);
19 else { recurse on supertypes }
20 return (SuperType! LookUp(OpName));
21 end;

~

Fig. 6 The definition of TYPE.

Vol.35 No.7

The LookUp and New operations are defined
within TYPE as shown in Fig. 6. The LookUp
operation is used to find an operation in the
called object’s type or in its supertypes. The
New operation allows for object (i. e., types or
instances) creation.

We assume that an instance of the TYPE type
object exist initially, it has as its type itself. The
structure of the TYPE object is :

<{(Objectld, IdTYPE),

(MyType, IdTYPE),

(Interpreter, nil), (Stat, &),

{(TypeName, “TYPE™), (Stat, IdS1)}> :
Where IdS1 is an object reference to the specified
behavior within the TYPE type definition,
among others, we find the New operation
definition. ¢ corresponds to the initial behavior
of the TYPE object. The object Stat refers to
the behavior definition within the type TYPE
(see Fig. 6). The TYPFE object is useful for the
creation of type definitions as well as their
instances. Moreover, user meta-types can be
defined by inheriting from the TYPE object, and
adding other features as shown in the following
simple example :
Consider the following type definition :

type PART=OBJECT with
Color: string ;
behavior

COLOR! print;

endtype Part

This type definition is represented by an
object of type TYPE, an object type Arribute,
and an object type Statement as follows :

{(Objectld, IdPART),
(MyType, IdTYPE),
(Interpreter, nil), (Stat, &),
{(TypeName, “PART"), (Stat, IdS1)}> ;
{(Objectld, IAATTR),
(MyType, IJATTRIBUTE),
(Interpreter, nil), (State, nil),
{(AttrName, “COLOR"),
(AtrTYPE, Idstring),
(Appearsin, IdPART) }> ;
Stat = {(Objectld, TdStat),
(MyType, IdOpCall),
(Interpreter, nil), (Stat, nil),
{(Callee, “COLOR™),
(OpName, “print™),
(Binding, nil)}> ;
The object Stat ; refers to the behavior definition

Type Evolution in a Reflective Object-Oriented Language 1361

within the type PART. If we assume an object
Pl which is an instance of type “PART” with
a “red” color, P1 can be represented as :
{(Objectld, 1dP1),
(MyType, IdPART),
(Interpreter, nil),
{(COLOR, Idred), (Stat, IdStat)}> ;

Idred refers to the string “red”. When IdPI
starts its execution, the name “COLOR” in the
behavior will be substituted by the actual value
Idred.

(b.2) The type OBJECT

OBJECT is the most general type. It
describes the common characteristics of all
objects. Each object is characterized by its
unique identifier, its type, its effective attributes
(i.e, binding) and its behavior. The type
OBJECT provides the NewAttr operation for
effective attributes creation. OBJECT is the
root of the inheritance graph. It is defined, using
Mondel as follows :

type OBJECT =with

Objectld . integer unique ;
MyType : TYPE,;
Behavior : var[Statement];

operation New : OBJECT ;
NewAttr (A : Attribute) ;
{A is the added attribute}
invariant
{the constraints which must hold to
maintain the system in a consistent
state. These constraints define the
consistency requirements of the
type lattice corresponds to the static
semantics rules checked by the
Mondel compiler.}
behavior
{specification of the semantics rule
of NewAttr}
endtype OBJECT
2.2.2 Behavioral reflection
Beside the structural reflection of our model,
the behavioral reflection (BR) must be re-
presented. There are two main aspects in the BR
model. First, it must describe the behavior of
objects using other objects. Second, it must
provide a method invocation protocol that will
allow the user to intervene on the current execu-
tion in order to modify the course of events, i. e.,
reflect. Therefore, we have associated an inter-
preter object (i.e., behavioral meta-object) to

1362 Transactions of Information Processing Society of Japan

each object as shown in Fig.7. An interpreter
object deals with the computational aspect of its
associated object called referent. Interpreter
objects are defined as instances of the type
INTERPRETER. An interpreter object may
have its own interpreter object ; thus the number
of interpreter objects is virtually infinite.
Specialized interpreters can be defined for
monitoring the behavior of objects or for dynam-
ically modifying their behaviors.

July 1994

PRETER, where the incoming calls of its refer-
ent can be recorded, is given in Fig.8. Such
specification shows how the rendezvous commu-
nication between objects is interpreted. One can
define new ways of handling the object commu-
nication by specifying subtypes or different ver-
sions of the INTERPRETER type. We can see
from the INTERPRETER definition that the
accept statement is an object. To avoid an
infinite loop of operation calls, the basic opera-

A possible specification of the type INTER- tion call (*!"") is used to define the semantics of
(" BE i i \
4 {yType OBJECT A 4 N\
INTERPRETER

RN
an object

RendezVousPlus

havior et

Mylnterpreter

&'\ o
Fig.7 BR and SR in RMondel.
("1 type INTERPRETER = OBJECT with A
2 referent :OBJECT,
3 NbCall :var[integer]; eee
4 operation { the operation RendezVousPlus interprets object communication }
5 RendezVousPlus (OpC: OpCall); *e*
6 behavior
7 RendezVousProc; sse
8 where
9 Procedure RendezVousProc =
10 Accept RendezVousPlus do { We can record the number of incoming calls of
the referent object }
11 IncrementNbCall;
12 { let AcceptBody be the object of type Statement that corresponds to
the called operation; then evaluate such a statement. }
13 define AcceptBody = OpC.Callee MyType ! LookUp(Op.C.OpName) in
14 { create a Context object which contains the callee attributes and
parameters binding }
15 AcceptBody ! Eval (Context);
16 end;
17 end;
18 RendezVousProc;
19 endproc RendezVousProc
20 Procedure IncrementNbCall =
21 { Increment NbCall }
22 endproc IncrementNbCall
___endtype INTERPRETER J

Fig.8 The definition

of INTERPRETER.

Vol.35 No.7

the accept statement.

To deal with interpreter objects, we add a
specific attribute, called MylInterpreter, to each
object structure. This leads to the modification
of the type OBJECT as shown in Fig.9. The
added attribute is optional because not all
objects need to have a specific interpreter. If the
value of the attribute is nil then a default inter-
preter is invoked. The OBJECT specification
becomes :

type OBJECT = with

Mylnterpreter : INTERPRETER

stands for optional}

endtype OBJECT

Then the structure of an RMondel object ; o
becomes :

0=<(Objectld, Ido), (MyType. Tdip),
(Mylnterpreter, Idincpreter) ,
(Behavior, Idpen),
{”'7 (Namemn, Tdauwi) }>
where the attribute (Mylnterpreter, Idincrpreter)
refers to the interpreter Idinerpreier Of the object o.
2.2.3 A simple RMondel interpreter
The definition of reflection in RMondel

opt ; {opt

Type Evolution in a Reflective Object-Oriented Language 1363

allows the access to the definition of an object’s
structure (i.e., its type) and to the language
statements which are objects. To access the
context of the execution of an object’s behavior,
we use the context objects (instances of the
context type) which contain the binding of
attribute names and local variables with values.
A context object is created to bind the actual
arguments of the operation call with the opera-
tion parameters. Local variables and attribute
are specified in the context object. The current
context is passed as an argument to the Eval
operation of a statement object of the body of
called operation (e. g., see lines 13 to 15 of Fig.
8). For instance, if the statement object is an
attribute reference, the identifier of the referred
attribute is retrieved from the context. Context
objects are managed based on the conventional
stack approach used for the processing environ-
ments of procedural programming languages.
Let us describe a simple RMondel Interpreter
(RMTI) which coordinates the execution of the
objects of a given RMondel specification. The
RMI has a global view of the existing objects,
i.e., the kernel objects and the objects of the
specification. According to RMondel semantics,

type OBJECT = with)
Objectld : integer unique;

MyType : TYPE;

MyInterpreter : INTERPRETER opt; { opt stands for optional }
Behavior : var[Statement];

operation

NewAttr (A: Attribute); { A is the added attribute)

behavior

{ specification of the semantics rule of NewAttr }
endtype OBJECT

N _J

Fig.9 The OBJECT definition with the attribute

MylInterPreter.

with

behavior

then

ore

endtype RMondel-Interpreter

.

