
Performance Analysis of MapReduce Implementations for
High Performance Homology Search

Chaojie Zhang1,a) Koichi Shirahata1,2,b) Shuji Suzuki1,c) Yutaka Akiyama1,2,d)

SatoshiMatsuoka1,2,e)

Abstract: Homology search to be used in emerging bioinformatics problems such as metagenomics is of increasing
importance and challenge as its application area grows more broadly while the computational complexity is increasing,
thus requiring massive parallel data processing. Earlier work by some of the authors have devised novel algorithms
such as GHOSTX, but the master-worker parallelization to enumerate and schedule for data processing was done
with a privately developed, MPI-based master-worker framework called GHOST-MP. An alternative is to utilize the
now-popular big data software substrates, such as MapReduce with abundant associated software tool-chains, but
it is not clear whether the massive resource required by metagenomic homology search would not overwhelm its
known limitations. By converting the GHOST-MP master-worker data processing pipeline to accommodate MapRe-
duce, and benchmarking them on a variety of high-performance MapReduce incarnations including Hadoop, Spark,
and Hamar, we attempt to characterize the appropriateness of MapReduce as a generic framework for metagenomics
that embody extremely resource consuming requirements for both compute and data. Our experimental results show
that MapReduce-based implementations exhibit good scaling at least up to 32 nodes and Hamar exhibits comparable
performance with GHOST-MP on TSUBAME-KFC.

1. Introduction
Homology search to be used in emerging bioinformatics prob-

lems such as metagenomics is of increasing importance and chal-
lenge as its application area grows more broadly while the com-
putational complexity is increasing. One way to cope with the
increasing complexity is to utilize massively parallel data pro-
cessing. Required dataset for homology search in metagenomics
consists of queries and database, each of whose size will reach
Gigabytes to Terabytes, and total data size to compute will grow
to product of these two datasets (i.e. Exabytes to Zettabytes).
BLAST [1], [2] is proposed as a basis of homology search al-
gorithms and there have been a lot of efforts on improving the
algorithm. Earlier work by some of the authors have devised
novel algorithms such as GHOSTX [3] and extend the algorithm
to distributed computing environments. Their work has demon-
strated their implementation scales well on existing supercom-
puters including TSUBAME2.0 [4] and K computer [5], but the
master-worker parallelization to enumerate and schedule for data
processing was done with their privately developed MPI-based
master-worker framework called GHOST-MP.

An alternative to using GHOSTX is to utilize the now-popular

1 Tokyo Institute of Technology, Meguro, Tokyo 152–8552, Japan
2 JST CREST
a) sherrychaojie@gmail.com
b) koichi-s@matsulab.is.titech.ac.jp
c) suzuki@bi.cs.titech.ac.jp
d) akiyama@cs.titech.ac.jp
e) matsu@is.titech.ac.jp

big data software substrates, such as MapReduce with abundant
associated software tool-chains, but it is unclear how to apply
MapReduce to extremely large-scale homology search in an ef-
ficient way. Firstly, It is not obvious how to design and imple-
ment homology search algorithms onto the MapReduce model.
Specifically, how to handle two different dataset called queries
and database which homology search algorithms receive using
MapReduce is not straightforward. Secondly, performance char-
acteristics of MapReduce-based implementations of homology
search should be considered in order to achieve high performance
homology search.

By converting the GHOSTX master-worker data processing
pipeline to accommodate MapReduce, and benchmarking them
on a variety of high performance MapReduce incarnations in-
cluding Hadoop [6], Spark [7], and Hamar [8], [9], we attempt
to characterize the appropriateness of MapReduce as a generic
framework for metagenomics that embody extremely resource
consuming requirements for both compute and data. We consider
two different MapReduce-based designs of homology search con-
sidering data allocation of queries and database. Then we im-
plement one of the designs onto Hadoop, Spark, and Hamar, as
well as conduct performance analysis on real world metagenomic
dataset. We also compare our MapReduce-based implementa-
tions with GHOST-MP, an existing distributed implementation of
GHOSTX on MPI-based master-worker framework.

Our experimental results show that distributing query data and
replicating database scales well, and MapReduce-based imple-
mentations exhibit good scaling at least up to 32 nodes and

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 73

HPCS2015
2015/5/19

Hamar exhibits comparable performance with GHOST-MP on
TSUBAME-KFC.

Here we describe a summary of contributions of our work:
• We describe MapReduce-based designs and implementa-

tions of a homology search algorithm.
• We investigate how to handle two different dataset (query

and database) efficiently on MapReduce-based homology
search.

• We show comparative performance analysis of homology
search on multiple MapReduce implementations and a MPI-
based homology search implementation.

2. Background
We introduce overview of homology search and its existing al-

gorithms. We explain required dataset, computational workflow,
as well as fast algorithms of homology search. Then we also de-
scribe overview of MapReduce and its existing implementations.

2.1 Homology Search Algorithms
Homology search or alignment search is an approach to iden-

tify genes based upon homology with genes that are already pub-
licly available in sequence databases by using a search algorithm.
Homology search is used in the field of metagenomics, the study
of genetic material recovered directly from environmental sam-
ples for advancing knowledge in a wide variety of application do-
mains, such as medicine, engineering, agriculture, ecology. Ho-
mology search algorithms are used as tools for life science re-
searchers to gain a set of high-scoring pairs from an exhaustive
list of protein coding sequences similar to a given query sequence,
such as the amino-acid sequence of different proteins or the nu-
cleotides of DNA sequences.

