
IPSJ SIG Technical Report

Trace Signal Selection Methods for Post Silicon Debugging

Shridhar Chaudhary1,a) AmirMasoud Gharehbaghi1,b) TakeshiMatsumoto3,c)

Masahiro Fujita2,d)

Abstract: In post-silicon debugging, only a limited number of states (flip-flops) can be traced, due to the area over-
head that is introduced by trace buffers. Therefore, it is important to select the states which can restore most of the
other states. There exist researches that try to heuristically select a set of flip-flops (FFs) which maximizes the number
of restored FFs. Those existing works are not so robust and the cost functions used for selections do not work well in
some cases. In this paper, we introduce a hardware based implementation which tries to improve selection by repeat-
edly swapping the flip-flops to be traced. As this is faster than software by 3-4 orders of magnitude, we can swap much
more times and get consistent results even for large circuits.

1. Introduction
As integrated circuit technology has been closely following

Moore‘s law, the complexity of silicon chips is increasing inten-
sively. While the design cycle is decreasing. Because of shorter
design cycle and increased complexity, it has become very hard
to analyze the functional bugs during pre-silicon phase of verifi-
cation. This result in errors being escaped the pre-silicon phase.
The bugs which exist deep into design state space are very hard
to detect during the manufacturing tests as well. There are also
some electrical bugs that are usually hard to detect. The tradi-
tional pre-silicon verification techniques such as formal verifica-
tion and simulation based techniques are not efficient to identify
these functional bugs as well as electrical bugs. As a result,post
silicon validation methods have come into existence.

Post-silicon debugging tries to identify, locate and correct the
bugs that exist in the chip after manufacturing to stop the buggy
chip to go in the field.

1.1 Related Work
Mainly the post silicon debugging can be divided into two ap-

proaches.
• Bug localization techniques that try to automatically find

cause of an observed erroneous state.
• Design for debug techniques that improve observability and

controllability of design.
One of the approach to locate errors is that we start from an er-

roneouse state of the circuit and try to find the traces that causes

1 Dept. of Electrical Engineering and Information Systems, The Univer-
sity of Tokyo, Tokyo, JAPAN

2 VLSI Design and Education Center, The University of Tokyo, Tokyo,
JAPAN

3 Ishikawa National College of Technology, Ishikawa, JAPAN
a) shridhar@cad.t.u-tokyo.ac.jp
b) amir@cad.t.u-tokyo.ac.jp
c) matsumoto@ishikawa-nct.ac.jp
d) fujita@ee.t.u-tokyo.ac.jp

Input

Tests

Implementation

(Gate Level)

Signal selection and Trace

Circuitry Design

Integrated Circuit

L

O

G

I

C

Interconnect

Fabric

Trigger

unit

Trace

Buffer
Signal

Restoration

Signal

Output

Debug

Pre-Silicon

Validation

Post-Silicon

Validation

And Debug

Manufacturing………………. ………………………………………………………………………

Fig. 1 Overview of system validation
[5].

the corresponding erroneouse state by going back to the first cor-
responding error free state. This is called Backspace technique[3]
which basically records a crashed state, then calculates its error
free state, which is the target point. By repeating the previous
steps on the new target point it reconstructs error trace back-
wardly. This method has shown promising results by reconstruct-
ing traces for hundreds of cycles, but it has high area overhead
for the special on-chip hardware. Obtaining the previous state is
represented as a SAT problem. SAT solvers are used to produce
trace for such bugs that are detected after thousands of cycles of
an execution. Furthermore, this trace based techniques has a key
issue that is to improve the utility of trace analysis.

There are techniques that do not require any system level
simulation and failure reproduction. For example, a technique
called IFRA, Instruction Footprint Recording and Analysis [2]
has been developed for localizing bugs and finding the instruc-
tion sequence that exposes the bug from a system failure, for
instance a crash. A special hardware which records the in-
struction footprints,which contains special information about the
flow of instructions, and what the instructions did as they passed
through various micro-architectural blocks of the processor. Dur-
ing normal operation of processor, when a failure is detected, the

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-SLDM-171 No.4
2015/5/14

IPSJ SIG Technical Report

recorded information is scanned out and analyzed for bug loca-
tion.Trace based approaches require large amount of internal sig-
nal data to be analyzed. However many of this data is irrelevant
for reproducing the error and increases the processing time and
on-chip memory. Therefore, design for debug techniques are pro-
posed to improve the controllability and observability of internal
signals.

