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対数的共起ベクトルの加法構成性

田 然1,a) 岡崎 直観1,b) 乾 健太郎1,c)

概要：この論文では、単語ベクトルの算術平均によって短いフレーズの意味を近似できる理由について初
めての数学的解明を行う。具体的には、その近似による「誤差」に対する上界が理論的に与えられ、実験
的に検証された。このような加法構成性が成り立つ必要条件として、対数関数と文脈のオーバーラップが
重要であることや、低い共起頻度を Zipf則に従って補完するのが有効であることなど、理論上予測される
幾つかの性質も実験によって確かめられた。更に、加法構成性を考える上では、特異値分解による単語埋
め込みは、最先端な埋め込み手法に匹敵する性能を達成できることを示す。

1. Introduction

Additive composition has been a commonly used base-

line method since the advent of compositional distribu-

tional semantics, in which averages of individual word

vectors are used to represent the meanings of longer lin-

guistic sequences [5], [10]. Despite the considerable re-

search that has been devoted to the exploration of more

advanced composition frameworks [1], [2], [4], [17], [19],

[21], [22], [25], additive composition remains a simple and

effective way of handling phrase semantics. For example,

[24] uses additive composition in a logic-based textual en-

tailment recognition system, by scoring paraphrase can-

didates (e.g., “blamed for death” and “cause loss of life”)

using the cosine similarity between sums of word vectors

(e.g., blamed+ death and cause+ loss+ life).

However, the theoretical underpinnings of additive com-

position have so far been less clear. In this paper, we

provide the first mathematical analysis of additive com-

position, and prove that the context vector of a bigram

can be approximated by the average of the context vec-

tors of its two words, given certain conditions and regard-

ing a particular type of context vectors. More precisely,

for a target t ∈ T (i.e., a unigram or bigram), the con-

text of t is derived from the event frequency freq(c, t) of

a word c ∈ C occurring within a window of t in a cor-

pus (Table 1). In order to formulate the context vec-
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These young women often face difficulty in acquiring needed
resources . . .

target context

face difficulty These, young, women, often, in, acquiring, needed, resources
face These, young, women, often, difficulty, in, acquiring, needed, resources

difficulty These, young, women, often, face, in, acquiring, needed, resources

表 1 A context window of size 4 to each side for the bigram

target “face difficulty”, and context windows of size 5

for the unigrams “face” and “difficulty”.

tor wt, we sort the context lexicon C and use the i-th

context word ci ∈ C to define the i-th entry of wt, as

s(ci, t) := ln freq(ci, t) − α(ci) − β(t). Therefore, wt is

formally defined as wt := (s(ci, t))
|C|
i=1.

The function s(ci, t) := ln freq(ci, t) − α(ci)− β(t) rep-

resents the “strength” of ci, occurring as a context of t.

If ci and t co-occur frequently, ln freq(ci, t) becomes rel-

atively large, and so does s(ci, t). The terms α(ci) and

β(t) are “shift” functions, to be specified later. This

family of strength functions s(ci, t) contains special cases,

such as the log-likelihood lnPr(ci|t) (when α(ci) = 0 and

β(t) = ln freq(t)), and the point-wise mutual information

PMI(ci, t) (when α(ci) = Pr(ci) and β(t) = ln freq(t)).

We also discuss low-dimensional reductions of wt (i.e.,

matrix factorizations of s(ci, t)), which include state-of-

the-art word embeddings, such as the skip-gram model

with negative sampling (SGNS) [16] and the GloVe model

[20] (Section 3). Our theory provides insights into the

performances of these models, regarding additive compo-

sitionality.

The main result of this paper (Section 2) is a theo-

retical upper bound for the Euclidean distance ∥wt1t2 −
1
2 (wt1 + wt2)∥, which represents the “error” in the ap-

proximation of the context vector wt1t2 of a bigram t1t2

by the average of the two vectors wt1 and wt2 . We show
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that, as the bigram t1t2 occurs more often, the error

∥wt1t2 − 1
2 (wt1 +wt2)∥ has a smaller upper bound.

Furthermore, our analysis provides the following sug-

gestions that have never been discussed from a theoretical

viewpoint so far:

(A) We can generalize Zipf’s law [26], an empirical

law on word occurrences freq(ci), to the co-occurrence

frequencies freq(ci, t) of any fixed target t. From this

generalization of Zipf’s law, we can derive the distribu-

tion of entries of the context vector wt, suggesting: (A1)

the logarithmic function in s(ci, t) is important, in that a

non-logarithmic strength, such as s(ci, t) := Pr(ci|t), may

not yield similar upper bounds that guarantee additive

compositionality (Section 2.1); (A2) for rarely seen (ci, t)

pairs, in particular when freq(ci, t) = 0 and ln freq(ci, t) =

−∞, it is natural to complement co-occurrence frequen-

cies according to the generalized Zipf’s law (Section 2.1).

(B) The key observation to the proof of our main result

is that when two unigrams t1 and t2 appear successively in

a corpus (and if the context window size is not very small),

the contexts of t1 and t2 have a large overlap (Table 1).

Therefore: (B1) if the bigram t1t2 occurs often, then wt1 ,

wt2 , and
1
2 (wt1 +wt2) are highly correlated (Section 2.2);

(B2) during the addition wt1 +wt2 , components of wt1

and wt2 derived from the contexts where t1 and t2 appear

independently tend to cancel each other out, whereas the

component derived from bigram t1t2 reinforces itself. As

a result, the average 1
2 (wt1 + wt2) tends closer towards

wt1t2 than both wt1 and wt2 (Section 2.2). In particular,

this suggests that the overlap of contexts is important in

deriving additive compositionality.