BLAST (Basic Local Alignment Search Tool) [1], [2] has been
proposed as a fast homology search algorithm and its imple-
mentation is widely used as a standard homology search tool.
BLAST applies a heuristic algorithm much faster than previ-
ous approaches such as a full alignment procedure using the
Smith-Waterman algorithm [10]. Fig. 1 shows an overview of
BLAST workflow. Firstly, BLAST finds seeds that are substring
of database sequences similar to the substrings of a query se-
quence. Then, BLAST makes alignments by extending those
seeds without gaps, and then similar, nearby seeds are brought to-
gether by a chain filter. Finally, BLAST makes alignments from
seeds with gaps.

There have been a lot of efforts for improving BLAST [11],
[12]. Some of the authors also make efforts on accelerat-
ing BLAST. GHOSTX [3] adopts the seed-extend alignment
algorithm used by BLAST. GHOSTX achieved approximately
131-165 times faster than BLAST. Although the workflow of
GHOSTX is similar to BLAST, GHOSTX constructs suffix ar-
ray both for the query and the database before the search in order
to accelerate the seed search process. In addition, instead of fix-
ing the length of a seed like BLAST, GHOSTX extends it till the
matching score exceeds a given threshold to reduce the computa-
tion time for ungapped extension while not losing the sensitivity.

There also exists an extension of GHOSTX for distributed
computing environments. GHOST-MP is built on GHOSTX with

Fig. 1 Workflow of homology search

MPI library for homology search on supercomputers like K com-
puter and TSUBAME, or general PC clusters. It achieves dis-
tributed paralleling search process through a master-worker style.
In GHOST-MP’s algorithm, it accomplishes I/O optimization for
parallel file systems by utilizing locality of database chunks to
achieve high speed processing. Users can handle distributed data
including input query, input database, and output by specifying a
table file and passing the file to GHOST-MP. A table file is con-
sisting of tuples of query, database, and output files per line, and
each tuple will be passed to a worker node in runtime.

2.2 MapReduce and Its Implementations
MapReduce is a programming model used for large data sets

effectively through distributed algorithm across a cluster. MapRe-
duce is composed of two major functions. The Map function
takes in the input and emits key-value pairs that represent useful
information from the input. These key-value pairs are later passes
to reduce function to process the final results. The Reduce func-
tion produces zero or more outputs based on the values associ-
ated with each different key. An advantage of MapReduce is that
it can handle large-scale data even when the data is larger than
host memory capacity by handling memory overflow automati-
cally. Another characteristic is that MapReduce can also handle
compute node failures by applying techniques of fault tolerance.
MapReduce is suitable for large-scale data processing and its im-
plementations are widely used.

Hadoop [6] is a now-popular open-source software framework
implemented in Java for storing and processing large data dis-
tributively on clusters. Hadoop is consisted of Hadoop Common,
Hadoop Distributed File System (HDFS), Hadoop YARN, and
Hadoop MapReduce. HDFS is a highly fault-tolerant distributed
system, designed for applications with large data sets. Hadoop
YARN is a dynamic task scheduler that manages the compute re-
sources in the file system and schedule tasks.

Spark [7] is a fast open-resource cluster computing framework
implemented in Scala, building on top of HDFS and YARN.
Spark manages jobs by a standalone task scheduler or YARN.
Spark promises performance up to 100 times faster than Hadoop
MapReduce in some certain applications such as machine learn-
ing. The main abstraction Spark provides is a resilient distributed
dataset (RDD), which is a collection of elements that can be per-
sistent in memory and operated in parallel [13].

Some of the authors have been also developing a MPI-based

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 74

HPCS2015
2015/5/19

Fig. 2 Design of homology search with replicated database

high performance MapReduce implementation called Hamar [8],
[9], which runs on either CPUs or GPUs. Hamar utilizes mul-
tiple GPUs on a large number of nodes and has demonstrated
good scalability on the TSUBAME2.0 supercomputer. Hamar
also handles memory overflow from GPUs by introducing chunk-
based out-of-core GPU processing with overlapping of data trans-
fers. Hamar applies static task scheduling which assigns equiva-
lent amount of input data and map or reduce tasks onto multiple
nodes.

2.3 Issues on Existing Homology Search Implementations
Although GHOST-MP has shown good performance on dis-

tributed computing environments, it uses privately developed
MPI-based framework for master-worker parallelization and task
scheduling. In order to apply the framework to other applica-
tions, new API for the framework is required. On the other
hand, MapReduce has been used in a wide range of applica-
tions thanks to its automatic management of distributed and hi-
erarchical memories with generalized API. However, it is un-
clear whether MapReduce achieves comparative performance
with GHOST-MP, since MapReduce may suffer significant over-
heads such as task scheduling and I/O.

3. MapReduce-based Designs of Homology
Search

We describe how to design homology search on MapReduce.
We consider two different designs based on how to assign query
data and database onto worker nodes. On the two designs, query
data is distributed onto the worker nodes on both designs while
database allocation strategies are different. Note that we assume
computing environments equip local disk on each compute node.