DSC (Dynamic Slicing Circuit)[13]is an on-chip circuitry that
identifies input signal values influencing the buggy output value
in a particular execution of a chip by exploiting dependencies be-
tween different signals. As these input signal values are smaller
subset of entire input sequence, error can be reproduced by simu-
lation of these input patterns. But this approach assumes that the
sequence of control states is stored in an on-chip buffer, that may
not be sufficient to store the required number of sequences to get
the input values to reproduce the error.

To improve the internal signal observability, special ad hoc
DFD hardwares are proposed in the literature that improve data
acquisition[8][9][10][11]. They are either trace buffer based or
scan based approaches. Fig 1 shows the flow of design in case
of using trace buffers inside the chip. Most recently special hard-
ware called ELA (Embedded Logic Analyzer)[7] are used on-
chip which samples the data into trace buffers. An ELA has many
trigger units which determines when the data should be sampled
into trace buffers. These DFD hardware utilizes the sampled data
by sending it through low bandwidth device pins and finally the
errors can be identified off-chip using some special post process-
ing algorithms.

1.2 Motivation
All the above techniques are trying to utilize the on-chip stored

data. Similarly among DFD techniques like DSC or ELA the
trace buffers area overhead is a problem. To tackle this issue ef-
ficient use of the on-chip stored data has become a key in post-
silicon debugging. The on-chip stored data which is traced should
be efficiently used to reconstruct the circuit state as much as pos-
sible. In our previous work, for a specific simulation vector,
we introduced a way to select the optimum number of traced
states using a PBO (Pseudo Boolean Optimization) based algo-
rithm which can optimize the on-chip memory by restoring the
unknown states from the fewer number of traced states stored in
the on-chip buffer. Basically, we try to select some particular sig-
nals for tracing instead of tracing all the values, following some
algorithms trying to reproduce other states of the design. Logi-
cal bugs can be detected using restorability based techniques. We
can get optimum FF selections for small circuits with a single
simulation vector by utilizing PBO techniques.

From the experiments of PBO we observed that there are cases
where existing simulation based methods do not work well. That
is because although the selection of FFs done by cost functions
of previous X-smiluations based methods is consistently correct
if FFs are fixed. However, the cost function using incremental
or decremental selection of FFs may not necessarily be a good
criteria. In this paper, we show that the correct cost functions
cannot be compensated neither by a method with two FF addi-
tions nor a method with a cost function including interval signal

FF1

FF2

FF3

FF5
FF4

Fig. 2 Example circuit.

�������

��	
���
���

�

�

�

�

�

�

�

�

�

�

�

�

�������

��	
���
���

�����

��	
���
���

�

�

�

�

�

�

Fig. 3 Restoration examples.

values. Therefore, we need to fix the FF selection for all slots
in order for the cost function to be correct or effective. We in-
troduce a swap based signal selection process using FPGA based
hardware implementiation and compare it with an software im-
plementation. We have shown that swapping can improve sig-
nal selection from existing simulation based methods but many
swappings are needed for large circuits and software take exces-
sive time for these large circuits. Therefore, we use FPGA to
perform around 1000 times more swaps than software. We also
show a functional dependency based heuristics which we tried
for the analysis. Finally, we will conclude this paper showing
our estimated improvement in number of swaps using hardware
implementation which is still under progress.

2. Signal Restorability
In post-silicon debugging, ideally we want to observe every

signal value in each cycle, while utilizing little chip area and
consuming lesser time. With increasing logic designs in limited
area, it is unrealistic to observe each and every state of the sig-
nal at every cycle. While we use trace buffers to store these sig-
nals we want to decrease the amount of on-chip memory used by
them. Therefore, it is better to trace only limited number of signal
values and by using some techniques, trying to restore other un-
known values. Restoration process utilizes the controlling value
of a logic gate[14]. A controlling value at one of the input of a
logic gate can be used to infer the value of some or all inputs of
the corresponding gate. For example,value 1 on an input of OR
gate directly conveys that the value of the output is 1. Similarly,
if we know one of the inputs and the output value of a 2 input
gate, we can infer the other input value. Using similar technique
for other logic gates we can restore unknown input states and out-
put states for different cycles. The restoration can be divided into
three types. All these three kinds of restoration can be seen in
Fig.3 which represent each type separately.

