Vol.35 No.7

Regular Paper

Transactions of Information Processing Society of Japan

July 1994

A Method of Generating Textures by Using Skeleton Lines

KAZUNORI MIYATAT

A method is given for synthesizing texture by using a set of skeleton lines and attribute functions.
The attributes of each point in a texture, such as color, bump. and optical attributes, are calculated
by applying attribute functions to the defined skeleton lines. This method has the following three
merits : First, combining a set of skeleton lines and attribute functions allows a variety of textures
to be obtained. Second, this method has flexible data definitions : the skeleton data can be defined
not only by means of mathematical functions with control parameters, but also graphically by means
of an input device, such as a tublet or mouse. Third, the user can preview a texture together with
its skeleton lines. This is useful, because the texture generation procedure takes a significant amount
of time. We also show the language specifications for generating a texture.

1. Introduction

One of the main objectives in computer
graphics is highly realistic image synthesis.
Textures, which are attributes of objects’ sur-
faces, are critical to generating realistic images.
Simply by mapping a texture to a surface, we can
obtain a far richer image than a flat color sur-
face. The majority of current graphic worksta-
tions can do texture mapping in real time,” and
this technology plays a very important role in
applications for amusement and training, such as
car racing games and flight simulators.

There have been several research reports on
topics related to texture synthesis, such as noise-
based textures,? ¥ sparse convolution textures,"
solid textures,” enhanced solid textures,” and
reaction-diffusion textures.®® These methods
can generate a variety of textures that are ade-
quate for generating a realistic irpage. But there
is still a big problem ; it is hard for a user to
imagine what kind of texture will be generated
simply by looking at its parameters. This is a
problem of correspondence between a synthe-
sized texture and its parameters. Furthermore, it
is difficult to design a new texture entirely by
conventional procedural approaches. A user
can hardly design a texture freely without a
knowledge of texture generation. Novice users
are still in trouble.

T IBM Research, Tokyo Research [;agt;r;t—ory T

1332

Our method offers a solution to these prob-
lems, and has the following three merits :

1. Combining a set of skeleton lines and
attribute functions allows a variety of tex-
tures to be obtained.

Data definitions are flexible ; the skeleton
data can be defined not only by means of
mathematical functions with control
parameters, but also graphically by means
of an input device, such as a tablet or
mouse.

The user can preview a texture together
with its skeleton lines. This is useful,
because the texture generation procedure
takes a significant amount of time.

2. Basic Concept

A texture is a surface attribute of an object,
and has many components, such as color, gloss,
and roughness. In our method, a texture is
divided into three classes: bump, color, and
optics. A bump class has values of displace-
ment, H, from a base level. A color class has
surface color values made up of three compo-
nents. These components are related to the color
model : in this paper, we use the RGB model,
whose components are red, green, and blue (R,
G, B). An optics class has optical features of a
surface, and these depend on the shading model :
in this paper, we use Phong’s model, whose
components are ambient, diffuse, specular, and
shiny (A, D, S, N). The attributes are stored in

Vol.35 No.7

bump, color, and optics buffers, respectively.

Texture generation involves the arrangement
of these features. That is, a texture synthesis
method can be defined as a combination of the
definition of features and the arrangement of
those features. In the proposed method, skeleton
lines represent the arrangement of a texture’s
features, and attribute functions define the fea-
tures themselves.

3. A Method for Texture Synthesis

In this section, we describe how to generate a
variety of textures by combining skeleton lines
and attribute functions. We first give an over-
view of the generation, and then explain each
function in detail.

3.1 Overview

Figure 1 shows the data flow in this system.
First, skeleton lines, the feature data of an

Definition
of N
Skeleton . tablet
Lines

line segment

A Method of Generating Textures by Using Skeleton Lines 1333

intended texture, are defined by means of proce-
dures or graphical input methods. An attribute
function is defined for each skeleton line, and the
function’s parameters are then specified for each
key point on the skeleton lines. Here, an attrib-
ute function must be unique for each skeleton
line.