(C) It is better that shift term β(t) is adjusted such that∑|C|
i=1 s(ci, t) = 0. Meanwhile, the shift term α(ci) is not

very relevant to additive compositionality. (Section 2.1)

(D) Low-dimensional reductions of wt generally pre-

serve additive compositionality. These include some state-

of-the-art word embedding methods, such as SGNS and

GloVe. However, the singular value decomposition (SVD)

method is more compatible with our theory, which sug-

gests that SVD could be at least as useful as other meth-

ods, regarding additive compositionality (Section 3).

By performing some experiments, we show that:

(E) The generalized Zipf’s law actually holds in a real

corpus (Section 4.1).

(F) Logarithmic context vectors in a real corpus fit

with our theoretical upper bound, showing additive com-

positionality. In contrast, similar phenomena are not

observed when using non-overlapping contexts, or tak-

ing non-logarithmic context vectors, such as s(ci, t) :=

Pr(ci|t). On the other hand, dimension reduction dis-

plays an effect of strengthening additive compositionality

(Section 4.2).

(G) On a composition test set [18], we evaluated several

SVD reductions of wt, shifted by different alpha terms.

The results outperform SVD of non-overlapping contexts,

and are competitive with SGNS and GloVe vectors. A

constant performance gain is obtained by making wt close

to a PMI vector (Section 4.3).

(H) We also tested the SVD vectors on word analogy

tasks [15]. The results outperform other state-of-the-art

models, independent of alpha shift terms (Section 4.4).

2. Additive Compositionality

In this section, we derive our main result, and discuss

some of the implications. Our goal is to bound the er-

ror ∥wt1t2 − 1
2 (wt1 +wt2)∥, where wt is defined as wt :=

(s(ci, t))
|C|
i=1, and s(ci, t) := ln freq(ci, t)− α(ci)− β(t).

First, we consider a probabilistic trial, in which a word

c is uniformly chosen from the context lexicon C at ran-

dom. Then, for each target t ∈ T , we define a random

variable St that outputs the value s(c, t). Formally, we

write St := (s(c, t))c∼C . The random variable St encodes

the same information as the context vectorwt, except that

St does not depend on an explicit ordering of the lexicon

C. The semantics of t are illustrated by the possible values

s(c, t) for each c ∼ C (e.g., for the target “ice”, it is possi-

ble that s(water, ice) = −3.7 and s(fashion, ice) = −5.4),

but we note that for the distribution of St there is much

less information (e.g., 30% of context words c have a

strength s(c, ice) ≥ −3.5). In the following subsection,

we show that the distribution of St can be determined by

a generalization of Zipf’s law. Here, we convert our goal

of bounding the error into the estimation of the second

moment of a random variable:

1

|C|
∥wt1t2 −

1

2
(wt1 +wt2)∥2

= E[(St1t2 −
1

2
(St1 + St2))

2], (1)

where this equality is derived from the definition of wt

and St.

2.1 Generalized Zipf’s Law

Zipf’s law [26] states that the frequency freq(c) is in-

versely proportional to the rank of c in the frequency ta-

ble, which in effect specifies a power law for the random

variable (freq(c))c∼C . We generalize this law to the ran-
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dom variable (freq(c, t))c∼C , where t is any fixed target.

To be precise, we assume the following distribution:

Pr(freq(c, t)≥x)=

K ·mt/⌈x⌉ (mt≤x),

unspecified (x<mt),
(2)

in which mt ∈ R>0, and ⌈x⌉ is the least integer ≥ x.

The constant K is chosen such that K · mt/⌈mt⌉ =

#{c| freq(c, t) ≥ mt}/|C|, so that the number of con-

text words with co-occurrence frequency ≥ mt is exactly

Pr(freq(c, t) ≥ mt) · |C|. The parameter mt represents the

lower bound on the power law behavior, so that the distri-

bution of frequencies < mt is unspecified. The derivation

of (2) can be found in Appendix A.

(C) In order to estimate (1) , we first note that the

random variable St1t2 − 1
2 (St1 + St2) does not depend on

the shift term α(c), because it is canceled out in this ex-

pression. Therefore, without loss of generality, we can

that assume α(c) = 0. Now, recall that the second mo-

ment of a random variable X can be written as E[X2] =

V (X) + E[X]2, where V (X) is the variance. Therefore,

(1) becomes smaller when E[St1t2 − 1
2 (St1 + St2)] = 0,

which can be achieved by adjusting each β(t) such that

E[St] = 0. This is reasonable, because the strength s(c, t)

only makes sense when compared to some average level;

its absolute magnitude does not directly represent the se-

mantics of the target t. Hereon, we apply this setting, and

assume that E[St] = 0.

Because St = (ln freq(c, t)− β(t))c∼C , and β(t) is spec-

ified such that E[St] = 0, the distribution of St can be

calculated from the distribution of (freq(c, t))c∼C , which

is given in (2) . The following is proven in Appendix A.

Theorem 1. If we assume the generalized Zipf’s law

(2) holds, then St + 1 has an approximately exponen-

tial distribution of rate parameter 1.

(A1) From Theorem 1, we know that the random vari-

able St has an exponential tail, which suggests that the

logarithmic function in the definition of St is not arbi-

trary. Without the logarithm, the generalized Zipf’s law

(2) implies that (freq(c, t) − β(t))c∼C has a power law

tail, which is very different from an exponential tail. For

example, consider St := (Pr(c|t))c∼C , a scalar multiplica-

tion of (freq(c, t))c∼C . The generalized Zipf’s law implies

that Pr(c|t) is mostly very close to 0, yet has very large

values for a significant portion of c ∈ C. Therefore, St

is expected to yield an almost infinite second moment (in

contrast to the logarithmic case, where E[S2
t ] = 1 by The-

orem 1), which may exclude any nontrivial estimations for

the second moment of St1t2− 1
2 (St1+St2). This prediction

is verified by experiments (Section 4.2).

(A2) Noisy low-frequencies of rarely seen (c, t) pairs

can be naturally complemented by the generalized Zipf’s

law (e.g., thinking of freq(c, t) = 1.6, when the actually

observed frequency is freq(c, t) = 1). The idea is to ex-

tend the lower bound mt to the power law behavior (2) .