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-SLDM-171 No.4
2015/5/14

IPSJ SIG Technical Report

Table 1 Restoration performed for the example circuit.
1 2 3 4 5

FF1 0 x 0 x x
FF2 0 x 0 x x
FF3 x x x x x
FF4 0 0 1 0 x
FF5 x 0 0 x 0

a

b

c

pa�{b,c} = rcc + rbb rcc

pb�{a,c} = rcc + raa rcc

pc�{a,b} = raa + rbb + rarb

Constraint: (pa�{b,c} + pb�{a,c}) XOR pc�{a,b}

Fig. 4 Formulation example for AND gate.

• Forward restoration: When one of the inputs of a gate has
controlling value, the output can be inferred without know-
ing other input values

• Backward restoration: When the output of a logic gate has
the non-controlling value, we can infer that all the inputs
have that non-controlling value.

• Combined restoration: When we know one input as well as
the output of a 2 input gate, we can infer the other input from
these values.

As shown in Table 1, restoration process performed on the exam-
ple circuit shown in Fig.2, restoration depends on the the signals
that are traced. Therefore, the trace signals should be carefully
selected to get the optimum result. Which signals and how many
signals to be traced has been a research topic and many algo-
rithms to select the best signals are proposed. For evaluating the
quality of restoration, State Restoration Ratio (SRR) is defined
as: sumo f numbero f traced+numbero f restoredstates

numbero f tracedstates . In the example circuit
Fig.2, we can see that FF2 is traced for 4 cycles and we were able
to restore 7 states. So SRR for this circuit equals to (7+4)/4 =
2.75.

3. PBO Formulation
Based on the restoration technique mentioned above, we have

presented a PBO-based formulation for the selecting optimum
number of traced signals for a given circuit. The pseudo-Boolean
optimization problem is the task of finding a satisfying assign-
ment to a set of PB-constraints that minimizes a given objective
function. We introduce four Boolean variables rs(c), trs, ps←t(c)
to have logical representation of restorability[16]. rs(c) is 1 iff
signal s is known (i.e. restored or traced) at c-th clock cycle. trs
is defined only for state variables and indicates s is traced. ps←t(c)
is 1 iff signal s is restored using the value of signal set t = t1, t2, ...
at c-th cycle. Variables ps←t are defined to represent restoration
inside a logic gate, where each of s and t1, t2, ... ∈ t are an input
or output of a gate. An example of how p variables are defined is
illustrated in Fig. Then, rs is defined as OR of all p variables to
restore s and trs (if s is a state variable). Note that p variables to
restore s can exist in different gates, since s can be restored both
forwardly in a fanin gate of s and backwardly in fanout gates of
s. The logic formulas generated in the way described above are
translated into PBO formulas. We made a PBO problem to find
the optimum number of flip-flops which can be traced for maxi-
mizing the number of state restored in the circuit.

1:procedure SelectSignals(circuit,w,c)
2: Create list of selected signals S => Initial selection
3: while |S| < w do
4: Gererate a random input vector I
5: for every pair of FFs those are not in S do
6: Calculate restoration difference
7: end for
8: Find FFs with maximum restoration difference
9: Add those 2 FFs to the list S
10: end while
11: return S
12: end procedure

Algorithm 1 Simulation Based Selection Process

Fig. 5 Simulation based selection process.

4. Signal Selection Heuristics
We used PBO-based method’s result to analyze X-simulation

based methods and it showed that cost function for selection in
X-simulation based methods doesn’t work well. The state of the
art simulation-based method is an augmentation based method
which selects flip-flops incrementally based on which flip-flops
restores maximum number of state[20]. Following, we present
our heuristics for signal selection.

4.1 Selecting 2 FFs Incrementally At Once
Selecting FFs incrementally using X-simulations[20] is proved

to be better than decremental selection[14]. In the incremental
approach, initial pool of selected FFs is empty. From there on,
at every step, one FF is being traced and the number of restored
states are checked based on the traced FFs. Repeating this proce-
dure for all FFs, the FF with highest number of restored states is
selected. The above step is repeated until the trace buffer width,
which is the number of FFs to be traced, is full. We implemented
the same algorithm and compared the results with the optimum
selection from PBO-based method. We observed that in some
cases during the incremental selection of FFs at the second step
or further steps, a wrong FF was selected in the sense that final
pool of selection was not optimum.