3.1 MapReduce-based Design with Database Replication
We describe a design of homology search on MapReduce us-

ing database replication. Query data is distributed on worker
nodes while database is replicated among the worker nodes.
Fig. 2 describes how MapReduce works on the design. First, in-
put query data files are copied to a distributed file system (e.g.
HDFS) and the database file is replicated onto local disk on each
compute node. After putting query and database, a client sub-
mits a job with a MapReduce application binary. A homology
search application is called in map function of the MapReduce
application. After submitting the application, each Mapper runs

Fig. 3 Design of homology search with distributed database

the homology search application with a split of query data and
whole database for each map function the Mapper calls. A Map-
per emits outputs of homology search for each query. Whole set
of results from map functions is simply the final result.

This database replication design is useful when the size of
database is small, since the result of each query is directly com-
puted using whole database for each query. When the whole
database can fit on local disk on each node, runtime can utilize lo-
cality of database. On the other hand, when the size of database is
large, not only it may not fit on local disks but also parallelization
efficiency may decrease because of the reduction in the locality
of the database.

3.2 MapReduce-based Design with Database Distribution
We consider another design that distributes database as well as

query data. Both query data and database are distributed on the
worker nodes. Fig. 3 describes how the design works. First, input
query data files are copied to distributed file system in the same
way as the database replication design. Database is split to mul-
tiple chunks and each chunk is distributed on each node. These
chunks can be also replicated to multiple nodes when the num-
ber of nodes is larger than the number of chunks. After putting
query and database, a client submits a job with a MapReduce ap-
plication binary. While a homology search application is called
in each map function in similar way as the database replication
design, result of each map function is different in that the result
is a partial search result with a chunk of database. The results
of Mappers are passed to Reducers and the Reducers merge the
partial search results into a final search result for each query.

An advantage of this database distribution design is that the
task granularity is smaller, which can result in better paralleliza-
tion efficiency. The number of tasks (i.e. the number of map
function calls) with this database distribution design can be larger
than the database replication design since the database is divided
to multiple chunks and each chunk can be assigned to a Mapper
in parallel. However, having large number of tasks might not be
always better, since locality of database may become worse since
each map function requires a specific chunk, which may result in
multiple movements of chunks among worker nodes.

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 75

HPCS2015
2015/5/19

$ hadoop pipes\

-D hadoop.pipes.java.recordreader=true\

-D hadoop.pipes.java.recordwriter=true\

-files [db_files]\

-input [input_dir]\

-output [output_dir]\

-inputformat WholeFileInputFormat\

-program ghostmr

Fig. 4 Calling GHOSTX from Hadoop Pipes. ghostmr is the compiled bi-
nary program incorporated original GHOSTX with a Hadoop Pipes
application.

4. Implementations of Homology Search on
MapReduce

We implement MapReduce-based homology search on exist-
ing multiple MapReduce implementations. We use GHOSTX as
a sequential implementation and extend it onto the MapReduce
model. We describe implementations of the database replication
design described in Section 3.1 on Hadoop, Spark, and Hamar,
since we observe distributing query with replicated database
scales better than distributing database. We discuss the advan-
tage of the replicated database design in Section 5.4.

4.1 Implementation of Homology Search on Hadoop
In order to use GHOSTX on top of Hadoop, we need a way

to call C++ from Java since GHOSTX is written in C++ while
Hadoop is written in Java. There are several ways for call-
ing GHOSTX from Hadoop, including Hadoop Pipes, Hadoop
Streaming, and Java Native Interface. Hadoop Pipes is a library
that provides C++ API of map and reduce functions. Users can
write the functions in C++ according to input and output for-
mats provided by Hadoop. Hadoop Streaming is a more generic
API that allows programs written in any language to be used as
Mapper and Reducer implementations. While Hadoop Pipes and
Hadoop Streaming are similar in that they split the application
code into a separate process, they are different in that Hadoop
Pipes uses serialization to covert the types into bytes that are sent
to the process via socket, while Hadoop Streaming uses Unix
standard streams as the interface. Java Native Interface (JNI) is a
programming framework that enables Java code running in Java
Virtual Machine (JVM) to call native applications and libraries
written in other language such as C++. We select Hadoop Pipes
since it provides closer interface with Java-based Mapper and Re-
ducer. We modify the interface of original GHOSTX program so
that Mapper can call GHOSTX program and setting query and
database files through HDFS.

In order to assign query and database files, we use differ-
ent approaches for each dataset. As for query files, we use
HDFS in a standard way for distributing multiple query files
onto local disks on each node. We distribute the query files
by the following command; hdfs dfs -put [query files]
[input dir]. On the other hand, we do not distribute but copy
the same database files onto each node since the database files
are identical among all the nodes. To do this, we use -files
option provided by Hadoop Pipes which copies specified files to
cluster. As for query files, we need to avoid splitting them since

$ spark-submit\

--class "GhostMR"\

--master yarn-client\

--num-executors [num_nodes]\

--executor-cores [num_threads]\

--files [db_files]\

--jars lib/hadoop-mapreduce-client-core-[ver].jar\

ghostmr.jar

Fig. 5 Calling GHOSTX from Spark. ghostmr.jar is the compiled byte-
code incorporated original GHOSTX with a Spark application.

query database output

query.0 database output.0

query.1 database output.1

...

query.n database output.n

Fig. 6 An example of table file for GHOSTX on Hamar.