Next, each line segment of the skeleton lines is
rasterized by means of the Digital Difference
Analyzer (DDA)'® module. At the same time,
cach parameter of an attribute function is inter-
polated linearly with each key point. Noise can
be added to skeleton lines or sets of parameters
by using a noise module if so desired.

For each rasterized point, an attribute func-
tion with these calculated parameters is then
applied. The data generated by attribute func-
tions are stored in data buffers by means of
storing operators, and then converted into vari-

Definition
of
Key
Parameters

J

line segment

L

skeleton
lines noise

module

parameters |
parameter

set

~ parameters .
parameters

e

y l line segment
DDA

parameters

interpolator

- ——

position data

|
attribute function
Pyramid

height data

storing operator

buffer

'L

l/ converter ‘}
helght l color l optical data [
bump color optics
buffer buffer buffer
Fig. 1 Data flow.

1334 Transactions of Information Processing Society of Japan

ous attribute values by means of converters. The
final texture is rendered by using these attribute
buffers.

3.2 Skeleton lines

The term ‘skeleton lines’ means feature lines of
a texture. For example, a wood grain texture,
shown in Fig.2, 'has a set of skeleton lines
represented by distorted ellipses, and a marble
texture, shown in Fig. 3, has a set of skeleton
lines represented by perturbed stripes.

Skeleton lines only have position data, so the
other parameters for an attribute function, such
as the height and width, are specified for each
key point on the skeleton lines. For a crack in
a wall, for example, the width of the crack is
specified at the top and bottom, and then inter-
polated linearly at each point.

A noise module can be .used to perturb the
skeleton lines or assigned parameters in order to
make them more natural. Here, we use white

e

Fig.2 Wood grain texture.

Fig.3 Marble texture.

July 1994

noise and fractal noise ; white noise is generated
by using uniform random numbers, and fractal
noise is generated by the midpoint displacement
method.!? .

These defined skeleton lines are rasterized

through the DDA module. At the same time,

each parameter of an attribute function is inter-
polated linearly with each key point, and then
stored.

The skeleton lines are defined not only by
means of procedures, but also graphically by
means of an input device, such as a mouse.

3.3 Attribute functions

An attribute function is used to generate
attribute data for each point in a texture by
tracing the defined skeleton lines, as shown in
Fig. 4. The attribute function can generate only
height data, which are stored in data buffers by
means of storing operators and converted into
attribute values by means of converters.

Some sample attribute functions are as fol-
lows ; here, the positioning parameters in each
attribute function, C, and C,, correspond to the
rasterized points of a skeleton line.

@ Hemisphere (C., C,, Zumn, Zmax, Radius)
A hemisphere function generates height
data for each point on the surface of a
hemisphere whose center is (Cy, C,, 0) and
whose radius is given by Radius. This
surface is clipped by its Z value, between

Skeleton Data

Fig.5 Hemisphere.

Vol.35 No.7

Zmin and Znmax, as shown in Fig. 5.

® Pyramid (C,, C,, L,, L,, Height)
A pyramid function, shown in Fig. 6, gener-
ates height data for each point on the sur-
face of a pyramid the center of whose base
is (Cx, Cy, 0), whose height is given by
Height, and whose base is a rectangle with
sides L, and L,.

@ Stain (C,, C,, Attack, Decay)
A stain function, shown in Fig. 7, generates
height data for each point on the surface of

the figure obtained by revolving an
z
Fig.7 Stain.
Destinatlon (A) Source (B)

AN
A
VA
A

J)))

A Method of Generating Textures by Using Skeleton Lines

1335

exponential function, given by Egq. (1),
around the Z-axis. The axis of revolution
passes through (Cy, C,, 0).
Z (r) = Attack <exp(— Decay - r?)
3.4 Storing operators
A storing operator is used when height data
are stored in a data buffer. We now provide the
following four types of storing operator :

MIN : stores the minimum value in a texture
buffer

MAX : stores the maximum value in a texture
buffer

ADD : stores the accumulated value in a texture
buffer

RPL : replaces the value of a texture buffer with
the current value
Figure 8 shows how each operator works.
3.5 Converters
A converter is used when height data are

converted into attribute values. This module is

made up of two functions: The selector, which
selects an attribute buffer, and the mapper,
which modifies the height data.