That is, to extrapolate low frequencies < mt by assuming

the unspecified part in (2) to be an exact, continuous

power law as follows:

Pr(freq(c, t)≥x)=

m̃t/x (m̃t≤x<mt),

1 (x<m̃t),
(3)

where m̃t = K ·mt. We will replace any frequency value

< mt by a sample drawn from the above distribution

(3) , while preserving the frequency rank. Thus, the

complemented frequency will be a real number ≥ m̃t,

the new lower bound on this exact and continuous power

law. From the proof of Theorem 1, we can deduce that

St + 1 moves closer to the exponential distribution after

complementing low-frequencies. We also need estimate

mt in order to implement this strategy; a method using

[3] is described in Appendix B. Our experiments show

that complementing low-frequencies can drastically im-

prove the additive compositionality (Section 4.2).

2.2 Main Result

The observation that is key to our main result is the

context overlap between two successively occurring uni-

grams (Table 1). In order to model this phenomenon,

we assume that the contexts of any two unigrams t1 and

t2 are generated by the following process. When an un-

ordered pair {t1, t2} appears successively (i.e., either t1t2

or t2t1) in a sentence, the contexts of t1 and t2 are exactly

the same sample, drawn from a distribution Pr(c|t1t2).
Meanwhile, all non-neighboring occurrences of t1 and t2

are assumed to be far from each other, so their contexts

are independently drawn from Pr(c|t1\t2) and Pr(c|t2\t1),
respectively. Formally,

Pr(c|t1)=τ1 Pr(c|t1\t2)+(1−τ1) Pr(c|t1t2),

Pr(c|t2)=τ2 Pr(c|t2\t1)+(1−τ2) Pr(c|t1t2),

where τ1 = Pr(t1 not neighboring t2|t1) is the proportion

of t1 occurrences not neighboring t2. Therefore, τ1 is small

when {t1, t2} occurs often. τ2 is defined similarly. From

this context model, we have
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ln Pr(c|t1)

= ln{τ1 Pr(c|t1\t2)+(1−τ1) Pr(c|t1t2)}

≓τ1 ln Pr(c|t1\t2)+(1−τ1) lnPr(c|t1t2),

and a similar formula for lnPr(c|t2) *1. Now, substi-

tute lnPr(c|t1) into St1 = (ln freq(c, t1)− β(t1))c∼C =

(lnPr(c|t1)− β̂(t1))c∼C , and note that β̂(t1) is specified

such that E[St1 ] = 0, so we get

St1 ≓ τ1St1\t2+(1−τ1)St1t2 , (4)

and similarly

St2 ≓ τ2St2\t1+(1−τ2)St1t2 . (5)

Using (4) and (5) , we get

St1t2 −
1

2
(St1 + St2)

≓ 1

2
{(τ1 + τ2)St1t2 − τ1St1\t2 − τ2St2\t1}.

Hence, if St1t2 , St1\t2 and St2\t1 are independent, we can

calculate E[(St1t2 − 1
2 (St1 +St2))

2] ≓ 1
2 (τ

2
1 +τ22 +τ1τ2). In

practice, however, St1t2 almost always has a positive cor-

relation with St1\t2 and St2\t1 , because frequently used

words are likely to be used in every context, regardless

the target. As a consequence, the variance gets smaller,

and we have the following estimation:

E[(St1t2 −
1

2
(St1 + St2))

2] ≤ 1

2
(τ21 + τ22 + τ1τ2).

Therefore, we obtain the main result:

∥wt1t2 −
1

2
(wt1 +wt2)∥ ≤

√
|C|
2

(τ21 + τ22 + τ1τ2).

(B1) From (4) , we show that St1 and St1t2 are lin-

early correlated. As {t1, t2} occurs more often, τ1 becomes

smaller, and the correlation becomes higher. Similar be-

havior holds for St2 and St1t2 . As manifested in the main

result, this has the effect that when {t1, t2} occurs often,

the error of the approximation of wt1t2 by 1
2 (wt1 +wt2)

is small.

(B2)We could also deduce an upper bound simply from

(4) . Namely, that ∥wt1t2 − wt1∥ ≤
√

2|C|τ1. From

(5) , we get that ∥wt1t2 − wt2∥ ≤
√

2|C|τ2. However,

we note that the upper bound given in the main result is

*1 This formula is valid, because Pr(c|t1 \ t2) and Pr(c|t1t2)
are very small (according to the generalized Zipf’s law,
the largest Pr(c|t) for a fixed t is approximately equal to
1/

∑nt

r=1
1
r
, where nt := #{c| freq(c, t) > 0} is the number of

distinct context words of t observed in the corpus. When the
corpus size increases, nt → +∞ and Pr(c|t) → 0). There-
fore, for any x between Pr(c|t1 \t2) and Pr(c|t1t2), we can
approximate ln(x) linearly.

tighter than the one derived from the triangular inequal-

ity: ∥wt1t2 − 1
2 (wt1 +wt2)∥ ≤ 1

2 (∥wt1t2−wt1∥+ ∥wt1t2−

wt2∥) ≤
√

|C|
2 (τ1+τ2). This suggests that 1

2 (wt1 + wt2)

can get closer to wt1t2 than both wt1 and wt2 . Intuitively,

this is because when St1 and St2 add up, the two highly in-

dependent components St1\t2 and St2\t1 cancel each other

out, whereas the common component St1t2 reinforces it-

self.

By performing experiments (Section 4.2), we verify the

upper bound given by our main result, and we confirm

that the overlap of contexts is important in deriving ad-

ditive compositionality.

3. Dimension Reduction

In this section, we discuss low-dimensional reductions

of the context vector wt. Given a dimension d, we want

to use a d-dimensional vector vt to approximate the |C|-
dimensional vector wt. This can be formalized as the

finding of a d-dimensional vector vt for each t ∈ T , and

a (|C|×d)-matrix A, such that
∑

t∈T L(Avt,wt) is mini-

mized, where L(·, ·) is a given loss function.