$ mpirun -n [num_nodes] -hostfile [host_file]\

ghostmr -t [table_file]

Fig. 7 Calling GHOSTX from Hamar. ghostmr is the compiled binary in-
corporated original GHOSTX with a Hamar application.

the design of replicated database assigns one whole query file per
Mapper, and Hadoop splits input data into lines and assign each
line per map function by default. In order to disable splitting a
query file into multiple splits, we implement WholeFileInputFor-
mat for Hadoop Pipes based on [6]. We pass the customized input
format to Hadoop Pipes by using -inputformat option. We run
our GHOSTX on Hadoop by the following command described
in Fig. 4.

4.2 Implementation of Homology Search on Spark
As with the case of Hadoop, we need a way for calling C++

from Scala since GHOSTX is written in C++while Spark is writ-
ten in Scala. Spark provides resilient distributed dataset (RDD)
pipe() operation, which pipes each partition of RDD through a
shell command in the same way as Unix pipe operation. RDD
pipe() operation receives RDD input and sends output through
Unix standard input and output. We apply GHOSTX to the
pipe() operation, by simply executing GHOSTX binary pro-
gram in pipe().

In order to pass input files to Spark, we assign query files
through HDFS and assign database files by copying to local disks
on each node. In order to assign query files through HDFS to
Spark, we put the query files to HDFS before running the ap-
plication. We need to avoid splitting them since the Map-only
design assigns one whole query file per Mapper as with the case
of Hadoop described in Section 4.1. In order to disable splitting a
query file into multiple splits, we apply WholeFileInputFormat
for Spark. We pass the customized input format to Spark by
using -jars option with the jar file including WholeFileInput-
Format. During running the application, it reads the query files
from HDFS using SparkContext.textFile() method onto a
RDD, then the RDD passes the query files to pipe(). As for
database files, we copy them using --files option provided by
Spark similar to Hadoop. Fig. 5 describes the actual command
for submitting GHOSTX on Spark.

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 76

HPCS2015
2015/5/19

0	

500	

1000	

1500	

2000	

2500	

3000	

0	
 1000	
 2000	
 3000	
 4000	

El
ap

se
d	

Ti
m
e	

[s
ec
]	

Query	
 Size	
 [K	
 sequences]	

42	
 K	
 DB	
 sequences	

84	
 K	
 DB	
 sequences	

168	
 K	
 DB	
 sequences	

375	
 K	
 DB	
 sequences	

750	
 K	
 DB	
 sequences	

Fig. 8 Elapsed time of query size scaling on single node

4.3 Implementation of Homology Search on Hamar
We use CPU-based implementation of Hamar to call

GHOSTX, since GHOSTX is implemented for CPU. We in-
tegrate GHOSTX directly into map function on Hamar, since
Hamar and GHOSTX are both implemented in C++. Although
Hamar has a feature to run multiple map tasks in parallel using
OpenMP, we do not use the feature and call one map task per
node since GHOSTX itself can be run using OpenMP.

In order to pass input files to our MapReduce, we use table
file that consists of tuples of query file name, database name, and
output file name in the similar way as GHOST-MP. A table file
is consisting of tab-delaminated tuples of query, database, and
output files per line, and each tuple will be passed to a worker
node in runtime. An example of table file is described in Fig. 6.
In Fig. 6, different query files and output files are specified per
line, while a whole database file is specified on all lines, since we
apply the replicated database design where the query files are dis-
tributed and the identical database file is replicated. Hamar reads
the table file at the beginning of execution then input query files
are assigned onto multiple nodes according to the table file. We
run our GHOSTX on Hamar by the command described in Fig. 7.

5. Experiments
In order to understand performance characteristics of MapRe-

duce implementations, we conduct comparative performance ex-
periments. We compare the elapsed time of homology search
using existing MapReduce implementations as well as a MPI-
based master worker implementation in order to investigate ef-
fectiveness of MapReduce-based implementation. We conduct
data size scaling using different datasets as well as scaling of
using multiple compute nodes. We use 1.1GB of query data
named SRS014107 obtained from Data Analysis and Coordi-
nation Center for Human Microbiome Project website (http:
//www.hmpdacc.org/) [14]. We use 1.1GB of FASTA database
which is reduced from originally 30GB of database named nr
obtained on November 4th, 2014 from The National Center for
Biotechnology Information website (http://www.ncbi.nlm.
nih.gov/) [15]. Note that we split input query files into 10MB of
smaller files before putting them to HDFS for Hadoop and Spark,
since we use WholeFileInputFormat as we described in Section 4.
Note that we do not include the elapsed time of database construc-
tion nor the time of data placement to local disk or HDFS.