(type RMondel-Interpreter = OBJECT

{ the RMondel interpreter selects an object O }
ifexist O: OBJECT suchthat
{ the behavior of O is an operation call }
O.Behavior.MyType < OpCall

if O.Myinterpreter <> nil
then O.Myinterpreter ! RendezVousPlus (O.Behavior)
else { the default interpreter is invoked }

Fig. 10 A simple RMondel interpreter.

1364 Transactions of Information Processing Society of Japan

which is based on state/transition systems,
objects are executed in parallel. Therefore, the
RMI selects an object and tries to fire a transi-
tion within the object’s behavior. The most
important transitions are operation calls. If the
called object has an associated interpreter, (i. e.,
the value of its attribute Mylnterpreter is not
nil) then the evaluation of the operation call is
delegated to this interpreter (see Fig.10). A
search for the called operation is performed,
within the type of the called object, by mean of
the LookUp operation. The LookUp operation
is defined at the meta-level within the type
TYPE. For LookUp operation definition see
lines 10 to 22 of Fig. 6.

3. The Specification
Their Relationships

Components and

Before addressing the problem of specification
modifications, an understanding of the speci-
fication model, its components and their relation-
ships is required. A specification is defined as
a type lattice system where nodes represent
types and edges represent inheritance relation.
Our interpretation of inheritance considers
both the structure and the behavior aspects.
In object oriented approaches; Subtype is a
specialized object type. All the properties that
apply to an object type apply to its subtypes.
A subtype has additional properties. For
example, all the properties of Person apply to
Man and Woman. The extension of a subtype is
a subset of a given object type’s set. (A more
general object type is called a supertype.)
Supertype is a generalized object type. An object
type with properties more general than its
subtypes. All the instances of an object type are
instances of its supertype, but not the other
way around.

In the following, we give the definitions of
types and the inheritance relationship as sup-
ported in our model, assuming all types are of type
lattice system.

Definition 1:

A type t consists of an interface I, and a
behavior B, t=<I,, B,>>.

Then I,= <A, OP.>where A, is the set of
attributes and OP, is the set of operations. B, is
the behavior specification of the objects of type
t. L]

Users observe object behavior in terms of the

July 1994

operations that may be applied to objects types
and the results of such operations. These opera-
tions comprise an object’s interface with its
users. A class specifies the data structure of
types for each of its types and the operations that
are used when accessing the types. The structure
of types, which corresponds to types’ interface,
are used as a basis for the traditional inheritance
scheme of object-oriented languages. Thus, a
type has a least all attributes and operations
defined for the more general type, where the
types of the operations result must be conform-
ing and the types of the input parameters must
be inversely conforming (see for instance¥).
Based on this aspect of inheritance we give a
recursive definition of the structural consistency
relation as follows.
Definition 2:
The type t'=< Ac, Ope>. Bv> is structurally
consistent with the type t=<A, Op>, B> if:
I. Ar2A¢ t" has at least all attributes of t.
2. For each operation o in OP, there is a
corresponding operation o in Opt’ such that :
-0 and o” have the same name.
-0 and 0" have the same number of parameters.
-The result type of o, if any is structurally
consistent with the result type of o.
-The type of the i-th parameter of o is structur-
ally consistent with the type of the i-th param-
eter of 0. (]
The following definition introduces our
notion of behavior extension. According to
Mondel formal semantics (see part a of subsec.
2.1), the behavior of objects is formally
specified by a translation to labeled transition
systems. Both RMondel and Lotos have their
formal semantics defined based on labeled tran-
sition systems. Therefore, if we ignore opera-
tions parameters, our definition of the behavior
extension corresponding to the extension rela-
tion defined for Lotos specification.'?
Definition 3:
The type t"= <l., Br> extends the type t=
<I,, B>, if the following properties are satisfied :
property 1. B, does what is explicitly al-
lowed according to B, (but is may do more).
property 2. What B¢ refuses to do (i.e.,
blocking), can be refused according to B, (B¢
may not refuse more than B,).]
The allowance defined in definition 3, means
that if By is acceptable only if it does not intro-

Vol.35 No.7

duce a cycle in the inheritance hierarchy. (This
acceptance is checked by the invarients given in
Sec. 4.) It is important to note that for many
authors the concept of inheritance is only con-
cerned with the names and parameter types of
the operations that are offered by the specified
type, e. g., in Emerland® and Eiffel.?? However,
there are other important aspects to inheritance
related to the dynamic behavior of objects,”
including constraints on the results of opera-
tions, the ordering of operations execution, and
the possibilities of blocking.” Therefore, our
definition of inheritance takes into account the
dynamic behavior of objects as follows :

Definition. 4:

A type t'= <I;, B/> conforms-to (i.e., <:) a
type t= <I,, B.> if: U is structurally consistent
with t and By extends B.. [

We denote by “<:” the conforms-to relation
introduced in Definition 4.

Corollary: The “<:” relation is a partial
order, i.e., reflexive, transitive, and antisym-
metric.

Proof: Evident. (this is because the “<:”
relation is the closure of the inheritance rela-
tion.)

YVt&T, where t is a type belongs to set of all
types T, then t=t (i.e., reflexive),

Vi, t, t3 if tt=t2 and tx==ts then ti=t; (i. e,
transitive),

Vt, t if ti=t: then t2#t, (i.e. antisym-
metric) .

The proof of this corollary becomes more
evident when we understand Sec. 4, and the
explanation given after Definition 5.

Definition 5:

An executable specification S is a triple
<T, <:, O> where T is a finite set of types, <: is
the conforms-to relation on T, and O is the set of
objects created according to their types in T.

(]

If type t” conforms-to type t then we say that t’
is a subtype of t and t is a supertype of t’. Types
can be related to each other by means of the
conformance relation. Currently, we restrict the
conformance relation to inheritance, that is a
type tl conforms to a type t2 (noted t1 <: t2) if
and only if there exist an instance of type IN-
HERT such that: i. Sub=tl and 1. Sup=12.
The INHERT type models the inheritance rela-
tion as follows :

Type Evolution in a Reflective Object-Oriented Language 1365

type INHERT =OBJECT with
Sub, Sup: TYPE;
endtype INHERT
The fact that a type tl inherit from a type 12 is
represented by an instance of the INHERT type
where Sub=tl and Sup=t2. The semantics of
the operation “<:”, defined within the TYPE
type, is given below based on the procedure
InheritFrom (t1, t2) which checks whether tl
inherits from t2. Such a procedure may be
defined recursively as follows :
procedure InheritFrom (tl, t2:
boolean —
ifexist I: INHERT suchthat
[. Sub=tl and I. Sup=12
then return true
else ifexist t3: TYPE suchthat
InhertFrom (tl, t3) and InheritFrom
(13, t2)
then return true
else return false
endproc InheritFrom
This works as validation rules for subtyping
types. As well as every type object is inherited
from other types, then the definitions 2-4 are all
terminated after they find for certain types what
is their inherited types in the lattice.

TYPE) :

4. Preserving Consistency

To maintain the conforms-to relation, we
deduce from the definitions of Sec. 3, a set of
invariant which must be satisfied by each type
and its related types in the lattice. These invar-
iant which will be used for dynamic type check-
ing after type updates. This set of invariants
define mainly the consistency requirements of
the type lattice, which corresponds to the static
semantic rules of Mondel. For instance, we
identify the following rules :

-The type lattice is seen a directed acyclic

graph. where the root is the OBJECT type,

and each node (a type) is reachable from the
root. Each type in the lattice has a unique
name.

-All attribute and operation names of a type,

whether defined or inherited are distinct.

-A type inherits all attributes and operations

from each of its supertypes.

In order to keep a system in a consistent state,
these invariants must be satisfied by each type
and its related types in the inheritance graph.