(D) In general, dimension reductions preserve ad-

ditive composition, as the argument below will show.

First, by definition, L(Avt1 ,wt1), L(Avt2 ,wt2), and

L(Avt1t2 ,wt1t2) are small, which means that Avt1 , Avt2 ,

and Avt1t2 are close to wt1 , wt2 , and wt1t2 , respec-

tively. Therefore, A{vt1t2 − 1
2 (vt1 + vt2)} = Avt1t2 −

1
2 (Avt1 + Avt2) is “near” to wt1t2 − 1

2 (wt1 + wt2). Sec-

ond, ∥wt1t2 − 1
2 (wt1 +wt2)∥ is bounded by our main re-

sult, so we can bound A{vt1t2 − 1
2 (vt1 + vt2)} accord-

ingly. Third, since A is bounded operator, we can ob-

tain bounds for vt1t2 − 1
2 (vt1 + vt2) using the bounds for

A{vt1t2 − 1
2 (vt1 + vt2)}.

Some technical issues remain in the argument given

above. First, the loss function L does not always satisfy a

triangular inequality, meaning that A{vt1t2− 1
2 (vt1+vt2)}

andwt1t2− 1
2 (wt1+wt2) may not always be close. Second,

a bound for the Euclidean distance does not always imply

a bound for the loss function L, or vice versa; so caution

is required when applying the argument to a general loss.

However, in the simplest case, where L is the L2-loss, the

above argument can be applied in a most compatible way.

This suggests that the truncated SVD dimension reduc-

tion, which solves the L2-loss minimization, is suitable

for training additive compositional word vectors. In the

following subsections, we compare SVD with two state-of-

the-art methods, SGNS and GloVe. Empirical evaluations
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Dφi
(xi +γ (ci ), yi +γ (ci ))

Pr(c | t)(ex − x −1)

x = xi − yi

Loss

図 1 Graph of the SGNS loss function, which has two asymp-

totes (red). Its limit curve at k → +∞ has one asymptote

(blue), and grows exponentially at x → +∞.

are conducted on a composition test set (Section 4.3) and

word analogy (Section 4.4).

3.1 The Loss Function of SGNS

Recently, [13] have shown that the skip-gram model

of negative sampling (SGNS) can be viewed as a factor-

ization of the shifted-PMI matrix. More precisely, they

showed that SGNS is a matrix factorization of s(c, t) :=

lnPr(c|t)− ln(kPnoise(c)), where k is an integer (the num-

ber of negative samples), and Pnoise is a given noise dis-

tribution. This s(c, t) is a special case of the strength

functions we consider in this paper, so SGNS constitutes

a dimension reduction of logarithmic context vectors. The

difference between SGNS and the SVD reduction of the

same wt := (s(ci, t))
|C|
i=1 will be the loss function. In Ap-

pendix C, we prove the following theorem.

Theorem 2. For the |C|-dimensional vectors Avt and

wt, SGNS uses the following loss function Lt:

Lt(x,y) = Pr(t)

|C|∑
i=1

Dϕi
(xi + γ(ci), yi + γ(ci)), (6)

where γ(ci) := ln(kPnoise(ci)), and Dϕi
(·, ·) is the Breg-

man divergence associated with the convex function

ϕi(x) = (Pr(ci|t) + eγ(ci)) ln(ex + eγ(ci)).

When k → +∞, the limit of Dϕi is another Bregman di-

vergence Dφ, associated with φ(x) = ex.

A graph of Dϕi
(xi+γ(ci), yi+γ(ci)), fixing yi = s(ci, t)

and varying x = xi − yi, is presented in Figure 1. Dϕi

becomes steeper as Pr(c|t) grows larger (note the Pr(c|t)
coefficient in the equation of the limit curve), meaning

that Lt puts more weight on frequent context words. In

addition, the graph grows much faster at xi − yi → +∞
than at xi − yi → −∞ (Figure 1), so an xi overestimat-

ing yi = s(ci, t) is punished more than an underestima-

tion. Therefore, the loss function (6) tends to enforce

underestimations of s(c, t) for a frequent context word c

(since overestimating such s(c, t) will be costly), and to

compensate s(c, t) for rarely seen contexts (i.e., overesti-

mations on such c are affordable, so this will be done if

necessary). This is a desirable property for a good gen-

eralization, and somewhat similar to the effect of comple-

menting low-frequency data, as discussed in Section 2.1.

However, the case of the SGNS loss function, where more

weight is put on frequent context words, contrasts to the

uniform L2 loss in SVD. When too much weight is put on

frequent contexts, the trained Avt may fail to mimic the

exponential distribution behavior of wt on a large por-

tion of relatively low-frequencies, which may hurt addi-

tive compositionality. This is because during the addition

wt1 +wt2 , this portion should be the main area where the

most cancellations occur, and the signal from wt1t2 rein-

forces itself. On the other hand, it seems reasonable to

put more weight on frequent targets, much like the Pr(t)

coefficient in (6) .

3.2 The GloVe Model

In the GloVe model [20], trained vectors (vt, ṽc) are

matrix factorizations of ln freq(c, t)− b(t)− b̃(c), whereas

the bias terms b(t) and b̃(c) are learned simultaneously,

by minimizing a weighted L2 loss as follows:

∑
c,t

f(c, t)(vt · ṽc + b(t) + b̃(c)− ln freq(c, t))2.

The weight f(c, t) → 0 when freq(c, t) → 0. One notable

difference between GloVe and the SVD approach discussed

in this paper is the treatment of rarely seen (c, t) pairs.