We now provide the following three types of
mapper :

NOP : No operation.

CLIP (min, max): The data are clipped
between min and max.

LINEAR (Imin, Tmux, Oy Owming Omas,, --+) : The
input data Z are assumed to lie in a range
between Imin and Ima. O, data OZ;, Omin, <
0Z ;< Onax, are given by Eq. (2).

OZ:=(Z —Iuin) ¥ (Omux,~ Onmin,) /
(Iminf Imax) + Omm‘

(1)

(2)

Result

’ [\ MIN(A,B)

YA
YA

' /1/\]\ B (and A’)

Fig.8 Storing operators.

1336

For example, coloring with the Z value
Red = 100-200, Green=0-255 and Blue = 150-
180 is defined by LINEAR (0, 100, 3, 100,
200, 0, 255, 150, 180).

4. Descriptive Language

In this section, we gives the descriptive lan-
guage of our texture generation method.

4.1 Functions

The descriptive language is made up of the
following functions.

Skeleton lines are defined by bracketing each

BgnSkeleton(1};
BgnPoly(1);
Vertex(1,
Vertex(2,
EndPoly();
EndSkeleton();

0,
-32,

0);
32);

BgnSkeleton(2);
BgnPoly(1);
Vertex(1,
Vertex(2,
EndPoly();
EndSkeleton();

0, 0);
32, 32);

AssignParam(ALL,

BgnTexture();
DefineClass(BUMP);
DefineStrOp(MAX);
DefineMapper (NOP);

m[0] [0]
m[0] [1]
m[0] [2]

1.0; m[1][0]
0.0; m[13[1]
0.0; m[11[2]

It
n

for(y =

for(x = 0;
m[2] [0]
m{2][1]

I

x)

Y

O = O

Transactions of Information Processing Society of Japan

ALL, ALL, 0.0,
/* ALL = -1, NULL_P

o o o

July 1994

set of polygons between a call to BgnSkeleton ()
and a call to EndSkeleton(). A polygon is
defined by bracketing each set of vertices
between a call to BgnPoly() and a call to
EndPoly (). The texture is defined by bracketing
each set of DefineClass(), DefineStrOp(),
DefineMapper (), and CallSkeleton() between
a call to BgnTexture() and a call to EndTex-
ture ().

The descriptions of the various functions are
as follows :
BgnSkeleton (id) : Marks the beginning of a

6.0, NULL_P);

6.0,
= End of Parameter List */

mf2] (0] = 0.0;
; m{21[1] = 0.0;
; m[21[2] = 1.0;

0; y <= HEIGHT; y += 64){
x <= WIDTH; x += 64){

CallSkeleton(1l, HemiShpere, m);

}
}

for(y = 32; y <= HEIGHT; y +=

for(x = 0; x <= WIDTH; x +=
m[2][0] = x;
m(2]{1] = y;
CallSkeleton(2,
}
}
EndTexture();

64){
64){

HemiShpere, m);

Fig.9 Sample description.

Vol.35 No.7

definition of skeleton lines whose ID is given
by the parameter id.

EndSkeleton () : Marks the end of a definition
of skeleton lines.

CallSkeleton (id, afunc, matrix) : Associates
the attribute function (given by afunc) with
the skeleton lines whose 1D is given by id, by
applying a transformation matrix (given by
matrix). Here, if the matrix is NULL, then it
is an identity matrix.

Vertex (id, x, 1) : Defines the vertex whose 1D
is given by id at the position (x, p). This
function must be bracketed by a call to
BgnPoly () and a call to EndPoly().

BgnPoly (id) : Marks the beginning of a
polyline list whose ID is given by id.

EndPoly () : Marks the end of a polyline list.

BgnTexture () : Marks the beginning of a
definition of a texture.

EndTexture () : Marks the end of a definition
of a texture.

DefineClass (class) : Dcfines the seclector for
attribute buffers with a parameter class (=
{BUMP | COLOR | AMBIENT | DIFFUSE |
SPECULAR|SHINY})

DefineStorOp (op) : Defines the storing opera-
tor with a parameter op (={MIN]MAX|ADD
[RPL}).