Therefore, as shown in the Fig.5, we changed the selection
process by selecting 2 FFs at a step instead of one in the X-
simulations based method presented in the previous works[20].
Experimental results showed that even selecting 2 FFs at a single
step finally selects wrong selection because the number of traced
FFs didn’t change too much even for the new selection. That lead
us to the conclusion that every position of FFs during the selec-
tion is needed to be fixed for the best selection of FFs.

4.2 Selection Based On Cost Function With Intermediate
Variables

So far in the existing works based on simulation, we just count
the number of restored FFs. As in every circuit there are inter-
mediate signals between different FFs, those intermediate signals
may affect the restoration of connected FFs. Therefore, we con-
sidered intermediate variables as well, while counting the total
number of restored states to improve selection of FFs.

Basically cost function in previous works just uses number of

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-SLDM-171 No.4
2015/5/14

IPSJ SIG Technical Report

Read Verilog netlist as input

Perform random simulations for N cycles

For every pair of cycles weight each FF as no. of FFs that change values

Sum up each FF’s weights for all pair of cycles

Select the FFs with maximum weights

Selected FFs are the FFs to be traced

Fig. 6 Signal selection process.

restored FFs for evaluation but we included restored intermediate
signals as well, however, the results after the inclusion of inter-
mediate variables in the cost function evaluation didn’t change
the final selection as expected.

4.3 Functional-Dependency Based Selection
From the results of previous tried heuristics, we concluded that

the heuristics, that are based on X-simulation and use incremen-
tal and decremental selection are not working well to get opti-
mum selection of FFs, because the cost function might not be a
good criteria for some cases and every position of FF selected
needs to be fixed. Therefore, we came up with a new cost func-
tion that is completely different from the previous works. In our
proposed heuristic, selection of flip-flops is based on functional
dependency among the FF signal values. As the value of a FF
changes in a given pair of cycles, it might affect other FFs by
changing their values in the same pair because ultimately they
are connected with each other with some logic gates in between.
Therefore, this functional dependency among different FF values
can be a key to a new cost function. Function-dependency based
cost function can be defined as :
• When a signal’s values in two cycles(time frames) are differ-
ent, what are the other signals that their values are different.

• For each two time frames, count the number of signals whose
values are different.

• The proposed cost function is the summation of the above for
all combinations of two time frames

We select FFs with the highest value of the above described cost
function to be traced. The signal selection process can be seen in
the Fig.6.

5. Swapping Based Selection Improvement
As can be seen in the experimental results section, all the

heuristics shown above couldn’t improve the final FF selection
too much. However, based on PBO formulation we know that
there is a scope for improvement. Therefore, we proposed to start
with an initial selection of best FFs as per existing simulation
based methods and try to improve from there. For improving the
FF selection,we introduce a swapping based heuristic. Basically
we start with an initial list of selected FFs for restoration and a
list of remaining FFs. Then we randomly swap FFs between the
two lists and check wether the number of restored states are im-

1:procedure SelectFFs(circuit,w(TraceBufferWidth),c(cycle))
2: Create list of selected FFs S => Initial selection
3: Create list of remaining FFs R
4: Calculate # of restored FFs for S => N
5: for (10000 times) do
6: Swap 1 FF between S and R
7: Calculate # of restored FFs for S => N_new
8: if (N_new > N) accept the swap
9: else re-swap the selection
10: end for
11: return S
12: end procedure

Algorithm 2 Swap Based Signal Selection Process

Fig. 7 Swap based signal selection process.

�� �� ��

�

�� �� ��

�

�� �� ��

�

�� �� ��

�

�� �

�

��

�

��������

	�
�����������

�������

�����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
��������

��	�����

��������

�������������

������� �� !!����� !! �"

������� #$��$	%

�"$	%

#$!!$	

	�
��������

������

&'$(

)�**�� +,

!-. �/!!�

�"-.�/

�������

"��*���

��-.�/

�������

�
*���

	-. �/���������

	�����

(-.�/(�����
��	��

�������

0�����������

Fig. 8 Swap based selection hardware.

proved or not. We accept the swapping if the number of restored
FFs is increased and continue swapping until we can not improve
the restoration amount further.