1366 Transactions of Information Processing Society of Japan

The invariants on type definitions are specified
by assertions within the specification of the Type
object (as shown in Fig. 13).

Using the definition of a type, as given in
Definition 1, we introduce a formal definition of
the invariants as follows:

(1) Type hierarchy invariant: the type hier-
archy (i. e. lattice) is a directed acyclic graph,
where the root is a system-defined type called
OBJECT, and each node (i. e, a type) is reacha-
ble form the root. Each type in the hierarchy has
a unique name.
VY tl, 22T with 11 <:t2, then
Ft3&T such that 12<:t3 and 13<:tl.
(2) Distinct attribute names invariant . All
attribute of a type, whether explicitly defined or
inherited are distinct.
Y attrl, attr2& A, such that attrl = (al:
t1) and attr2= (a2: t2)
{attri= (ai: ti) means: ai is the attribute
name and ti is the attribute type)
then al =a2=attrl =attr2
(3) Distinct operation names invariant . All
operations of a type, whether explicitly defined
or inherited are distinct.
V opl= <opnamel, [pl: tl, -, pi: ti,
pn: tn], [rl]>,
op2= <opname2, [pl’: tl’, ---, pi’: t¥,
-pn’:tn’], [r2]>< Opt, []
means optional
then opnamel —opname2=opl—=
op2
(4) The instance-of invariant . Each object
is an instance of a type.
VieO, FtET such that i is an instance of
t.
(5) Full Inheritance invariant:A type inherits
all attributes and operations from each of its
supertypes.
(5.1) For attributes :
Yil, 2T with t1 <: 12,
Yattri= (ai: ti) € Aqg,
Tattrj= (aj: tj) €Ae such
that ai—aj and ti<:j
For operations:

Y opi= <opname;,

[pl:tl, -, p/: t/, ~:pn: tn],
[r1]>&0ptl

3 opj= <opname;,

Tpl : tl, -=pl”: tl’, ---pn’: tn’],
[r2]><0pt2

(5.2)

July 1994

such that opname;= opname;
op: and op; have the same name.
(the co-variant rule holds)
r1<:r2 the result of opi con-
forms to the result of opj.
and (the contravariant rule
holds)
p/=pl for [=1, ---, n param-
eter names are the same.
t/"<:tl for I =1, -, n param-
eter types are inversely con-
forming.

These invariants must be preserved by each
type and its related types in the lattice. They are
checked when an object is created and after type
updates. This check works as validation rules
for subtyping types updates. Also, because each
type is inherited types in the lattice, this con-
forms that the definitions 2-4 are terminated
because, each type is inherited from other
subtypes.

5. Primitive Operations for Type Modi-
fications

In the following we give a classification of
type modifications that are supported in our
language, and we provide the description of
their semantics. In comparison with the classifica-
tion of the class modifications in ORION?
which considers structural modifications
only. Our approach considers those type
modifications, both structure and behavior, that
lead to new types which conform to old ones.

5.1 Structure modifications

We have three categories of updates: (1)
updates to the contents of a node in type lattice
(e. g., addition of an attribute/operation), (2)
updates to an edge in the type lattice (e.g.,
addition of an edge), and (3) other updates of
the type lattice (e.g., add a node). These
updates may be performed on a type T as long
as the obtained type T is structurally consistent
with T (according to Definition 2). The seman-
tics of these update operations are as follows :

(a) Add an atribute A 10 a type T : This
update allows the user to append an attribute
definition to a given type definition. We suppose
that the added attribute A causes no name
conflicts in the type T or any of its subtypes.
Name conflict is not addressed here, but may be
avoided in a similar way as in Ref. 12).

Vol.35 No.7

(b) Change the type TI of an attribute A
by the type T : We assume that the type T of an
attribute A can only be specialized to a type T/.
This update is allowed only if T/ conforms-to T.

(c) Add the operation O to the type T :
This update allows the user to append the opera-
tion O to the type T. we suppose that the added
operation O causes no operations name conflicts
in the type 7 or any of its subtypes.

(d) Change the signature S of the opera-
tion O :

(i) Change the type T of the parameter p in
S: This update allows the change of the type T
of the parameter p in S, to become T'. This
update is allowed only if 7 conforms to 7.

(i) Change the type T of the result, if any,
of the operation O: This update allows the
change of the type T of the result to become of
type T’. This update is allowed only if T’
conforms to T.

(e) Make a type S a supertype of type T :
This modification is allowed only if it does not
introduce a cycle in the inheritance hierarchy.
The attributes and operations provided by S, are
inherited by 7 and by the subtypes of T.

(f) Add a new type T : If no supertype of
T is specified, then the type OBJECT (i.e., the
root of the type hierarchy) is the default super-
type of T. If a supertype is specified, then all
attribute and operations from the supertype are
inherited by T. The name of the added type T
must not be used by an already defined type.
The specified supertype of T must have been
previously defined.

5.1.1 Repercussions of type changes on

existing instances

Transforming all instances whose type has
been modified seems like the most natural
approach for dealing with change propagation.
In this subsection we analyze the impact of each
type modification on existing instances. In some
cases instances need to be converted so that their
structure matches the description of the type they
belong to.

(a) Add an attribute to a type : This leads
to the logical addition of the attribute to all
instances of the type and to those of the subtypes
inheriting the attribute. A nil value is given by
default to the added attribute. The nil value is
an instance of the most specialized type NONE
which is compatible with any type.

Type Evolution in a Reflective Object-Oriented Language 1367

(b) Change the type TI of an attribute A
defined within a type T : We have seen that the
type T/ of an attribute A can only be changed
into T2 which conforms to 7T7. Therefore,
instances- of the type 7" are not affected by this
change because the operations accepted by the
instances of 7/ remain accepted by those of 72.

(¢) Add the operation O to the type T
and/or change of the operation signature:
There is no impact on the existing instances of
the type T. Operations appear only in the type.

(d) Make a type S a supertype of type T :
This update involves the addition of the inherit-
ed attributes to T’s instances and to T’s subtypes’
instances. In this case, the impact on the
instances of T is the same as all changes above.

(e) Add a new type T : There is no impact
because T is new and has no existing instances.

5.2 Behavior modifications

For the modification of the behavior of types,
we consider those modifications which extend
the existing behavior to meet new requirements
according to the constraints of Definition 3.
This is similar to the notion of incremental
specifications proposed for a subset of basic
LOTOS language.”¥ However, Lotos was not
concerned with an object-oriented approach. In
comparison with Mondel, Lotos processes are
anonymous while Mondel objects are uniquely
identified. Lotos process are statically linked
using the parallel composition operators. How-
ever, a Mondel object obtain dynamically the
identifier of another object, by means of an
attribute or an operation parameter, in order to
communicate with it.

The behavior of objects is dependent upon
preserving structural consistency. For instance,
when an operation is called on an object, the
associated code to be executed is determined by
the object’s type or supertypes. Additionally,
once the operation code is located, its implemen-
tation is dependent on the called object’s struc-
ture. This structure has to be present in all
objects that are instances of the type where the
operation is defined. Therefore, changes to the
type interface may lead, in most cases to changes
in the behavior. We distinguish two kinds of
behavior modifications : those related to the
interface changes, and those not affecting the
interface.

Behavior related to

changes interface

1368 Transactions of Information Processing Society of Japan July 1994
(type Modified-Machine = Object with type User = Object with
operation m: Modified-Machine;
InsertCoin; behavior
PushAndGetCandy;, |
procedure GetCandy =
m!
behavior PushButtonAndGetCandy;
Ready ; -
where
procedure Ready= Thinking
accept InsertCoin do return; end; endproc GetCandy
DeliverCandy;
endproc Ready, endtype User
procedure DeliverCandy =
accept PushAndGetCandy do return; end; . InsertCoin
(accept GetGift do return; end;) InsertCoin
Ready; PushAndGetCandy
endproc DeliverCandy PushAndGetCandy
endtype Modified-Machine GetGift,
Before After
Labeled transition system diagram
_ before and after modification J

Fig. 11

changes:

The possibilities of behavior modifications,
presented here, are based on some basic lan-
guage constructs which are the sequential,
choice, and parallel composition operators.
Note that, we consider only finite behaviors for
the behavior modifications presented in this
section. This restriction simplifies the checking
of the extension relation. We will describe the
allowed behavior modifications using the vend-
ing machine example.