We use TSUBAME-KFC as a computing environment. A node
on TSUBAME-KFC contains 2 sockets of Intel Xeon E5-2620 v2

0	

500	

1000	

1500	

2000	

2500	

3000	

0	
 200	
 400	
 600	
 800	

El
ap

se
d	

Ti
m
e	

[s
ec
]	

Database	
 Size	
 [K	
 sequences]	

200	
 K	
 query	
 sequences	

400	
 K	
 query	
 sequences	

800	
 K	
 query	
 sequences	

1600	
 K	
 query	
 sequences	

3200	
 K	
 query	
 sequences	

Fig. 9 Elapsed time of database size scaling on single node

(Ivy Bridge EP, 2.10GHz, 6 cores) CPU, 64GB of DDR3 main
memory, 4 devices of NVIDIA Tesla K20X GPU with 6GB of
discrete GDDR5 memory connected to PCI-Express 2.0 × 16
buses, and 1 card of FDR InfiniBand HBA (56Gbps) connected
to a single rail interconnect network, and runs on CentOS release
6.4. We use Open MPI 1.7.2 with GNU GCC 4.4.7 for the MPI
implementation. We use Hadoop version 2.4.1, Spark version
1.1.0, GHOSTX version 1.3.4, and GHOST-MP version 1.2.1.
We use YARN scheduler on Hadoop and Spark. We use OpenMP
for GHOSTX and GHOST-MP using 24 threads per node and use
SSDs for placing query data and database as well as for writing
output results. We build GHOST-MP with original configuration,
without defining CHUNK and IOMASTER parameters. We use
one worker process per node for GHOST-MP and set optional
parameters to be equal to that of GHOSTX. We apply OpenMP
parallelization for Hadoop, Spark, and Hamar.

5.1 Data Size Scaling
First we conduct data size scaling of GHOSTX using sin-

gle node with different datasets. We conduct two types of data
size scaling; query size scaling with different database size, and
database size scaling with different query size. Fig. 8 shows the
performance results of query data size scaling. X-axis indicates
query data size and y-axis indicates elapsed time of homology
search. Each line indicates elapsed time on different query size
with five sets of fixed database sizes. The results show that the
elapsed time increases in proportion to query size. On the other
hand, Fig. 9 shows the elapsed time of database size scaling. X-
axis indicates database size and y-axis indicates elapsed time of
homology search. Each line indicates elapsed time on different
database size with five sets of fixed query sizes. The results
show that the elapsed time does not increase in proportion to
database size, as opposed to the query size scaling results. When
we consider multiple node scaling, this unproportional database
size scaling would result in poor scaling of distributing DB, since
dividing database into smaller chunks is not considered to scale
linearly. On the other hand, distributing query would scale well,
since dividing query size into smaller chunks is considered to
scale near linearly. Therefore, we employ performance analysis
on the replicated database design which we introduced in Sec-
tion 3.1 in the following subsections.

5.2 Weak Scaling
We also conduct weak scaling experiments on the different im-

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 77

HPCS2015
2015/5/19

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	
 10	
 20	
 30	
 40	
 Pe
rf
or
m
an

ce
	
 [M

	
 re
ad

s/
ho

ur
]	

Number	
 of	
 Nodes	

GHOST-­‐MP	

Hadoop	

Spark	

Hamar	

Fig. 10 Performance of weak scaling with 13MB of query per node and
1.1GB of database

0	

100	

200	

300	

400	

500	

600	

0	
 10	
 20	
 30	
 40	

El
ap

se
d	

Ti
m
e	

[s
ec
]	

Number	
 of	
 Nodes	

GHOST-­‐MP	

Hadoop	

Spark	

Hamar	

Fig. 11 Elapsed time of weak scaling with 13MB of query per node and
1.1GB of database

plementations of the replicated database design using up to 32
nodes. We fix the size of database to 1.1GB and use two different
query sizes: 13MB per node and 130MB per node. Fig. 10 and
Fig. 11 show the performance and elapsed time of weak scaling
using 13MB of query size per node. Also, Fig. 12 and Fig. 13
show the performance and elapsed time of weak scaling using
130MB of query size per node. X-axis indicates the number of
nodes. Y-axis indicates millions of query reads per hour in Fig. 10
and Fig. 12 and elapsed time in second in Fig. 11 and Fig. 13.

The results indicate that all the implementations exhibit good
scalability. We consider the results comes from the facts that ho-
mology search mainly consists of computational and I/O oper-
ations as well as the application includes little communication
since computation of each query is independent of other queries.
Another possible reason is that the implementations have little
possibility to suffer load imbalance since workload we use is
well balanced. The results also show that Hamar exhibits com-
parable performance with GHOST-MP, and the performance of
Spark and Hadoop highly depends on the query size; i.e. these
implementations perform similar with 130MB of query while
slower with 13MB of query. Hamar performs 2.16x and 2.99x
faster than Spark and Hadoop on 13MB query respectively. A
possible reason of this query data size dependency is that these
two implementations suffer overhead of dynamic task schedul-
ing and involved data movements onto multiple nodes through
HDFS. On the other hand, Hamar does not suffer the scheduling
and data movement overheads since our implementation assigns
query data onto multiple nodes evenly at the beginning statically
in the similar way as GHOST-MP. Fig. 11 and Fig. 13 also indi-
cates elapsed time increases significantly when using two nodes
on Hadoop and Spark. We consider a possible reason of this time

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	
 10	
 20	
 30	
 40	
 Pe
rf
or
m
an

ce
	
 [M

	
 re
ad

s/
ho

ur
]	

Number	
 of	
 Nodes	

GHOST-­‐MP	

Hadoop	

Spark	

Hamar	

Fig. 12 Performance of weak scaling with 130MB of query per node and
1.1GB of database

0	

500	

1000	

1500	

2000	

2500	

3000	

0	
 10	
 20	
 30	
 40	

El
ap

se
d	

Ti
m
e	

[s
ec
]	

Number	
 of	
 Nodes	

GHOST-­‐MP	

Hadoop	

Spark	

Hamar	

Fig. 13 Elapsed time of weak scaling with 130MB of query per node and
1.1GB of database

increase is additional task scheduling overhead of YARN by us-
ing multiple nodes.