DefineMapper (func, param) : Defines the map-
per function (given by func (={NOP|CLIP|

LINEAR}) and its parameter (given by
parameter list= param).
AssignParam (SID, PID, VID, param) :

Specifies parameters at key points. Here,
SID : skeleton line 1D (for all skeleton lines,
if SID is negative)

PID : polyline ID (for all polylines, if PID is

negative)

VID : vertex ID (for all vertices, if VID is

negative)

param: parameter list

4.2 Sample description

Figure 9 shows the sample description for the
texture in Fig. 10 |.

First, two skeleton lines are defined, and the
parameter list is defined for all skeleton lines.
Then, the selector for the texture, its storing
operator, and the mapper are called. After that,
the two defined skeleton lines are called sepa-
rately by applying a translation matrix to trace
them with an assigned attribute function, hemi-

A Method of Generating Textures by Using Skeleton Lines 1337

Table 1 Atiribute functions, storing operators, and

class.

No. Attribute Function Storing Op Selector
1 hemisphere MAX bump
2 pyramid MAX bump
3 pyramid MAX bump
4 hemisphere (Zmin, Zmax 7 0) MIN bump
5 stain MAX color
6 pyramid {(Height ~0) MIN bump
7 hemisphere MAX bump
8 hemisphere ADD bump

sphere ().

5. Results

The sample textures shown in Fig. 10 were
gencrated by using an IBM RISC System/6000
and C language for programming. Each result is
a 5123512 (8 bits per R-, G-, B-plane) image.
The calculation time depends on the number of
skeleton lines and attribute functions, and aver-
ages about 1 minute, including the rendering
process.

In the rendering process, the bump data are
used to calculate the normal vector of each point
with its adjoining points.

In Fig. 10, the left side shows the generated
texture and the right side shows the texture’s
skeleton lines. The attribute functions and stor-
ing operators of these textures are listed in Table
1.

For these examples, we intended to generate
the following textures, respectively :

(1) a non=slip plate, (2) a coarse green rug,
(3) raked ground, (4) sprayed plaster, (5) a
wine-colored board, (6) a crack in a wall, (7) a
metallic hatch, and (8) blood vessels.

Figure 11 shows an image of cakes. Each
texture (cakes and cups) was generated by this
method.

Figure 12 shows an image of high-tech cunei-
form. The cuneiform, which has an optical
attribute of gold, is carved on a rough wall.

6. Conclusions

We have outlined a method for gencrating a
veriety of textures by using skeleton lines and
attribute functions.

This method has the limitation that it cannot

1338

Transactions of Information Processing Society of Japan

a) ‘

(a)

(a)

.(a).

Texture

Texture

Texture

Texture

|

Example # 2

Example # 3

\/\/\/\/\/\;\ AN
AN NONON N /\ AN
NONON NN \/\ AN

ANEAN
AN
ANIAN
ANIAN
AN
ANUANEAN
NONTN

AN
AN
AN
AN
AN
AN
AN

CNOONONONON N NN

.\\\\\\;\\
NN NNN
\\\\\/\\/

NTONTNTNTNT N NN
(b) Skeleton lines

AN

AN

ANEAN
AN
ANEAN
NN
ANIAN

AN
AN
AN
AN
AN
AN

AN
AN
AN
AN
AN
N

Example # 1

" FFRFFEEH
ax
T
;
T
ot
t T
f 1
i t +t
Na:
B e
T
T
=
11
B
i e
T o
__f_‘ \,_..
T [N ENRAREAn
T T T

(b) Skeleton lines

I

|
i

(b) Skeleton lines

55 IR T S
T
O B Dy e
S ,-.'h‘-}f{,: T =S
N A e

751 TS S BSaAAL

ooy,
¥ By
N~

(b) Skeleton lines

Example # 4
‘ig. 10 Examples.