(a) Sequential composition : Suppose that
we want to modify the vending machine
specification to deliver a gift to its user after each
purchase. We modify the type interface of the
type Machine by adding the GetGift operation.
The code associated to the GetGift operation is
added in the Machine’s behavior definition in
sequence with the existing behavior (as shown
in Fig.11). This modification is allowed
according to the extension relation of Definition
3. Therefore, any object of the modified type
Machine accepts the PushAndGetCandy opera-
tion as any object of the initial type Machine.
An object of the modified type Machine does
not block where an object of the initial type
Machine does not.

An existing behavior may involve into a new
behavior by appending another behavior to the
existing one. The consistency of this modifica-
tion is guaranteed by the conforms-to relation

Behavior modification by sequential composition.

given in Definition 4.

(b) Choice composition : Tt has been shown
that the choice operator does not guarantee
subtyping,’? because non-determinism may be
introduced. For instance, the combination of
recursion and choice may lead to a violation of
the second property of Definition 3. Also, if two
behaviors are combined by the choice operator,
and these two behaviors have non-empty inser-
tion of their initial actions, then non-
determinism is introduced. In the following we
distinguish two cases :

-Deterministic case: We can introduce the
behavior associated with an added operation
using the choice composition operator. Suppose
that we want to modify the vending machine of
Fig. 2, in order to allow its user to buy either a
candy or chocolate. The PushAndGetChocolate
operation is introduced by mean of the choice
operator as shown in (a) of Fig. 12. For the
extension relation, both properties of Definition
3 are satisfied. Therefore, an object of the
modified type Machine, accepts the same opera-
tions in the same order as any object of the
initial type Machine. Also, the behavior of an
object of the modified type Machine, does not
block where an object of the initial type
Machine, does not. We conclude that the behav-
ior, defined in the modified type Machine,
extends the behavior defined within the initial
type Machine.

Vol. 35 No.7

Type Evolution in a Reflective Object-Oriented Language 1369

1 : f
I
C Ch
Ca Ca
Before After
(a)

Machine Machine2
| W

_ Before
. I T |
C Ch Ca Ch
~——
Machine Machine2 Machine
Before After
(b)

I = InsertCoin

12 = InsertCoin2

Ca = PushAndGet Candy
Ch = PushAndGet Chocolate

Fig. 12 Labeled transition system for behavior change.

-Non-deterministic case : Let us consider the
type Machine2, defined in a similar way as the
initial type Machine, that delivers chocolate.
We will modify the initial Machine in order to
also, provide the behavior defined by the
Machine2. The behavior obtained as the combi-
nation of the initial Machine and the Machine?
behaviors, does not satisfy the second property
of the extension relation. This is because the
behavior of the modified Machine introduces
non-determinism as shown in (b) of Fig. 12.
This non-determinism is illustrated by the exis-
tence of two branches with the same initial
action (i.e., InsertCoin operation). The intro-
duced non-determinism can be removed by com-
bining the initial common actions, this lead to
the same specifications as in (a) of Fig. 12.

(c) Parallel composition: Two types of
behavior may be composed, using the parallel
composition operation, to obtain a new behav-
ior. The new behavior, whose construction is
base on the pure interleaving semantics (i.e.,
independent parallelism). preserves the ordering
of constraints of actions of the two initial types
of behavior. This kind of modification is guar-
anteed by the conforms-to relation as well. In
this case, we want to modify the initial machine
by combining its behavior with the behavior of
the second machine, using the parallel operator.
The obtained machine should behave like both
machines, it should deliver both candies and
Chocolate. The labeled transition system dia-
gram of the resulting machine, shown in (c) of

Fig. 12, is constructed based on the pure inter-
leaving semantics (i.e., independent parallel-
ism) where the ordering constraints of actions
must be preserved. We conclude that the behav-
ior obtained by the parallel composition present-
ed above (i.e., using sequential, choice and
parallel operators), can be easily inferred from
those given'? for Lotos specifications. An addi-
tional operator may be provided to construct
only the allowed behaviors described above. An
algorithm for behaviors decomposition is given
in Ref. 7)

Behavior changes not affecting the type inter-
face :

Another aspect of type modification is perfor-
mance enhancement. These modifications have
no impact on the type interface of the modified
type. In this case only the implementations of
the operations, are modified. Therefore, the
modified behavior provides the same services as
the old behavior. These modifications should
not lead to behaviors which block more than the
old behavior, and naturally, both structural
consistency and behavior extension are preserv-
ed.

5.3 Dynamic type modification and consis-

tency checking

In the following we show how the RMondel
facilities are used for dynamic type modifica-
tions, and dynamic checking of type consistency.

5.3.1 Primitives for dynamic type modi-

fications

Figure 6, shows the type TYPE used to imple-

1370 Transactions of Information Processing Society of Japan

July 1994

4 type TYPE = OBJECT with

TypeName :string;
BehaviorDef :var[Statement];
SuperType :TYPE;
Attributes :set[AttributeDef];
Operations :set{Operation];
Procedures :set[Procedure];
operation
AddAttr (A: AttributeDef);
AddOper (O: Operation);
AddProc (P: Procedure);
AddStat (S: Statement);

Invariant

behavior
LookUpProc; see
where

_ endtype TYPE

"Inv1" {attributes must have distinct names }
[Forall al, a2 : AuributeDefinition such that;
Attributes.contains(al) and SuperType.Attributes.contains(a2)]
(al.AttrName <> a2 AttrName)

{ The semantics definition of the modification operations. }

~

Fig. 13 TYPE specification

with invariants and

modification operations.

ment two important aspects of reflection, which
are instantiation and operation look up. To
support dynamic type modifications in RMon-
del, we modified the type TYPE by adding a set
of primitive operations such as AddAttr, Add-
Oper, etc. The resulting TYPE is given in Fig.
13. Note that one can define a subtype, let say
Modifiable-Type, of Type in order to hold the
primitive operations. For example, let T be a
type. In RMondel, T is a type as well as an
instance of TYPE. Consequently, T accepts the
operations defined in TYPE. For example, it
accepts the operations AddAttr to add an attrib-
ute to its own attributes. Existing instances of
type T are modified according to the AddAttr
operation semantics as defined in subsection 5. 1.

5.3.2 Dynamic checking for type consis-

tency

In Section 4, we defined a set of invariant
which are used to ensure the consistency of the
type structure after modifications. To perform
dynamic checking of type consistency, we incor-
porate these invariant, into RMondel, within the
invariant clause of the type TYPE. An example
of such invariant definition is shown in Fig. 13.

Let us consider the type T again. Since T is
an instance of TYPE, the invariants defined in
TYPE must always hold for T, especially when

T is first created and after any possible modi-
fication. For example, if we attempt to add to T
an attribute definition which has the same attri-
bute name as an inherited one, the invariant Inv/
in Fig. 13, prevents the completion of this modi-
fication.

5.4 Consistency at the specification level

The modification of the structure and behav-
ior of types must be done in such a way that no
type checking errors, run-time errors, blocking,
or any other uncontrollable situation may occur.
Therefore, the semantics of type changes should,
ensure that a type t to be modified leads to a type
t" which conforms to t. However, does the
conforms-to relation guarantee the consistency
of the whole specification? In the following we
address the issues of the whole specification
consistency, and of the dynamic checking of
structural consistency and behavior extension.