5.3 Strong Scaling
We also conduct strong scaling experiments using up to 32

nodes. We fix the size of database to 1.1GB. Fig. 14 and Fig. 15
show the performance and elapsed time of strong scaling using
130MB of query. X-axis indicates the number of nodes. Y-axis
indicates millions of query reads per hour in Fig. 14 and elapsed
time in second in Fig. 15.

The results show that all the implementations scale well on
small number of nodes, while Hamar exhibits better performance
compared with Spark and Hadoop on larger number of nodes;
3.83x and 4.54x faster on 32 nodes respectively. The results also
show that Hamar exhibits similar performance with GHOST-MP.
This performance degradation on Spark and Hadoop derives from
the fact that the query size per node gets smaller as the number
of nodes increases then dynamic task scheduling and involved
data movement overheads get larger ratio out of the total elapsed
time. On the other hand, Hamar scales better since Hamar as-
signs equivalent amount of query data onto multiple nodes stat-
ically in the similar way as GHOST-MP. We further investigate
performance characteristics of the three implementations in Sec-
tion 5.4.

5.4 Resource Usage
In order to understand performance characteristics of

MapReduce-based homology search implementations, we inves-
tigate resource usage of CPU, disk I/O, and network. We conduct
the experiments on 32 nodes with 13MB of query per node, and

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 78

HPCS2015
2015/5/19

0	

10	

20	

30	

40	

50	

60	

0	
 10	
 20	
 30	
 40	
 Pe
rf
or
m
an

ce
	
 [M

	
 re
ad

s/
ho

ur
]	

Number	
 of	
 Nodes	

GHOST-­‐MP	

Hadoop	

Spark	

Hamar	

Fig. 14 Performance of strong scaling with 130MB of query and 1.1GB of
database

500MB of database, using dstat command on a single node to
get CPU usage, the amount of read/write on local disk, and the
amount of send/receive over network.

Fig. 16 shows usage of CPU and read/write on Hadoop, Spark,
and Hamar. X-axis indicates elapsed time in second and y-axes
indicate CPU usage in percentage and the amount of read/write
on local disk in million bytes per second. Fig. 17 shows network
usage on Hadoop, Spark, and Hamar. X-axis indicates elapsed
time in second and y-axis indicates the amount of send/receive
over network in million bytes per second. The results exhibit that
Hadoop and Spark conduct significant amount of I/O and net-
work data transfer at the begging while Hamar does not. We con-
sider these additional I/O and network data transfer on Hadoop
and Spark derive from dynamic resource scheduling of YARN
which moves significant amount of data among multiple nodes.
The results also exhibit high CPU usage in the middle on all the
implementations. This high CPU usage derives from homology
search operations using OpenMP in GHOSTX. When we com-
pare elapsed time during high CPU usage, Hamar takes smaller
elapsed time than Hadoop and Spark; Hamar takes around 65 sec-
onds while Hadoop and Spark take 150 seconds and 140 seconds
respectively. We consider this elapsed time difference derives
from task scheduling strategies of the YARN scheduler and the
static scheduler on Hamar, since we observe YARN assigns mul-
tiple tasks on a node while Hamar assigns single task per node
equivalently. At the end of execution, we see disk write caused
by write output operation in GHOSTX. We also observe signifi-
cant amount of elapsed time after the write output operation even
on Hamar, which indicates there exists some amount of load im-
balance among compute nodes. We consider this time difference
derives from the fact that search time of a query varies by query
sequence in GHOSTX.

6. Related Work
MapReduce-based bioinformatics implementations have been

studied [16], [17], [18], [19], [20], [21]. Their work show a wide
range of applications using MapReduce related to bioinformat-
ics as well as show high scalability on clusters and clouds us-
ing existing MapReduce implementations such as Hadoop. Their
work focus on introducing algorithms or demonstrating scalabil-
ity on cloud environments. However, our work focuses on high
performance homology search using MapReduce including ana-
lyzing high performance MapReduce implementations on large-

0	

500	

1000	

1500	

2000	

2500	

3000	

0	
 10	
 20	
 30	
 40	

El
ap

se
d	

Ti
m
e	

[s
ec
]	

Number	
 of	
 Nodes	

GHOST-­‐MP	

Hadoop	

Spark	

Hamar	

Fig. 15 Elapsed time of strong scaling with 130MB of query and 1.1GB of
database

scale computing environment such as supercomputers.
K MapReduce (KMR) [22] is a MPI-based MapReduce im-

plementation for large-scale supercomputers such as K com-
puter. KMR optimizes shuffle operation by collective commu-
nication utilizing interconnect on K computer. Their work also
conducted experiments using GHOST-MP by replacing master-
worker tasking library in GHOST-MP with KMR. Although their
work achieved high communication and I/O performance on K
computer, they did not compare with other existing MapReduce
implementation. On the other hand, we present performance
analysis on multiple MapReduce implementations and explore
high performance MapReduce-based homology search.