GloVe avoids the noisy low-frequencies and ln(0) by down-

grading their weights in the loss function, which results in

a sparse matrix and can be handled using the Stochastic

Matrix Factorization (SMF) method [9]. In contrast, SVD

should apply a uniform L2 loss, which makes it manda-

tory to explicitly complement low-frequencies and unseen

pairs. As a result, truncated SVD can be calculated using

the extremely efficient random projection algorithm [7],

which is usually faster and more precise than SMF. How-

ever, SVD needs to handle dense matrices, which becomes

difficult (although it has been well studied) when scaling

up to very large data.

4. Experiments

In this section, we test the assumptions and implica-

tions of our theory on practical data. We use the British

National Corpus (BNC) [23], which contains about 100

million word tokens. We extract all sentences from texts

(not including headings and captions) and utterances, and
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図 2 Aggregate of the p-value

~5 5~10 10~100 100~

図 3 Aggregate of the estimated mt

a sentence is regarded as a sequence of word tokens (punc-

tuation not included). For context words, we take all

words with a frequency ≥ 200, which results in a vocab-

ulary of 22,000 words. For targets, we use unigrams with

a frequency ≥ 200 (22,000 words, the same as the context

vocabulary), as well as unordered bigrams of frequency

≥ 200 (47,000 word pairs). The window size used is five

to each side for unigram targets, and four for bigram word

pairs. Windows do not cross sentences.

4.1 Testing Generalized Zipf’s Law

In this subsection, we test whether the generalized

Zipf’s law actually holds in a real corpus. For each target

t (which is either a unigram target or an unordered bi-

gram target), we compare the proposed distribution (2)

to the distribution of freq(c, t) observed in data. I or-

der to measure the goodness-of-fit, we run a Kolmogorov-

Smirnov (KS) test, as described in [3], for each target.

The KS test estimates the parameter mt in (2) at the

same time. For further details, see Appendix B.

The KS goodness-of-fit tests produce p-values, repre-

senting the plausibility of assuming that the generalized

Zipf’s law holds. A larger p-value indicates that the gen-

eralized Zipf’s law fits the data well; and as pointed out

in [3], it is a relatively conservative choice to reject Zipf’s

law when p ≤ 0.1. The results of the KS tests are summa-

rized in Figure 2 and Figure 3. According to the p-values

(Figure 2), we should reject the generalized Zipf’s law

for below 10% of both unigram targets and unordered bi-

gram targets. For the majority of targets (> 60%), the

generalized Zipf’s law is very difficult to reject (p > 0.5).

図 5 The top 500 singular values in SVD

As for the estimated mt, in most cases this is less than

10 (Figure 3), which indicates that our complementing of

low frequency context-target pairs does not substantially

change the observed data.

4.2 Additive Compositionality in Practice

In this subsection, we verify our main result and con-

firm the implications, using some scatter plots that are

constructed as follows. For each unordered bigram target

{t1, t2}, we plot at x = 1
2 (τ

2
1 + τ22 + τ1τ2), and calculate

y as the approximation error regarding additive compo-

sitionality, for different types of context vectors. In all

settings, the shift term α(ci) is set to zero, and the shift

term β(t) is always adjusted such that the entries of the

vector sum up to zero. We omit this term for brevity.

First, as an alternative to complementing unseen pairs,

we consider a naive setting where context words are re-

stricted to a sub-lexicon C ′ := {c| freq(c, t1t2) > 0},
whereas the context vectors wt1t2 , wt1 and wt2 are re-

stricted onto C ′. Formally, w′
t1t2 := (s(ci, t1t2))ci∈C′ ,

w′
t1 := (s(ci, t1))ci∈C′ , and w′

t2 := (s(ci, t2))ci∈C′ . Then,

we set y = 1
|C′|‖w′

t1t2 − 1
2 (w

′
t1 +w′

t2)‖2. The plot is shown
in Figure 4(ii). According to our main result, we would

expect that all points lie under the theoretical bound of

y = x (solid red line). However, we note that a significant

portion of points lie above this line.

Next, we complement low-frequencies as described in

Section 2.1. The resulting context vectors are denoted as

w̃t1t2 , w̃t1 , and w̃t2 . We set y = 1
|C|‖w̃t1t2 − 1

2 (w̃t1 +

w̃t2)‖2. The plot is presented in Figure 4(iii). In contrast

to Figure 4(ii), most points now lie under the solid red

line, as predicted by our main result, showing the effect of

low-frequency complementing. A dashed red line is drawn

to show the level of average y of all points.

Next, we consider a setting in which contexts of neigh-

boring unigrams do not overlap. This is achieved by label-

ing context words with relative positions. For example, in

the sequence “a b c d e”, the contexts of c are labeled

words such as b-1, a-2, d+1, and e+2. We calculate con-

text vectors in this setting and perform complementation,
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図 4 Additive compositionality in different settings

much in the same way as in the previous paragraph. We

set y = 1
|C|∥w̃t1t2 − 1

2 (w̃t1 + w̃t2)∥2. The plot is shown in

Figure 4(i). We do not observe a tendency that the ap-

proximation error decreases as {t1, t2} occurs more often.

Now, we consider the non-logarithmic setting where

s(c, t) = Pr(c|t). The vector, no longer having ln(0)-

entries, does not need complementing. Therefore, we set

y = 1
|C|∥wt1t2 − 1

2 (wt1 + wt2)∥2. The plot is shown in

Figure 4(v). Note that the absolute magnitudes of y for

different types of vectors cannot be directly compared to

each other, since the magnitude would change by multi-

plying all vectors by a constant scalar. Therefore, we do

not draw a scale on the y-axis in Figure 4(v). Instead,

we scale the y-axis such that the average level is the same

as in Figure 4(iii). We see the variance in this plot is

very large, and no obvious additive compositionality can

be observed.

Finally, we plot the SVD reduction of complemented

context vectors. The dimension of reduction is set to

200, which is selected by observing the top 500 singu-

lar values (Figure 5). At a dimension of 200, the singular

values begin to decrease at a constant rate, which may

suggest that there is not much information in dimensions

≥ 200. This setting will also produce better results in

experiments described later. The reduced vectors are de-

noted as vt, and all reduced vectors are normalized. We

set y = ∥vt1t2 − 1
2 (vt1 +vt2)∥2. The plot is shown in Fig-

ure 4(iv). Compared with Figure 4(iii), the plot is neater

and steeper, which suggests that some kind of “clustering”

occurred, strengthening the tendency of additive compo-

sitionality.