Structural Aspect : The main question here
is : if we replace a type definition t by t’ in some
specification S, where t" is structurally consistent
with t, does the resulting specification S’ remain
consistent with respect to S? The specification S’
is consistent with respect to S, the structural
point of view, if the modification of a type
interface in S does not lead to a run-time error.
Therefore, the obtained specification S’ remains

Vol.35 No.7
B2 N
Bul Bt2' extends B2
a c ¢ a
b d d e

Fig. 14 Labecled transition systems of Btl, Bt2, and Bt2’.

consistent because of the invariants discussed
before, which must always hold. This assertion
can be proved according to assignment and
parameter passing where type checking is impor-
tant.

Behavioral aspect : Similarly, if we replace t
by t" such that the behavior defined by t’ extends
the behavior defined by t, does S’ extends S?
The answer is in general no, as shown by the
following counter example : consider the behav-
ior of S, which is defined by the parallel compo-
sition of two behaviors Bt and Bt2, where Btl is
defined by a type t1 and Bt2 is defined by a type
2. Suppose we extend Bt2 to obtain Bt2’ as
shown in Fig. 14. Now if we compose Btl with
Bt2’, to obtain S, the resulting behavior blocks
with respect to action a, whereas the original
specification S is free of deadlock.

We conclude that the extension of a part of a
specification does not imply the extension of the
whole specification. Before incorporating the
change to the specification, we have to check
dynamically for the specification consistency.
Therefore, in the following we use a transaction
mechanism and a looking protocol, which are
well known for database, to ensure the whole
specification consistency.

6. The Transaction Mechanism

In this section we define a transaction mecha-
nism which is used to realize the dynamic check-
ing of structural and behavioral consistencies at
the specification level.

6.1 Locking protocol

In order to allow for dynamic modifications of
a given specification without interrupting the
processing of those parts of the specification,
which are not directly affected by the change, we
define a locking protocol to isolate the parts of
the specification, which are affected by the
modifications. This protocol also ensures the
mutual exclusion of concurrent transactions.

Type Evolution in a Reflective Object-Oriented Language 1371

(create -) —\

activate

passivate H

unlock

update

- _/
Fig. 15 Object state/transitions.

This protocol is incorporated within the transac-
tion mechanism described in the next subsection.

According to the updates of a type T, its
existing instances must be converted according-
ly. When a type has to be updated, its instances
must be locked until the type modifications are
accomplished. 1If the updates do not succeed,
e. g, because of invariant violation, then the type
will be rolled back to its state before the updates,
and the instances will be released to pursue their
behavior progress. In the case where the type
updates succeed, the instances will be converted
accordingly, and released to continue their nor-
mal progress. Each object can be active, passive
or locked as shown in Fig. 15. Initially, an
object is in a passive state if it is not involved in
a current transaction (e.g., an objects in a
passive state after its creation). When the object
is involved in a transaction its state becomes
active (e. g., the object is asking, by means of
operation calls, for other objects’ services). An
object in a passive state may be locked for the
purpose of an update (e.g., object conversion
after its type modification).

The fact that a specification is organized as a
type lattice has a major impact on the locking
protocol. The modification operations may
involve a type and all its subtypes (e. g., if we
have to add an attribute to a type, then the
structure of its instances and of the instances of
its subtypes has to be modified). Thus not only
the instances of the modified type must be
locked, but the instances of its subtypes as well.
Therefore, we define a type sublattice to be a
type and all its direct and indirect subtypes in
the type lattice.'” To update a type, we adapt the
X lock mechanism'® to be applied for a type
sublattice. That is when a type has to be
modified, a lock is set not only on the type itself,

1372 Transactions of Information Processing Society of Japan

but also, on each of its descendant types on the
type sublattice. The instances of a locked type
will be locked until their type becomes un-
locked. Figure 15, shows the possible states and
transitions of an object with respect to
modifications. Objects (i. e., either types or their
instances) can be modified only when they are
locked.

6.2 The transaction steps

The user formulates his requirements within a
transaction which consists of type update opera-
tions. We use the concept of transaction to
provide fail-safe implementations of specifica-
tions by using standard fault recovery proce-
dures developed for database systems.'® A trans-
action consists of several successive modifica-

tions of one or more types. The following steps

show how the different actions (i.e., those in-
volved in a type updates) work and lead to a con-
sistent specification. These steps are represent-
ed through the different levels, by the heavy dot-
ted lines in Fig. 16.

Step 1: Transaction construction : Through the
interface object, the user formulates a transac-
tion (called an atomic operation in Mondel) as
an operation call, specifying his requirements
(i.e., in terms of operations for type modi-
fications). The transaction is composed of a set
of primitive operation calls (i. e., redefined primi-
tives for type modifications as shown in Fig.
13) which are defined at the meta level within

July 1994

TYPE.

Step 2: Checkpoint . This step consists of sav-
ing the state of the type sublattice and all objects
of those types in the sublattice. Then, apply the
locking protocol to prevent inconsistent use of

.the type to be modified and of its instances. The

locking protocol is also applied recursively to
the subtypes of the modified type, sand to their
instances.

Step 3: Modifications performed : This step
consists if performing the changes as specified by
the transaction. The old definitions of the types
involved in the change are saved within the
previous step. The modifications are performed
on these types without changing their identities.
Therefore, we do not need to recompile the
specification.

Step 4: Structural consistency checking and
SR : The checking consists of maintaining the
structural consistency, after the type modi-
fications, according to the invariant defined within
the type TYPE. Such invariant corresponds
mainly to the static semantic rules of the lan-
guage. If the structure of a specification (i. e., modi-
fied or newly constructed specification)
does not comply with those invariant, then the SR is
used to reflect the anomalies to the previous
level (i. e., meta-level) in order to inform the user
of which part about his transaction does not sat-
isfy the invariant. Then the user has to modi-
fy his transaction through the meta-level (from

. j Metal Level

'ype object level

<

-

MyInterpreter

T

e

Fig. 16 Reflection-based mechanism.

Vol.35 No.7

Type Evolution in a Reflective Object-Oriented Language

1373

(type Machine = object with
operation
(same as in Fig.2.)

C PushAndGetCho]colatej
behavior
Ready
where
procedure Ready=

accept InsertCoin do return; end;

choice
DeliverCandy;
or DeliverChocolate;
end;

endproc Ready

procedure DeliverCandy =
(same as in Fig.2,)
endproc DeliverCandy

procedure DeliverChocolate =
accept PushAndGetChocolate do
return;
end;
Ready;
endproc DeliverChocolate

endtype Machine

Fig. 17 Modified vending machine system of Example 1.

step 1), in order to make the specification com-
ply with the invariant.

Step 5: Behavioral Conformance checking :
The behavioral conformance deals with the
dynamic behavior of objects as introduced in
Definition 3. According to the behavior modi-
fications, if any we need to check dynamically
that the modification of the behavior of an object
does not introduce new deadlocks in the overall
specification. Among the existing approaches
for deadlock detection (e. g., program transfor-
mation, simulation, reachability analysis) we
use a dependency graph and the reachability
analysis techniques widely used for the valida-
tion (e. g., deadlock detection) of communication
protocols.3¥3% A dependency graph is construct-
ed based on the relation of dependency between
types. A type tl depends on a type t2 if the
former uses one or more operations of the
later. If the extension relation is violated, e. g, a
deadlock is detected, then the system reports the
inconsistencies and the type must be revised
again.

Step 6: Instances conversion: When the type
modification transaction succeeds, (i.e., the
structural consistency and the behavioral confor-
mance relations hold) then the instances (locked
previously), at the ground object level, must be
converted to remain conform with their modified
type. The conversion of the instances according
to the semantics of each type evolution primitive
operation, is described in Ref. 8).

Step 7: Transaction commit : In this step. the
transaction commits and the type sublattice and
the instances are unlocked, after their modi-
fications, and enter their passive state.