5.1 Software Implementation
We performed a software implementation of the swapping

based selection. As shown in Fig.7, algorithm for swapping ac-
cepts only improved selection. To reach the the best selection for
large circuits with thousands of FFs, too many swaps are required
to reach to the best selection, hence not feasible with software
method.

5.2 Hardware Implementation
As we need as many as possible swaps for larger circuits, we

introduce a hardware implementation of swapping based signal
selection. As shown in Fig.8, we introduce v, f, b variables for
simulation value, forward restoration and backward restoration,
respectively. Synthesized circuit module contains all the formu-
las for v, f and b variables similar to our PBO formulas as shown
in Fig.4. These formulas are used for x-simulation of restoration
through the circuit. f and b variables are basically used as x val-
ues for simulation. We introduce 5 memories each for primary
input value, x value as PI and PIx respectively, primary output
x value as POx, FF value and FF x value as FFv and FFx re-
spectively. Width of these memories are the number of variable
they represent. For example, FFv memory width is the number of
FFs in the circuit. Depth of these memories is same as number of

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-SLDM-171 No.4
2015/5/14

IPSJ SIG Technical Report

cycles. In Fig.8 size of the hardware is represented. These memo-
ries are connected with the synthesized module through a control
circuitry. Current synthesized ISCAS’89 circuit size is more than
10 times the original size. That is because, we have introduced
three kinds of variables which in turn are synthesized into more
number of gates.

At the start of the process, we give an initial selection vector
to FFx memory while whole PI memory and FFv’s 1st address
is randomly initialized. Then x-simulation is performed in hard-
ware for restoration by repeating forward and backward restora-
tion until we reach to the maximum number of possible restored
FFs. After restoration is finished, FFx memory is read to count
the number of FFs restored and a pre-processor will decide that
swapping should be performed similar to software implemented
algorithm shown in Fig.7.

6. Experimental Results

Table 2 Software swapping improvement.

circuit # at start # of
effective Swaps # of restored

s298 802 3 850
s344 396 8 576
s349 396 7 590
s386 381 0 381
s444 929 6 1254
s510 384 0 384
s526 1269 1 1278
s713 754 2 821

We applied our PBO formulation and all the three heuristics
explained in section 4 to ISCAS’89 circuits and obtained the
trace signal to be traced. PBO based method worked only for
smaller circuits because of scalability issues of SAT solver, we
compared it with our own implementation of existing simulation
based method, which selects FFs incrementally. In this experi-
ment for small ISCAS’89 circuits trace buffer size was fixed as 4
because the total number of flip-flops in these benchmarks were
very small. We could get optimum FF selections for small cir-
cuits with a single simulation vector by utilizing PBO techniques.
For further experiments, we implemented one of the algorithms
shown in existing simulation based method with incremental se-
lection. In Table 3, Sim-exist shows the SRR for the implemen-
tation. We used 100 sets of random input vectors for the evalua-
tion of restoration experiments and comparison of our results with
the existing simulation based approach which was implemented
with the same set of 100 random input vectors. The results shows
that PBO gives better restoration in some of the cases exclud-
ing s400,s510 and s832 where it was almost equal but not less.
For comparison of our proposed heuristics we implemented sim-
ulation based approach[20]. Simulation based approach provides
better SRR compared to all the existing solutions. However, in
some cases specially for small buffer width of 4, SRR was re-
duced because of fewer number of FFs after optimization using
synthesis tools. When random inputs are used, according to[14],
restoration capability can be obtained by actually simulating the
restoration process on the circuit over a small number of cycles
64, and measuring the corresponding SRR. As trace signal selec-
tion is done only once during the design flow of circuit blocks of

ELA, the run time of selection algorithm is less important than
the quality of the selected signals[14].

Table 3 Experiment for initial heuristics.

circuit # of
FFs Sim-exist Sim1 Sim2 Fun-Dep PBO

s298 14 4.23 4.23 3.91 3.16 4.4
s344 15 3.24 3.31 3.13 2.73 4.14
s386 6 2.48 2.48 2.48 2.25 2.5
s444 21 4.81 5.78 3.76 3.81 6.05
s510 6 2.49 2.48 2.49 2.38 2.5
s526 21 5.95 5.96 3.74 3.71 6.04
s713 19 3.97 3.97 3.97 2.5 4.01
s832 5 2.15 2.15 2.06 2.14 2.17