4.3 Semantic Composition

To test if the vectors trained by SVD actually ex-

hibit additive compositionality on linguistically meaning-

ful phrases, we employ a data set*2 created by [18], which

consists of phrases extracted from BNC and annotated by

*2 http://homepages.inf.ed.ac.uk/s0453356/

α(ci) = x ln Pr(ci) VB-NN NN-NN JJ-NN

x = 0 0.38 0.44 0.39

x = 0.25 0.38 0.44 0.39

x = 0.5 0.38 0.45 0.40

x = 0.75 0.40 0.45 0.41

x = 1 0.40 0.46 0.42

SVD-NoOverlap 0.34 0.43 0.36

GloVe 0.38 0.44 0.45

SGNS 0.36 0.43 0.45

表 2 Spearman’s ρ on semantic composition

humans on their semantic similarity.

Each instance in the dataset is a (phrase1, phrase2, sim-

ilarity) triplet, and each phrase consists of two words. The

similarity score is a value annotated by humans, rang-

ing from 1 to 7, and indicating how similar the seman-

tics of the two phrases are. For example, one participant

annotated the similarity between vast amount and large

quantity as 7 (the highest similarity), and the similarity

between hear word and remember name as 1 (the low-

est similarity). Phrases are divided into three categories:

verb-noun, noun-noun, and adjective-noun. Each cate-

gory has 108 phrase pairs, and is annotated by 18 human

subjects (i.e., 1,944 instances in each category).

For each category, we compare the human ratings with

computer outputs, which for each phrase pair are obtained

by first adding up the two word vectors of each phrase, and

then calculating the cosine similarity. The performance is

measured by Spearman’s ρ, which tells us how closely the

computer outputs are related to the human ratings. We

test several word vectors on each of the three categories.

The results are presented in Table 2. First, we tested

the SVD reductions of the complemented context vec-

tors, shifted by various alpha terms. For example, the

‘x = 0.25’ row shows the results of the SVD reduction of

the vector w̃t := (ln ˜freq(ci, t) − 0.25 lnPr(ci))
|C|
i=1, where

˜freq(ci, t) is the complemented frequency. We compare

the results with the SVD reduction of non-overlapping
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α(ci) = x ln Pr(ci) Google MSR

x = 0 45.6 58.2

x = 0.25 45.0 57.6

x = 0.5 45.7 57.6

x = 0.75 47.0 57.3

x = 1 46.4 57.2

SVD-NoOverlap 31.8 53.7

GloVe 45.8 57.4

SGNS 39.9 50.4

3CosMul 40.3 43.6

表 3 Accuracy on analogy tasks

context vectors, as well as vectors produced by GloVe*3

and SGNS*4 toolkits, with dimension 200, window size 5

to each side, cutoff 10 for GloVe, subsampling 0 for SGNS,

and other default settings.

First, we see that SVD-NoOverlap consistently per-

forms worse than other vectors, indicating that composi-

tion may not be well captured by adding non-overlapping

context vectors. Second, SVD reductions of comple-

mented context vectors yield results that are competitive

with the GloVe and SGNS vectors, outperforming the two

on verb-noun and noun-noun categories. Finally, we note

an intriguing tendency that the performance consistently

improves as x changes from zero to one and wt gets closer

to the PMI vector. We believe that the reason for this is

that, although the “degree” of additive compositionality

is not altered by x, the composed vectors get closer to the

PMI vectors of phrases as x increases, and the similar-

ity of PMI vectors are closer to human intuitions on the

semantic similarity.

4.4 Analogy Tasks

We also compared the performance of different word

vectors and strategies on analogy tasks. We use the

MSR*5 [15] and Google*6 [16] datasets, comprised of

4-tuples of words that are subject to “a is to b as c is

to d”. Tuples with out-of-vocabulary words are removed

from data, which results in 4382 tuples in MSR and 8924

tuples in Google*7.

A comparison of different strategies is presented in Ta-

ble 3. The 3CosMul method was proposed in [12]; SVD-

NoOverlap uses the SVD reduction of non-overlapping

context vectors; GloVe and SGNS are vectors produced by

the corresponding models*8. Among all of the compared

*3 http://nlp.stanford.edu/projects/glove/
*4 https://code.google.com/p/word2vec/
*5 http://research.microsoft.com/en-us/projects/rnn/
*6 https://code.google.com/p/word2vec/
*7 These are about half the size of the original datasets.
*8 In the default implementation, GloVe weights context words

methods, SVD reductions of complemented context vec-

tors showed the best performance, although GloVe was al-

most the same. In addition, it is noteworthy that the per-

formance only depended weakly on the shift term α(ci).

Additive compositionality is thought to be related to

analogy tasks, because additive compositionality enforces

linearity. However, it is not known what exactly this re-

lation is. In addition, we note that strategies not directly

related to additive compositionality (e.g., 3CosMul and

SVD-NoOverlap) can still achieve a high performance

on analogy tasks.

5. Discussion

Computational linguistics is largely related to the appli-

cation of general machine learning frameworks to different

NLP tasks. However, natural language specific properties,

such as the (generalized) Zipf’s law, can have profound

implications, which are not always trivial [8], [14]. We

believe that there are more deep results still to be dis-

covered in such “mathematical linguistics”. In addition,

we believe that our careful investigation on additive com-

positionality can lead to deeper insights, and find further

applications to various tasks in NLP.

Appendices

A. Zipf’s Law and Power Law

A.1 Zipf’s Law as the Distribution of Word Oc-

currences

Zipf’s law [26] states that the frequency of a word in

a corpus is inversely proportional to its rank in the fre-

quency table. Under the assumption that the frequency

freq(w) of each word w is drawn i.i.d. from a probabilis-

tic distribution, Zipf’s law determines this distribution as

follows.