July 1994

Vol.35 No.7 A Method of Generating Textures by Using Skeleton Lines 1339
)
%%

{ WY

(b) Skeleton lines

/

R T2
e

|

MR
Nt

= =

{
/
/

Example # 5

(a) Texture (b) Skeleton lines
Example # 6

Texture

(a) Texture Examplo # 8 (b) Skeleton lines

Fig. 10 (Continued)

1340 Transactions of Information Processing Society of Japan

July 1994

Fig. 11 Birthday cakes.

handle sectional textures, such as stone wall

patterns and the scales of reptiles, because it is.

hard to define their skeleton lines.

In the future, we plan to work on the follow-
ing areas :

1. Expansion of the texture library

Our method can treat only symmetrical attrib-
ute functions, such as hemispheres and pyra-
mids. Therefore, it is difficult to generate non-
symmetrical and directional textures, such as
wood grains. We plan to enhance the method to
enable it to treat such textures.

We also plan to extract skeleton lines and
attribute functions from natural textures, and
store them in a texture library.

2. Anti-aliasing

Laying down spheres or pyramids at integer
pixel points can lead to aliasing problems. This
problem is not noticeable in a complex texture,
but it must be solved in order to generate a
smooth texture.

3. Interactive texture generator

This method can be used to make an inter-
active texture generator. For example, skeleton
lines can be defined for a texture by using a
mouse, and an attribute function to be applied to
the defined skeleton lines can be chosen in the
same way as a brush or pen in a conventional
drawing tool. That is, a user can design his or
her own texture by means of this method without
special knowledge of texture synthesis.

Acknowledgements 1 would like to thank
researchers at the Tokyo Research Laboratory,
IBM Japan, for their helpful suggestions.

Fig. 12 High-tech cuneiform.

References

1) Akeley, K.: RealityEngine Graphics, SIG-
GRAPH 93 Conference Proceedings, pp. 109-
116 (1993).

2) Perlin, K.: An Image Synthesizer, Computer
Graphics, Vol. 19, No. 3 (SIGGRAPH ’85), pp.
287-296 (1985).

3) Lewis, J. P.: Algorithms for Solid Noise Syn-
thesis, Computer Graphics, Vol. 23, No. 3 (SIG-
GRAPH ’85), pp. 263-270 (1985).

4) Haruyama, S. and Barsky, A.: Using Stochastic
Modeling for Texture Generation, /[EEE CG &
A, Vol. 4, No. 3, pp. 7-19 (1984).

5) Lewis, J.P.: Texture Synthesis for Digital
Painting, Computer Graphics, Vol. 18, No. 3, pp.
245-251 (1984).

6) Peachey, D.R.: Solid Texturing of Complex
Surfaces, Computer Graphics, Vol.19, No.3
(SIGGRAPH ’85), pp. 279-286 (1985).

7) Perlin, K. and Hoffert, E.: Hypertexture, Com-
puter Graphics, Vol.23, No.3 (SIGGRAPH
’89), pp. 253-262 (1989).

8) Turk, G.: Generating Textures on Arbitrary
Surfaces Using Reaction-Diffusion, Computer
Graphics, Vol. 25, No. 4 (SIGGRAPH 91), pp.
289-298 (1991).

9) Witkin, A. and Kass, M.: Reaction-Diffusion-
Texture, Computer Graphics, Vol.25, No.4
(SIGGRAPH 91), pp.299-308 (1991).

10) Bresenham, . J. E.: Algorithm for Computer
Control of a Digital Plotter, IBM Systems Jour-
nal, Vol. 4, Ne. 1, pp. 25-30 (1965).

11) Fournier, A., Fussell, D. and Carpenter, L.:
Computer Rendering of - Stochastic Models,
CACM, Vol. 25, No. 6, pp. 371-384 (1982).

(Received December 20, 1993)
(Accepted February 17, 1994)

Vol.35 No.7 A Method of Generating Textures by Using Skeleton Lines

Kazunori Miyata received a
B.E. from Tohoku University in
1984 and an M.E. from Tokyo
Institute of Technology in 1986.
Since 1986, he has been a
researcher at Tokyo Research
Laboratory, IBM Japan, Ltd.
His research interests include computer graphics,
fractal theory, and natural phenomena. He is a
member of IPSJ); the Institute of Electronics,
Information, and Communication Engineers
(IEICE), Japan ; and the ACM.

1341