s1423 74 7.8 T/O 6.8 5.56 T/O
s5378 179 15.3 T/O 15.1 12.1 T/O
s9234 211 10 T/O 9.59 5.18 T/O

s15850 638 27.8 T/O T/O 23.8 T/O

Table 3 column 4 Sim1 shows the SRR for 2FFs at once heuris-
tic with random vector for selection and 100 sets of random
vectors for the evaluation of restoration. The same sets of 100
random vectors were applied for comparison with the selection
which is the same as done by the existing simulation based ap-
proach. The number of cycles and the trace buffer width was
fixed to 4 for the smaller ISCAS’89 circuits. Comparison was
done based on the average of the 100 sets of restored FFs. As the
experiments could not finish for large circuits comparison can be
seen in the Table 4 for smaller circuits only. We can see there is
not much improvement or even the restoration decreases in some
cases. This shows that every position while selecting FFs should
be fixed for optimum selection.Similarly we compared the inter-
mediate variable included heuristic’s results, shown as Sim2 in
Table 3, with the existing method’s selection using 100 random
vectors for evaluation of restoration process. For functional de-
pendency based heuristic we performed different selections using
5 sets of random vectors and chose the best for comparison. Fun-
Dep shown in Table 3 represents the SRR for function depen-
dency based heuristic’s result. Comparison of our heuristic was
done with the simulation based method for 100 sets of different
random vectors used for restoration based evaluation.

6.1 Experimental Calculations For Swap Based Selection
Improvement

Table 4 Experiment comparing hardware and software swaps

circuit # of Gates # of FFs
of Swaps
Software
(per hour)

of Swaps
Hardware
(per hour)

Ratio

s5378 2779 179 10000 9309662 931
s9234 5597 211 6428 6209048 966

s15850 7951 638 3461 1821386 526
s38417 22179 1636 538 1136754 2113

As shown in the Table 4,comparing column 4 with column 2
shows that, software based swapping could improve the initial se-
lection of FFs in smaller ISCAS’89 circuits. The effective number
of swaps shown in the table implies to the swaps which improve
the selection. All the results are shown after repeating the swap-
ping algorithm for 1000 times which means a large number of
swaps are required to get effective swaps. It can be seen that as

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-SLDM-171 No.4
2015/5/14

IPSJ SIG Technical Report

we try swapping for large ISCAS’89 circuits the number of effec-
tive swaps decreases. As software could take forever for larger
circuits, we show estimated improvement in the number of swaps
using our FPGA based hardware in Table 4. Results shown are
based on frequencies of our synthesized modules as discussed in
Fig. 8. The time hardware takes for one swap can be calculated
for a particular circuit based on following formulas. If C shows
the number of simulation cycles and Cres shows the number of
clock cycles required for one complete process of restortaion,

Clock cycles for one swap(CC) = (FF number X C) + Cres
Time for one swap = 1

FPGAclock f requency f orthecircuit X CC
Using above mentioned formulas Tabel 4 shows the compar-

ison between the estimated number of swaps that can be per-
formed in one hour using software and hardware implementa-
tions. From these results, we can say that the larger the circuits
gets more the number of swaps performed by hardware increases
compared to the software. Hardware as expected can perform
more than 1000 times more swaps than software for largest IS-
CAS’89 circuit which in turn is expected to get better selection.
So using hardware swapping we expect to achieve improvement
in signal selection even for circuits bigger than ISCAS’89.

7. Conclusions and Future Work
Post silicon validation has become an essential step in the de-

sign flow of integrated circuits. In this paper we presented dif-
ferent heuristics, that use trace buffers and restoration methods to
select effective signals which can reconstruct other signals of the
circuit while consuming less hardware memory. While the ap-
proaches like simulation based are very effective than other pre-
vious probabilistic based techniques all the methods seen so far
are not exact. There is a need for more optimal and less time con-
suming methods. Although our PBO formulation can give better
results for 1 random simulation but it can work only for smaller
circuits due to exponential runtime during simulation. Through
experiments after modifying existing simulation based approach
we came to know that signal selection can be improved by fixing
FFs selected during each step of simulation based method. We
did so by repeated local optimization on an early selection using
swapping.

We have done experiments using swapping on software but it
cost many simulation cycles and excessive runtime. Therefore
we introduced a FPGA based swapping which can be thousand
times faster than software and give us optimum results even for
very large circuits because of high resources available in FPGA.
We have formulated the restoration into FPGA based hardware
and plan to run the experiments of swapping using a software
controller with FPGA hardware in the future research.