Recall that the cumulative distribution function (CDF)

defined as F (x) := Pr(freq(w) ≥ x) determines the proba-

bilistic distribution. CDF should not be confused with the

probabilistic density function (PDF), which is the deriva-

tive of CDF if F (x) is differentialble. To calculate F (x),

we formally write the definition of rank as the following,

by the inverse of their distance to the target. Similar tricks
also exist in the word2vec implementation of SGNS. These
tricks are known to boost the performance on analogy tasks.
However, regarding the context model we considered in this
paper and for fair a comparison, we altered the implementa-
tions here to set equal weights to all context words.
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rank(w) := #{w′| freq(w′) ≥ freq(w)} (7)

which defines the frequency rank of a word w as the count

of such word w′ that occurs in a frquency higher than

freq(w). Then, Zipf’s law states that

#{w′| freq(w′) ≥ freq(w)} = rank(w) =
E

freq(w)
, (8)

where E is the proportionality constant. Now replace

freq(w) by x in the above equation (8) , we get

#{w′| freq(w′) ≥ x} =
E

x
. (9)

Hence, let the total number of words be N , we have

F (x) = Pr(freq(w) ≥ x) =
#{w′| freq(w′) ≥ x}

N
=

E

⌈x⌉
,

(10)

where ⌈x⌉ is the least integer greater than x, which is

taken because originally the frequency freq(w) is always

an integer.

In pactice, the above equation (10) cannot be every-

where true, for example F (x) = ∞ when x = 0, which is

obviously absurd. As is usual in the analysis of a power

law [3], we asume (10) holds for every x ≥ m, where

m ∈ R>0:

F (x) = Pr(freq(w) ≥ x) =

K ·m/⌈x⌉ (x ≥ m)

unspecified (x < m)

(11)

Here the constant K is taken as the following, such that

F (m) is exactly the proportion of words which occur in

frequencies ≥ m.

F (m) = K ·m/⌈m⌉ = #{w′| freq(w′) ≥ m}
N

. (12)

A.2 Proof of Theorem 1

Assume the frequency freq(w) follows Zipf’s law. Let

S = ln freq(w)− β, where β is chosen such that E[S] = 0.

To calculate the distribution of S, we first prove that

the distribution of ln freq(w) − lnKm is roughly an ex-

ponential distribution of rate parameter 1. Then, since

ln freq(w) − lnKm = S + Constant, by taking expected

value of each side and noting E[S] = 0, we conclude that

Constant = 1, so S + 1 is roughly an exponential distri-

bution of rate parameter 1.

Now, the CDF of ln freq(w) − lnKm is calculated as

follows.

Pr(ln freq(w)− lnKm ≥ x)

=Pr(freq(x) ≥ exp(x+ lnKm))

=Km/⌈exp(x+ lnKm)⌉ (by (11) , when x ≥ − lnK)

≓ exp(−x)

Hence, when x ≥ − lnK, the distribution of ln freq(w) −
lnKm is roughly an exponential distribution of rate pa-

rameter 1. Theorem 1 is proven.

B. Estimating m and Testing Zipf’s Law

B.1 Estimating the lower bound on power-law

behavior

In Appendix A, we derived that the cumulative distri-

bution function (CDF) of the distribution of freq(w) is of

the form

F (x) = Pr(freq(w) ≥ x) =

K ·m/⌈x⌉ (x ≥ m)

unspecified (x < m)

(13)

where the constant K is taken such that

F (m) = K ·m/⌈m⌉ = #{w′| freq(w′) ≥ m}
N

. (14)

Hence, if we consider the sub-lexicon Cx :=

{w′| freq(w′) ≥ x} comprised of words of frequency

≥ x, then we have the following power law restricted to

the sub-lexicon Cm:

Gm(x) = Pr(freq(w) ≥ x|w ∈ Cm) =

m/⌈x⌉ (x ≥ m)

1 (x < m)

(15)

How to estimate this m from data? In this section, we

give a brief introduction to the method described in [3].

The main idea is to consider the Kolmogorov-Smirnov

(KS) statistic, which is a measure of how well an empirical

sample can fit to a proposed distribution. In our case, the

KS statistic (associated with m) is defined as

KSm := max
x≥m

|Gm(x)− #Cx

#Cm
|, (16)

in which, Gm(x) is the theoretical probability of freq(w) ≥
x proposed by the power law (15) , whereas #Cx/#Cm

is the probability observed in data. Hence, KSm is smaller

means Gm fits the data better. Therefore, we estimate m

as

m∗ := argmin
m>0

KSm = argmin
m>0

max
x≥m

| m
⌈x⌉

− #Cx

#Cm
|. (17)

B.2 Testing Zipf’s Law

The KS statistic can also be used to perform the

Kolmogorov-Smirnov test, which estimates the plausibil-

ity of a proposed distribution. In our case, we want to test

if the practical data actually follows Zipf’s law (13) .

The procedure is as follows [3].

( 1 ) Given a lexicon C and their frequencies freq : C → N,
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we firstly estimate m∗ as described in Section B.1,

and record the KS statistic KSm∗ .

( 2 ) In order to find out if this KSm∗ is plausible, we

compare it with KS statistics of synthesized samples

drawn from the proposed distribution, which is (13)

in our case.

( a ) We synthesize an artificial sample S comprised

of |C| sample points as follows. At probabil-

ity #Cm∗/|C|, the point is drawn from distri-

bution (15) ; otherwise, we uniformly choose a

w ∈ C \ Cm∗ at random, and use freq(w) as the

sample point.

( b ) Estimate m∗
S for the sample S, and record the

KS statistic KSm∗
S
.