6.3.1 Example-1

Let us consider the vending machine example
for which a specification was given in Fig. 1.
Suppose now that we want to modify the initial
machine to deliver candies or chocolates, instead
of candies only. This imply that we have to
modify the type Machine and the type User,
accordingly. For this purpose we have to
modify both interface and behavior defined of
the initial Machine. 1In the following we will
show how the modifications are performed upon
the type Machine, according to the different
steps of the mechanism described earlier. For
the type User the modification can be done in a
similar way. To the Machine’s interface, we add
the operation “PushAnd GetChocolate”, and
for the behavior we modify the procedure Ready
by modifying the procedure body as shown in
Fig. 17.
Step 1: The user formulates the atomic opera-
tion (i.e. a transaction) using RMondel state-
ments. In Fig. 18 we give a possible specification
of an atomic operation (see line 2 of Fig. 18).
The user formulates his atomic operation using
the predefined kernel types (e.g., Procedure,
Statement, etc.) to create the necessary objects
(see lines 4 to 12 of Fig. 18). The type Machine
which is an instance of TYPE. Among the
actions of the wupdatesMachine atomic opera-
tion, we have the AddOper (i.e., to add an
operation) call on the type Machine. The
AddOper call takes the operation to be added as
a parameter (see lines 12, 13 of Fig. I8).

Another change, is to modify the body of the
procedure Ready of the initial specification,
accordingly. The procedure defined in the ini-

1374 Transactions of Information Processing Society of Japan

July 1994

4 1 type TransExample = Object

operation
2 updateMachine: atomic;
behavior
accept updateMachine do

wob W

10 end;
11 end;

16 end;

17 end;

18 return;

19 end;

20 end;

21 endtype TransExample

{Let Machine be the object type Machine of Fig.2, which is an instance of TYPE }

{ Let ProcReady be the object of type Procedure where the procedure body is a

a statement object of type Sequence. ProCall and Choice are predefined kernel

types for procedure call and choice statements, repectively. }

6 define DeliverCand = new ProCall ("DeliverCandy");

7 DeliverChoc = new ProCall ("DeliverChocolate”) in

8 define CanOrChoc = new Choice (DelivCan, DelivChoc) in
9 ProcReady.ProcBody.Stat2:= CanorCho;

12 define op = new Operation ("PushAndGetChocolate") in
13 Machine! AddOper(op);

14 define ProcChoc = new Procedure (.......)in

15 Machine! AddProc (ProcChoc);

\

Fig. 18 A transaction for the type Machine updates for

Example I.

tial specification, is a sequential composition
where the first statement is “accept InsertCoin
do return; end;” and the second statement is
the procedure call “DeliverCandy”. Now we
change the second statement by the new added
statement of type Choice (i.e., “choice Deliver-
Candy or DeliverChocolate” as shown in lines 6
to 10 of Fig.18). Then an instance of the
predefined kernel type Procedure, is created to
hold the “DeliverChocolate” procedure as
shown in lines 14, 15 of Fig. 18.

Step 2: This step consists of applying the lock-
ing protocol to prevent inconsistent access to the
type (and its instances) under modification.
Then the states of the type Machine and its
existing instances are saved. This is done
implicitly according to the atomic operation
semantics, to allow a roll back in the case where
the atomic operation aborts.

Step 3: The changes are performed on the type
Machine as specified in lines 6 to 17 of Fig. 18.
Step 4 and Step 5: Structural consistency and
Behavioral conformance checking : At the end
of the transaction, just before the return of the
atomic operation (see line 18 of Fig. 18), the
predefined invariant must hold for the type
Machine after its modification. The invariant
are triggered automatically to ensure the consis-

tency of the Machine structure. In this stage, the
SR will have a role because if the user adds
certain information which does not produce the
specification’s needed structure, then there will
be a reflection from the object type level to the
meta level represented as SR. This type of
reflection informs the user at the meta level
which part of his/her specification should be
re-modified/updated such as to make it in line
with the structure needed by the specification. It
is obvious from the resulting Machine’s
specification shown in Fig. 17, that the structural
consistency as defined in Sect. 4 is preserved.
The addition of the operation “PushAndGet-
Chocolate” in a choice composition as shown in
Fig. 17, preserves the behavioral conformance
requirements according to Definition 3.

Step 6 : At the end of the transaction, and after
both structure and behavior are checked, the
existing instance of the type Machine has to be
converted accordingly. In this example, the
modification (i. e., addition of operation) has no
impact on the structure of the existing instances
if any. Because the added operation appears
only within the type Machine, the instance
behavior evolve dynamically when they become
unlocked. Another example is given below, to
show the dynamic modification.

Vol.35 No.7

6.3.2 Example-2

In order to allow for the construction of
dynamically modifiable specifications, we need
to have access, and to be able to modify type
definitions during run-time. For the dynamic
modification of type definitions, we need to
define some primitive operations within the
object TYPE, which allow the modification of
types. To add a new operation to a type
definition T, we have to call the addOper opera-
tion with the specification of the added opera-
tion given as parameter value. This can be
written as: T/AddOper (Ol), where OI is an
object reference to the added operation. Recall
that T was created as instance of TYPE. The
invariants defined in the invariant clause,
ensures that the semantics of such added opera-
tion is specified within the behavior clause. We
remark that the invariants define within TYPE
play an important role to maintain consistency
between all the component of a type definition.
Now after the addition of the operation OI, each
newly created instance of T, can accept such an
operation. We give below an example to sup-
port this explanation.

In Fig. 19, we give another supporting exam-
ple of a Mondel specification. The described
example consists of a system switch composed of
unreliable pieces of equipment and a controller.

failure
.H - repair .

Initial system specification of Example 2.

Fig. 19

Type Evolution in a Reflective Object-Oriented Language

1375

Initially the system is in a working state. When
a failure occurs, the system status changes to the
failed state. The system remains in the failed
state until the failed equipment is repaired.
Initially an equipment is in a working state.
When a failure occurs, a signal (operation call)
is sent to the controller and the equipment enters
a failed state as shown in Fig. 19. This example
will be wused to illustrate the dynamic
modification of specifications using RMondel.
An equipment is either in a working state or in
a failed state. The RMondel specification con-
sists of the definition of two object types (as
shown in Fig. 19)

Practically, the specification of the switch
system is not complete. Such system is vulner-
able, because if a failure occurs in one equip-
ment the system will be down until the equip-
ment is repaired. To increase its system reliabil-
ity, we introduce a standby equipment that will
substitute the failed equipment. With such
modification to the original system specification,
the system can be in a protected state when a
standby is available.

The introduction of this standby equipment
will involve some modification to the system
behavior as well as to the piece of equipment.
When a failure occurs, a switching phase ensures
the replacement of the failed equipment by the
standby equipment. Two alternatives are pos-
sible : if the standby detects no problem, the
original piece of equipment enters a failed state
and the switching phase is complete. The system
then moves to the unprotected state. If the
standby also, detects a failure, the conclusion is
that the malfunction origin is not the piece of

I type controller = object with
2 operation

failure; repair

4 behavior

5 working

6 where

w

7 Procedure working =
8 accept failure do

9 failed;

10 end;

11 endproc working

12 Procedure failed =
13 accept repair do
14 working;

I5 end;

16 endproc failed
_ 17 endtype controller

~

18 type equip = object with
19 ¢ controller;
20 behavior

21 working;

22 where

23 Procedure working=
24 c! failure; failed;

25 endproc working

26 Procedure failed =
27 ¢! repair; working;
28 endproc failed

29 endtype equip

Fig. 20 A Mondel specification of Example 2.

1376 Transactions of Information Processing Society of Japan

equipment. Then, the system moves to the
breakdown state. The system requires service
and may be restarted in the protected state. The
system status may change from unprotected to
failed if either another piece of equipment fails
or the standby fails. The system remains in the
failed state until either a piece of equipment or
the standby is repaired. Figure 20, shows the
state transition diagram of the new system
configuration.