There have been efforts on MPI-based parallelization of bioin-
formatics applications. mpiBLAST [23] is a MPI-based paral-
lelization of BLAST that achieves high scalability by optimizing
allocation of database. mpiBLAST applys database segmentation
which distributes a chunk of database to each node and let each
node searches a unique portion of database. While mpiBLAST
is high optimized for BLAST, our work focuses on MapReduce-
based high performance homology search since MapReduce is
more widely used framework and can handle memory overflow
and compute node failures.

7. Conclusion
In order to understand performance characteristics of MapRe-

duce implementations, we present MapReduce-based designs and
implementations of a homology search algorithm. We con-
duct comparative performance analysis of existing widely used
MapReduce implementations as well as comparison with an ex-
isting MPI-based master-worker implementation of a homol-
ogy search algorithm. Our experimental results show that dis-
tributing query data and replicating database scales well, and
MapReduce-based implementations exhibit good scaling at least
up to 32 nodes and Hamar exhibits comparable performance with
GHOST-MP on TSUBAME-KFC.

Future work includes exploring optimal balance of distributing
query and database on larger data size. We will consider apply-
ing not only the replicated database design but also the distributed
database design, since the database on the replicated database de-
sign does not fit on local disk if the database size is larger than
the capacity of local disk. We also consider conducting further
detailed performance analysis including using larger dataset on
large-scale computing environments such as TSUBAME2.5.

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 79

HPCS2015
2015/5/19

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

50	

100	

150	

200	

250	

1	
 18
	

35
	

52
	

69
	

86
	

10
3	

12
0	

13
7	

15
4	

17
1	

18
8	

20
5	

22
2	

23
9	

25
6	

27
3	

29
0	

CP
U
	
 U
Sa
ge
	
 [%

]	

Di
sk
	
 I/
O
	
 [M

B/
s]
	

Elapsed	
 Time	
 [sec]	

Read	

Write	

CPU	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

50	

100	

150	

200	

250	

1	
 18
	

35
	

52
	

69
	

86
	

10
3	

12
0	

13
7	

15
4	

17
1	

18
8	

20
5	

22
2	

23
9	

25
6	

27
3	

CP
U
	
 U
sa
ge
	
 [%

]	

Di
sk
	
 I/
O
	
 [M

B/
s]
	

Elapsed	
 Time	
 [sec]	

Read	

Write	

CPU	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

50	

100	

150	

200	

250	

1	
 14
	

27
	

40
	

53
	

66
	

79
	

92
	

10
5	

11
8	

13
1	

14
4	

15
7	

17
0	

18
3	

19
6	

CP
U
	
 U
sa
ge
	
 [%

]	

Di
sk
	
 I/
O
	
 [M

B/
s]
	

Elapsed	
 Time	
 [sec]	

Read	

Write	

CPU	

Fig. 16 Resource usage of CPU and disk I/O on a node out of 32 nodes in total, using 13MB of query per
node and 500MB of database (Left: Hadoop, Middle: Spark, Right: Hamar).

0	

50	

100	

150	

200	

250	

300	

350	

1	
 18
	

35
	

52
	

69
	

86
	

10
3	

12
0	

13
7	

15
4	

17
1	

18
8	

20
5	

22
2	

23
9	

25
6	

27
3	

29
0	

N
et
w
or
k	

U
sa
ge
	
 [M

B/
s]
	

Elapsed	
 Time	
 [sec]	

0	

50	

100	

150	

200	

250	

300	

350	

1	
 18
	

35
	

52
	

69
	

86
	

10
3	

12
0	

13
7	

15
4	

17
1	

18
8	

20
5	

22
2	

23
9	

25
6	

27
3	

N
et
w
or
k	

U
sa
ge
	
 [M

B/
s]
	

Elapsed	
 Time	
 [sec]	

0	

50	

100	

150	

200	

250	

300	

350	

1	
 14
	

27
	

40
	

53
	

66
	

79
	

92
	

10
5	

11
8	

13
1	

14
4	

15
7	

17
0	

18
3	

19
6	

N
et
w
or
k	

U
sa
ge
	
 [M

B/
s]
	

Elapsed	
 Time	
 [sec]	

Recv	

Send	

Fig. 17 Network resource usage on a node out of 32 nodes in total, using 13MB of query per node and
500MB of database (Left: Hadoop, Middle: Spark, Right: Hamar).

Acknowledgments This research was supported by JSPS
KAKENHI Grant Number 26011503, and JST-CREST (Research
Area: Advanced Core Technologies for Big Data Integration).

References
[1] Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman,

D. J.: Basic local alignment search tool, Journal of molecular biol-
ogy, Vol. 215, No. 3, pp. 403–410 (1990).

[2] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z.,
Miller, W. and Lipman, D. J.: Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs, Nucleic acids re-
search, Vol. 25, No. 17, pp. 3389–3402 (1997).

[3] Suzuki, S., Kakuta, M., Ishida, T. and Akiyama, Y.: GHOSTX: An
improved sequence homology search algorithm using a query suffix
array and a database suffix array, PloS one, Vol. 9, No. 8, p. e103833
(2014).