References

[1] N. Nataraj, T. Lundquist, and K. Shah, “Fault localization us-
ing time resolved photon emission and STIL waveforms,” Proc.
International Test Conference, 2003, pp. 254–263.

[2] S.-B. Park and S. Mitra, “IFRA: Instruction Footprint Recording
and Analysis for Post-silicon Bug Localization in Processors,”
Proc. of Design Automation Conference, pp. 373–378, 2008.

[3] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and Y. Jin,
“BackSpace: Formal Analysis for Post-Silicon Debug,” Proc.

of Formal Methods in Computer-Aided Design, pp. 1–10, 2008.
[4] H. F. Ko and N. Nicolici, “Algorithms for state restoration and

trace signal selection for data acquisition in silicon debug,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 2, pp. 285–297, 2009.

[5] K. Basu and P. Mishra, “Efficient trace signal selection for post
silicon validation and debug,” Proc. VLSI Design, 2011, pp.
352–357.

[6] H. F. Ko and N. Nicolici, “Automated trace signals identification
and state restoration for improving observability in post-silicon
validation,” Proc. Design Automation and Test in Europe, 2008,
pp. 1298–1303.

[7] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G.
Memmi, and D. Miller, “A reconfigurable design-for-debug in-
frastructure for SoCs,” Proc. Design Automation Conference
(DAC), 2006, pp. 7–12.

[8] SignalTap II Embedded Logic Analyzer, Altera Verification
Tool, 2006,
http://www.altera.com/products/software/products/
quartus2/verification/signaltap2/sig-index.html.

[9] ChipScope Pro, Xilinx Verification Tool, 2006,
http://www.xilinx.com/ise/optional prod/cspro.html.

[10] Sun Microsystems OpenSPARC,
http://opensparc.net/.

[11] Embedded Trace Macrocells, ARM limited, 2007,
http://www.arm.com/products/solutions/ETM.html.

[12] B. Vermeulen and S. K. Goel, “Design for Debug: Catching
Design Errors in Digital Chips,” IEEE Design and Test of Com-
puters, vol. 19, no. 3, pp. 35–43, May 2002.

[13] Yeonbok Lee, Takeshi Matsumoto, Masahiro Fujita, “Genera-
tion of I/O Sequences for a High-level Design from Those in
Post-silicon for Efficient Post-silicon Debugging,” Proc. of 28th
IEEE International Conference on Computer Design, pp. 402–
408, October 2010.

[14] Debapriya Chatterjee, Calvin MacCarter, Valeria Bertacco,
“Simulation-based signal selection for state restoration in sili-
con debug,” Proc. of the International Conference on Computer-
Aided Design, pp. 595–601, Nov. 2011.

[15] H. F. Ko and N. Nicolici, “Algorithms for state restoration and
tracesignal selection for data acquisition in silicon debug,” IEEE
Trans. on CAD, vol. 28, no. 2, pp. 285?297, 2009.

[16] Shridhar Choudhary, Kousuke Oshima, Amir Masoud Ghare-
hbaghi, Takeshi Matsumoto and Masahiro Fujita, “Exact Solu-
tion for Trace Signal Selection with Pseudo Boolean Optimiza-
tion (PBO),” Design Automation for Understanding Hardware
Designs(DUHDe), 2014.

[17] Xiao Liu and Qiang Xu,“On Signal Selection for Visibility
Enhancement in Trace-Based Post-Silicon Validation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol.31, no.8, pp.1263–1274, Aug. 2012.

[18] Kang ZHAO and Jinian BIAN, “Pruning-Based Trace Signal
Selection Algorithm for Data Acquisition in Post-Silicon Vali-
dation,” IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.6
pp. 1030–1040, Jun. 2012.

[19] N. Eén and N Sörensson, “Translating Pseudo-Boolean Con-
straints into SAT,” Journal on Satisfiability, Boolean Modeling
and Computation, vol. 2, pp.1–26, 2006.

[20] Rahmani,K.Mishra, P.Ray, S., “Efficient trace signal selection
using augmentation and ILP techniques,”Quality Electronic De-
sign (ISQED), 2014 15th International Symposium on , vol., no.,
pp.148,155, 3-5 March 2014.

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-SLDM-171 No.4
2015/5/14