( 3 ) Repeat Step 2 for 1
4 ϵ

−2 times, where ϵ is our required

accuracy for the p-value. Then, the p-value is calcu-

lated as the fraction of the time the synthetic KSm∗
S

is larger than KSm∗ . In our experiments, we use

ϵ = 0.01.

Hence, Zipf’s law is more plausible when p-value is

larger. As described in [3], it is relatively conservative

to reject Zipf’s law if p ≤ 0.1.

C. The Loss Function of SGNS

In this appendix, we summarize the basics of the skip-

gram model. The original explanation of the theory [16]

was indeed cryptic, due to two missing links: (i) the link

between the negative sampling objective (NEG) and the

probability distribution it claims to model; and (ii) the

link between NEG and the noise contrastive estimation

(NCE) method. In the following, we will give a refined

explanation, which shows that, though NEG was origi-

nally proposed as an adaptation of the NCE method, it

is better understood as a special case within the NCE

framework.

C.1 Noise Contrastive Estimation

NCE [6] is a relatively new method for solving an old

problem: given a sample (xi)
N
i=1 (wherein xi ∈ X ) drawn

from an unknown probability distribution Pdata, and a

function family f(·; θ) : X → R≥0 (parameterized by θ),

we want to find the optimal θ∗ such that f(x; θ∗) best ap-

proximates the distribution Pdata(x). For example, recall

the maximum likelihood estimation (MLE), in which θ∗

is chosen as to maximize the log-likelihood of the sample

(xi)
N
i=1, with respect to the constraint that f(·; θ∗) should

be a probability:

θ∗MLE = argmax
θ

N∑
i=1

ln f(xi; θ), s.t.
∑
x∈X

f(x; θ) = 1.

For MLE, the constraint
∑

x∈X f(x; θ) = 1 is important,

because f(x; θ) can tend to arbitrarily large if we maxi-

mize the log-likelihood without constraint. NCE finds θ∗

in a different way. It firstly mixes (xi) with a noise sample

drawn from a known distribution Pnoise, each data point

xi mixed with k noise points yi,1, . . . , yi,k ∼ Pnoise. Hence

Pr(x is data | x) = Pdata(x)

Pdata(x) + kPnoise(x)
, (18)

which calculates the probability of a given point x ∈ X
being a data point. Pdata is unknown in (18) , so we

approximate Pr(x is data | x) with g(x; θ):

g(x; θ) =
f(x; θ)

f(x; θ) + kPnoise(x)
. (19)

Then, NCE maximizes the log-likelihood of “xi being data

and yi,1, . . . , yi,k being noise”:

θ∗NCE = argmax
θ

N∑
i=1

{ln g(xi; θ) +

k∑
j=1

ln(1− g(yi,j ; θ))}.

(20)

The most important point of NCE is that, f(x; θ) will not

tend to infinity even we maximize (20) without the con-

straint
∑

x∈X f(x; θ) = 1. This is because making f(x; θ)

large will accordingly make 1 − g(yi,j ; θ) small, which

will decrease the likelihood of “yi,1, . . . , yi,k being noise”.

No longer necessary to repeatedly calculate
∑

x∈X f(x; θ)

during parameter update, NCE usually results in efficient

training algorithms.

C.2 The Skip-gram Model

The skip-gram model learns the probability distribu-

tion Pr(c|t) from a corpus C comprised of target-context

pairs [11]. SGNS approximates Pr(c|t) by the function

family exp(uc · vt + ln kPnoise(c)), using NCE to optimize

parameters. Here Pnoise is a known noise distribution, and

vectors u,v are parameters to be learned from C. Hence,
if we put γ(c) := ln(kPnoise(c)) and θ(c, t) := uc ·vt+γ(c),

the function family is defined as f(c, t; θ) := exp(θ(c, t)).

Substitute this f(c, t; θ) into (19) and substitute the ob-

tained g(c, t; θ) into (20) , we get

g(c, t; θ) =
exp(θ(c, t))

exp(θ(c, t)) + exp(γ(x))
= σ(uc · vt)

where σ(x) = 1/{1 + exp(−x)} is the sigmoid function,

and the NCE objective (20) becomes
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argmax
u,v

∑
(t,c)∈C

{lnσ(uc ·vt)+
k∑

j=1
nj∼Pnoise

ln(1−σ(unj
·vt))},

(21)

which is exactly the NEG objective proposed in [16], now

explained within the NCE framework.

C.3 Proof of Theorem 2

To prove Theorem 2, we consider 1
#C times the objective

(21) :

O(θ) :=

1

#C
∑

(t′,c′)∈C

{lnσ(uc′ ·vt′)+

k∑
j=1

nj∼Pnoise

ln(1−σ(unj
·vt′))}.

The above sum is taken across the corpus, in which the

term lnσ(uc · vt) appears Pr(c, t) times (i.e. we have a

probability Pr(c, t) for the pair (c′, t′) to be equal to (c, t)),

and the term ln(1−σ(uc·vt) appears kPnoise(c) Pr(t) times

(i.e. we have a probability Pnoise(c) for nj = c, and a

probability Pr(t) for t′ = t). Hence,

O(θ) =∑
c,t

Pr(t){Pr(c|t) lnσ(uc·vt)+kPnoise(c) ln(1−σ(uc·vt))}

We know the optimal of O(θ) is taken at uc ·vt = s(c, t),

so put

M :=∑
c,t

Pr(t){Pr(c|t) lnσ(s(c, t))+kPnoise(c) ln(1−σ(s(c, t)))}

Then, maximizing O(θ) is equivalent to minimizing M −
O(θ), and by some calculation, we can find that

M −O(θ) =∑
c,t

Pr(t) ·Dϕ(uc · vt + γ(c), s(c, t) + γ(c)),

whereDϕ(p, q) := ϕ(p)−ϕ(q)−ϕ′(q)(p−q) is the Bregman

divergence associated with the convex function

ϕ(x) = (Pr(c|t) + eγ(c)) ln(ex + eγ(c)).

The limit of Dϕ at k → +∞ can be easily calculated.
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