Let us show how the user can construct a new
specification based on the existing one (shown
in Fig. 21). The construction of the new system
specification involves the addition of many
objects and the renaming of other objects. For
instance, the states protected, switching, and
breakdown, shown in the state/transition dia-
gram are specified as procedures within RMon-
del specification. Such procedures must be
created as new objects of the Procedure type.
The Procedure type is a predefined kernel object.
The Procedure type modelizes the definition of
procedures which consists of a procedure name,

July 1994

specification (see line 7 in Fig. 21) is renamed to
become the procedure unprotected as shown in
line 32 of Fig.22. Also, the body of the proce-
dure working is replaced by a new object of the
Choice type as shown in line 33 of Fig. 22
(choice is a kernel object type that represents the
choice construct of RMondel). This new object
is built out of a set of other objects that repre-
sents the statements of the different alternatives
of the choice as shown in Fig. 22.

e ™

swilchfail

repair

standby repair
a list of optional parameters, and a procedure — e J
body. The procedure working in the initial Fig. 21 New updated system specification of Example 2.
(1 type controller = object with i 32 procedure unprotected =)

2 s: standby; ¢ 33 choice
3 operation i 34 accept failure do
4 restart; failure; standbyfail; i35 return; failed;
5 switchfail; switchsucc; i 36 end;
6 repair; standbyrepair; 037 or
7 behavior i 38 accept standbyfail do
8 (*initialisation *) {39 return; failed;
9 protected, i 40 end,
10 where 41 or

i 42 accept repair do
11 procedure breakdown = 43 s! repair; return;
12 accept restart do P44 protected;
13 return; protected; i 45 end;
14 end, 46 or
15 endproc breakdown {47 accetp standbyrepair do

HE] return; protected
16 procedure protected = i 49 end;

i 50 end;

17 accept failure do

18 ! failure; return; switching i 51 endproc unprotected
19 end,)
20 endproc protected t 52 procedure failed =
© 53 choice
21 procedure switching = P54 accept repair do
22 choice i 55 return; unprotected;
23 accept switchsucc do i 56 end;
24 s! switchsucc, return; unprotected; | 57 or
25 end, i 58 accept standbyrepair do
26 or P59 return; unprotected;
27 accept switcfail do i 60 end;
28 s! switch; return; breakdown; i 61 end;
29 end; i 62 endproc failed
30 end; 63 endtype controller
_3! endproc switching '

Fig.22 New updated Modified specification of Fig. 21.

Vol.35 No.7

To maintain the consistency of the speci-
fication construction, a set of constraints defined
as invariants within TYPE object specification
must be satisfied. We distinguish three catego-
ries of invariants (as given in Sec. 4) : general
invariants, type definitions invariants, and the
inheritance invariants. For instance, the “accept”
switchsucc “statement in line 23 of Fig. 22, can-
not be validated by RMondel system while the
switchsuce operation is not defined within the
controller type as shown in line 5 of Fig. 22.
For this purpose, the user has to add the switch-
succ operation definition by using the addoper
defined within the TYPE object. Because the
controller type is an instance of TYPE, then it
can accept the ADDOper to add the switchsucc
to the set of defined operations. To complete
the construction of the new specification of the
switch system, the user must create and add
other objects that represent states {procedures)
and transitions (operation calls and acceptance).
Such objects are added using the same mecha-
nism described above. It is important to note
that all the modification must be realized as an
atomic operation (transaction) to ensure a valid
construction of the new specification. This
validity is governed by the set of predefined invari-
ants as mentioned before. After the construction
of the new specification, the user can invoke a
verifier to check the correctness of the added
object behavior. This concerns the verification
of certain properties such as termination, the
absence of deadlocks, and the specific properties
of the specified problem. We have a verifier
developed for the verification of Mondel
specification.¥ This verfier has been considered
to be adapted for RMondel specifications.

7. Related Works

In the area of object oriented databases, class
modifications have been extensively, studied in
the recent literature.?'2:29:20 The available
methods determine the consequences of class
changes on other classes and on the existing
instances, so that possible violations of the integ-
rity constraints can be avoided. These
approaches deal mainly with sequential systems
and have focused on preserving only structural
consistency. In our approach, we address both
the structural consistency and behavioral exten-
sion. For the behavioral extension we deal

Type Evolution in a Reflective Object-Oriented Language 1377

mainly with the behavior of objects and we
consider some properties of distributed systems
such as blocking. Moreover, we use reflection
which provides a flexible and uniform environ-
ment for dynamic type specification as well as
their modifications using specific meta-operation
and meta-object. Another work on class
modification using meta-operation is that of Ref.
18), where a lazy evaluation method of schema
evolution which minimize the amount of object
manipulation is proposed. However, Ref. 18)
does not address the issues of behavioral confor-
mance and the transaction mechanism which are
central to our work.

Kramer and Magee have addressed the prob-
lem of dynamic change management for dis-
tributed systems.'” Their approach focuses
mainly on changes specified in terms of the
system structure and provides a separate lan-
guage for changes specification. Qur approach
deals with type modifications and uses one lan-
guage to specify types and their changes. Unlike
their approach, which concentrate on the logical
structure of a system, we consider the dynamic
behavior of a specification and we take into
account the inheritance property which is inher-
ent to the object-oriented aspect of our language.
The unit of change in our model is a type
(class), instead of a module.

8. Conclusions

Dynamic type modification is an interesting
and challenging research problem. Object-
oriented systems in conjunction with reflection,
allow us to approach this problem that conven-
tional systems have not been able to address.
We have developed RMondel, a reflective con-
current object-oriented specification language,
based on the Mondel language designed for
distributing systems modeling and specification.
The objective of RMondel is to allow the devel-
opment of dynamically modifiable specifica-
tions. We have shown the fundamental features
of RMondel, mainly the structural reflection
and the behavioral reflection. Then we have
explained how the features of the language are
useful for dynamic modification and construction
of valid specification. We have illustrated through
an example how the language allows dynamic
modifications. Therefore, the user of this lan-
guage can modify his/her specification by ad-

1378

ding new objects and types to get a new adapted
specification. A redefined set of constraints
allow to maintain the structural consistency and
behavioral conformance of the modified
specification. The allowed modifications lead to
new types which conform to the old ones.

RMondel provides an elegant manner for
dynamic type modifications. Tt also, gives an
interesting framework based on formal seman-
tics, to develop adaptable CASE tools for
executable specifications development. RMon-
del framework may be easily adapted for other
object-oriented languages. The Mondel lan-
guage has already been implemented on Sun
workstation using prolog language, and used for
writing and simulating the specifications of the
OSI directory system, and the personal commu-
nication services. The choice of Prolog was
made because it was easy to translate the formal
semantics rules of Mondel to Prolog predicates.
A verifier based on a Petri net approach is also
implemented at the University of Montreal, and
a prototype of RMondel is under development.
Our future research focuses on how and under
which conditions the modifications to a given
specification may be performed upon an imple-
mentation within the same transaction. The
modification must be done in a way to preserve
the conformance relation between the implemen-
tation and its specification. We are also, con-
sidering the development of a version control
mechanism in order to keep track of the evolu-
tion history of an evolving specification.

Acknowledgment : This research is joint
research project sponsored by the Ministry of
Education, Science and Culture of Japan, Inter-
national Scientific Research Program.

References

1) America, P.: A Behavioral Approach to
Subtyping in Object-Oriented Programming
Languages, Phlips Journal of Research, Vol.
44, pp. 365-383 (1990).

2) Banerjee, J., Kim, W. and Korth, H. F.: Seman-
tics and Implementation of Schema Evolution
in Object-Oriented Databases, Proceedings,
ACM SIGMOD Int’l Conf. on Management
of data, SanFransisco., CA, pp. 311 322 (May
1987).

3) Barbeau, M. and v.Bochmann, G.: Formal
Semantics and Formal Verification of Object
Oriented Specification Based on the Colored
Petri Net Model, submitted to IEEE Trans. on

Transactions of Information Processing Society of Japan

4)

6)

7

10)

1)

16)

17)

18)

July 1994

Software Eng.