[4] Matsuoka, S., Endo, T., Maruyama, N., Sato, H. and Takizawa, S.: The
Total Picture of TSUBAME2.0, Tsubame e-Science Journal, Vol. 1,
pp. 2 – 4 (2010).

[5] Yamamoto, K., Uno, A., Murai, H., Tsukamoto, T., Shoji, F., Matsui,
S., Sekizawa, R., Sueyasu, F., Uchiyama, H., Okamoto, M. et al.: The
K computer Operations: Experiences and Statistics, Procedia Com-
puter Science, Vol. 29, pp. 576–585 (2014).

[6] White, T.: Hadoop: the definitive guide, ” O’Reilly Media, Inc.”
(2009).

[7] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica,
I.: Spark: cluster computing with working sets, Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pp. 10–10
(2010).

[8] Shirahata, K., Sato, H., Suzumura, T. and Matsuoka, S.: A Scalable
Implementation of a MapReduce-based Graph Processing Algorithm
for Large-scale Heterogeneous Supercomputers, Proceedings of the
2013 IEEE/ACM 13th International Symposium on Cluster, Cloud and
Grid Computing, CCGrid ’13, IEEE, pp. 277–284 (2013).

[9] Shirahata, K., Sato, H. and Matsuoka, S.: Out-of-core GPU Mem-
ory Management for MapReduce-based Large-scale Graph Process-
ing, Proceedings of the IEEE Cluster 2014, IEEE, pp. 277–284 (2013).

[10] Smith, T. and Waterman, M.: Identification of common molecular sub-
sequences, Journal of Molecular Biology, Vol. 147, No. 1, pp. 195
– 197 (online), DOI: http://dx.doi.org/10.1016/0022-2836(81)90087-
5 (1981).

[11] Kent, W. J.: BLAT̶the BLAST-like alignment tool, Genome re-
search, Vol. 12, No. 4, pp. 656–664 (2002).

[12] Ma, B., Tromp, J. and Li, M.: PatternHunter: faster and more sensitive
homology search, Bioinformatics, Vol. 18, No. 3, pp. 440–445 (2002).

[13] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M. J., Shenker, S. and Stoica, I.: Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing, Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, USENIX Association, pp. 2–2 (2012).

[14] Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight,
R. and Gordon, J. I.: The human microbiome project: exploring the
microbial part of ourselves in a changing world, Nature, Vol. 449,
No. 7164, p. 804 (2007).

[15] Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K.,
Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S.
et al.: Database resources of the national center for biotechnology in-
formation, Nucleic acids research, Vol. 35, No. suppl 1, pp. D5–D12
(2007).

[16] Gaggero, M., Leo, S., Manca, S., Santoni, F., Schiaratura, O., Zanetti,
G., CRS, E. and Ricerche, S.: Parallelizing bioinformatics applica-
tions with MapReduce, Cloud Computing and Its Applications, pp.
22–23 (2008).

[17] Matsunaga, A., Tsugawa, M. and Fortes, J.: Cloudblast: Combining
mapreduce and virtualization on distributed resources for bioinformat-
ics applications, eScience, 2008. eScience’08. IEEE Fourth Interna-
tional Conference on, IEEE, pp. 222–229 (2008).

[18] Meng, Z., Li, J., Zhou, Y., Liu, Q., Liu, Y. and Cao, W.: bCloud-
BLAST: An efficient mapreduce program for bioinformatics applica-
tions, Biomedical Engineering and Informatics (BMEI), 2011 4th In-
ternational Conference on, Vol. 4, IEEE, pp. 2072–2076 (2011).

[19] Yang, X.-l., Liu, Y.-l., Yuan, C.-f. and Huang, Y.-h.: Parallelization
of BLAST with MapReduce for long sequence alignment, Parallel
Architectures, Algorithms and Programming (PAAP), 2011 Fourth In-
ternational Symposium on, IEEE, pp. 241–246 (2011).

[20] Sunarso, F., Venugopal, S. and Lauro, F.: Scalable Protein Se-
quence Similarity Search using Locality-Sensitive Hashing and
MapReduce, CoRR, Vol. abs/1310.0883 (online), available from
⟨http://arxiv.org/abs/1310.0883⟩ (2013).

[21] Leo, S., Santoni, F. and Zanetti, G.: Biodoop: bioinformatics on
hadoop, Parallel Processing Workshops, 2009. ICPPW’09. Interna-
tional Conference on, IEEE, pp. 415–422 (2009).

[22] Matsuda, M., Maruyama, N. and Takizawa, S.: K MapReduce: A
scalable tool for data-processing and search/ensemble applications
on large-scale supercomputers, Cluster Computing (CLUSTER), 2013
IEEE International Conference on, IEEE, pp. 1–8 (2013).

[23] Darling, A., Carey, L. and Feng, W.-c.: The design, implementation,
and evaluation of mpiBLAST, Proceedings of ClusterWorld, Vol. 2003
(2003).

2015年ハイパフォーマンスコンピューティングと計算科学シンポジウム
High Performance Computing Symposium 2015

ⓒ 2015 Information Processing Society of Japan 80

HPCS2015
2015/5/19