Black, A., Hutchinson, N., Jul, E., Levey, H.
and Carter, L.: Distribution and Abstract
Types in Emerland, IEEE Trans. on Soft. Eng.,
Vol. SE-13, No. . pp. 65-76 (1987).

v. Bochmann, G.: Inheritance for Objects with
Concurrency, Publication Departmentale # 678,

Departement TRO, Université de Montréal
(Sept. 1989).
v. Bochmann, G., Barbeau, M., Erradi, M.,

Lecomte, L., Mondain-Moval, P. and Wiliams,
N.: Mondel: An Object-Oriented Specification
Language, Publication Departmentale # 748,
Departement RO, Université de Montréal
(Nov. 1990).

Erradi, M., v. Bochmann, G. and Hamid, I. A.:
RMondel: A Reflective Object-Oriented
Specification Language, The ECOOP/OOPSLA
90 First Workshop on: Reflection and
Metalevel Architectures in Object-Oriented Pro-
gramming, Ottawa (1990).

Erradi, M., v. Bochmann, G. and Hamid, 1. A.:
Dynamic Modifications of Object-Oriented
Specifications, CompEurop '92, TEEE Int’l
Conf. on Computer Systems and Software Engi-
neering (May 1992).

Erradi, M., v. Bochmann, G. and Dssouli, R.:
Framework for Dynamic Evolution of Object-
Oriented Specifications, Networking and Dis-
tributed Computing, (La revue Réseaux et In-
formatique Répartie), Vol. 4, No.2, pp. 360-
378 (1992).

Brinksma, E. and Scollo, G.: Lotos
Specification, Their Implementations and Their
Tests, Protocol Specification, Testing and
Verification VI (IFIP Workshop, Montréal,
1986), North-Holland Publ., pp. 349- 360.
Cointe, P.: Metaclasses Are First Class: The
objVLisp Model, OOPSLA 87, ACM, Sigplan
Notices 22, 12, pp. 156-167 (1987).

Delcourt, C. and Zicari, R.: The Design on an
Integrity Consistency Checker (ICC) for an
Object Oriented Database System, ECOOP 91
(1991).

Ichikawa, H., Yamanaka, K. and Kato, J.:
Incremental Construction of LOTOS Speci-
fication, PSTV 90, pp. 185 200 (1990).
Ferber, J.: Computational Reflection in Class
Based Object-Oriented Languages, Proc. of
OOPSLA 89,0ct. 1 6,1989, pp. 317-326 (1989).
Gary, J.: Notes on Database Operating Sys-
tems, IBM Research Report: RJ2188, IBM
Research San Josee, California (1978).

Gary, J.: The Transaction Concept: Virtues
and Limitations, /EEE Proc. Conference on
Verification Languages and DataBases,
Cannes, pp. 144-154 (Sept. 1981).

Kramer, J. and Magee, J. : The Evolving Philos-
ophers Problem: Dynamic Change Manage-
ment, [EEE Trans. on Software Engineering,
Vol. 16, No. |1, pp. 12931306 (1990).

Tan, L. and Katayama, T.: Meta Operations

Vol.35 No.7

for Type Management in Object-Oriented
Databases—A Lazy Mechanism for Schema
Evolution—, Proc. of the Ist Int’l Conf. on
Deductive and Object-Oriented Databases
(Oct. 1989).

19) Milner, R.: A Calculus of Communication
Systems, Lecture Notes in Computer Science,
No. 92, Springer-Verlag (1980).

20) Maes, P.: Concepts and Experiments in
Computational Reflection, OOPSLA ’87, ACM
Sigplan Notices 22, pp. 147-155 (1987).

21) Meyer, B.: Object Oriented Software Construc-
tion, Hoare, C. A.R. Series Editor, Prentice
Hall (1988).

22) Rudkin, S.: Inheritance in LOTOS, 4th Int’l
Conf. of Description Technigues, FORTE 91,
pp. 415-430 (1991).

23) Penney, D. J. and Stein, J.: Class Modification
in the GemStone Object-Oriented Databases,
OOPSLA 87, pp. 111-117 (1987).

24) Plotkin, G.D.: A Structural Approach to
Operational Semantics, Aarhus University,
Report DAIMI FN-19 (1981).

25) Smith, B.C.: Reflection and Semantics in a
Protocol Programming Language, Ph. D., The-
sis, MIT, MIT/LCS/TR-272 (1982).

26) Skarra, A. H. and Zdonik, S.B.: Type Evolu-
tion in an Object-Oriented Databases, Research
Directions in Object-Oriented Programming
(Wegner, P. and Shriver, B. (eds.)), MIT Press,
pp- 393-415 (1987).

27) Stefik, M. and Bell, D. G.: Object-Oriented
Programming : Themes and Variations, MIT
Press, pp. 40-62 (1985).

28) Vissers, C., Scollo, G. and v. Sinderen, M.:
Architecture and Specification Style in Formal
Descriptions of Distributed Systems, Proc. IFIP
Symposium on Protocol Specification,
Verification, and Testing, Atlantic City (1988).

29) Ibrahim, M. H.: ECOOP/OOPSLA 90 Work-
shop on Reflection and Metalevel Architecture
in Object-Oriented Programming, Ottawa (Oct.
1990).

30) Ibrahim, M. H.: ECOOP/OOPSLA *91 Work-
shop on Reflection and Metalevel Architecture
in Object-Oriented Programming (Oct. 1990).

31) Wegner, P.: Concepts and Paradigms of
Object-Oriented Programming, OOPS Messen-
ger, Quarterly Publication of the ACM SIG-
PLAN, Vol. 1, No. 1 (1990).

32) Williams, N.: Un Simulateur Pour un Lan-
guage de Spécification Orienté-Object, Msc. the-
sis, Université de Montréal (1990).

33) Zafiropulo, P.: Protocolvalidation by Duo-
logue-Matrix Analysis, IEEE Trans. on Comm.,
Vol. COM-26, No. 8, pp. 1187-1194 (1978).

34) Zaho, J.R. and v.Bochmann, G.: Reduced
Reachability Analysis of Communication Pro-
tocols: A New Approach, Proc. IFIP Work-
shop on Protocol Spec. Testing and
Verification, North-Holland Publ., pp. 234-254
(1986).

Type Evolution in a Reflective Object-Oriented Language) 1379

(Received September 27, 1993)
(Accepted January 13, 1994)

Issam A.Hamid was born on
May 1955. He has graduated from
the Faculty of Engineering of the
University of Manchester, Eng-
land, on 1979. He received his
Master, and Doctor degree in Infor-
mation Engineering from Tohoku
University, on 1985 and 1988, respectively. He then
joined the Large Computer Center of Tohoku Uni-
versity as research associate. He moved to the Univer-
sity of Tokyo, Research Center for Advanced Science
and Technology (RCAST) on April 1989 as Assistant
Professor. On December 1989, he moved to join the
Department of Information and Operational
Research (IRO) of the University of Montreal,
Canada as visiting Professor. Currently, he is an
Associate Professor in the Department of Informa-
tion Design of Tohoku University of Art & Design,
Yamagata, Japan. He is also, research consultant at
the CRIM (Computer Research Institute of
Montreal) Canada. He contributed in several research
projects in Montreal for Dynamic Information Mod-
eling using Objet-oriented programming. His
research interest is on Artificial Intelligence, dynamic
modification of information system, and highly par-
allel computation. He is a member of IEEE and IPSJ.
He is a committee member of Tohoku-branch of
IPSJ. :

Setsuo Ohsuga is currently a
| professor in the Research Center
for Advanced Science and Technol-
ogy (RCAST) atthe University of
Tokyo. He has been director of
RCAST. He has also been. presi-
[dent of the Japanese Society for
Artifical Intelligence. He graduated at the University
of Tokyo in 1957. From 1957 to- 1961 he worked in
Fuji - Precision Machinery (the present Nissan
Motors). In 1961 he moved to the University of
Tokyo and received his Ph. D.in 1966. He became
associate professor in 1967 and professor in 1981. His
research interests are artifiicial intelligence, knowl-
edge information processing, databases and CAD. He
has received awards for his researches twice from the
Academic Society in Japan. He in a member of the
editorial boards of 9 scietific journals.

