
Electronic Preprint for Journal of Information Processing Vol.23 No.3

Regular Paper

An XSLT Transformation Method
for Distributed XML∗

HirokiMizumoto1,a) Nobutaka Suzuki1,b)

Received: September 20, 2014, Accepted: January 9, 2015

Abstract: Recently, the sizes of XML documents have rapidly been increasing. Distributed XML is a novel form of
XML document, in which an XML document is partitioned into fragments and managed separately in plural sites. Dis-
tributed XML documents can often be managed more easily than a single large document, according to geographical
and/or administrative factors. In this paper, we consider performing XSLT transformation efficiently for distributed
XML. To obtain an efficient method for this transformation, we devise an efficient evaluation method for XSLT pat-
tern, which is a subset of XPath, and integrate it into top-down XSLT transformation. To evaluate an XSLT pattern
for node v in a distributed environment, the site having v may need to access other sites many times. We propose two
novel techniques to reduce such accesses; (1) precomputation of ancestors and (2) cache for predicate evaluation. We
implemented our method in Ruby and made evaluation experiments. This result suggests that our method is more
efficient than a centralized approach.

Keywords: XSLT, distributed XML, tree transducer

1. Introduction

XML has been a de-fact standard format on the Web, and the
sizes of XML documents have rapidly been increasing. Dis-

tributed XML [1], [2], [5], [6] is a novel form of XML docu-
ment, in which an XML document is partitioned into fragments
and managed separately in plural sites. Figures 1 and 2 show a
simple example of a distributed XML document of multinational
corporation clientele. In this example, one XML document is
partitioned into four fragments f1, f2, f3, and f4, and f1 is stored
in site S 1, f2 is stored in site S 2, and so on. Due to geographi-
cal and/or administrative factors, distributed XML is much suit-
able for managing some kind of XML documents, e.g., an XML
document containing some separable subcontents that should be
managed by different admins [1].

In this paper, we consider XSLT transformation for distributed
XML documents. A conventional approach for performing an
XSLT transformation on a distributed XML document is to send
all fragments to a specific site, then merge all the fragments into
one XML document, and perform an XSLT transformation on the
merged document. However, this “centralized” approach is inef-
ficient due to the following reasons. First, in this approach an
XSLT transformation processing is not load-balanced. Second,
an XSLT transformation becomes inefficient if the size of the tar-
get XML document is large [20]. This implies that the centralized
approach is inefficient even if the size of each XML fragment is
small, whenever the merged document is large.

In order to perform an XSLT transformation in a distributed
approach, we have to evaluate XSLT patterns in a distributed en-

1 University of Tsukuba, Tsukuba, Ibaraki 305–8550, Japan
a) s1321653@u.tsukuba.ac.jp
b) nsuzuki@slis.tsukuba.ac.jp

vironment. Since XSLT pattern is a subset of XPath, distributed
XPath evaluation algorithms (e.g., Refs. [4], [5], [6]) would be
applicable to such XSLT pattern evaluations. However, these al-
gorithms focus on processing a single XPath query efficiently,
while an XSLT stylesheet may contain a number of patterns. This
difference may cause no little overhead w.r.t. XSLT pattern evalu-
ation (this is further discussed in Section 3.4). On the other hand,
an XSLT pattern is usually much simpler than an XPath query,
and thus an XSLT pattern can be evaluated more efficiently than
a usual XPath query. These properties of XSLT stylesheet should
be taken into account in order to devise an efficient XSLT trans-
formation method for distributed XML.

Therefore, we adopt another XSLT transformation strategy in
which each XSLT pattern is evaluated on the fly along with top-
down XSLT transformation. To achieve this strategy, we have to
cope with XSLT patterns evaluated over more than one fragment.
In our data model, a location path can be used as an XSLT pat-
tern instead of a single label. Due to this, a site has to access other
sites many times to evaluate an XSLT pattern, which causes a se-
rious performance problem. Let S be a site, f be the fragment in
S , and pat be an XSLT pattern, and consider checking if a node
v in f matches pat. We need to find the ancestors v′ of v (and
some descendants of v′) such that v is reachable from v′ via pat.
Since v′ is often a node outside S , many accesses to sites outside
S are required to check if v matches pat. For example, consider
the XML fragments in Figs. 1 and 2, and suppose that we have
the following XSLT template.

<xsl:template match=“branches/branch[currency]//deal”>
...

∗The previous versions of this paper are Refs. [13] and [14].

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Fig. 1 Multinational corporation clientele.

Fig. 2 Four sites storing the fragments in Fig. 1.

</xsl:template>

To check if the node labeled by “deal” in f4 matches the above
template, we need to access S 2 and S 1 from S 4. To reduce such
accesses, we propose two novel techniques; (1) precomputation
of ancestors and (2) cache for predicate evaluation. For (1), each
site S having a fragment f precomputes a path from the root of f

to the root of the input XML document, called root path. By us-
ing a root path, ancestors v′ of a node v can be obtained efficiently
even if v′ is stored in a site different from the site having v. As
for (2), each site maintains a cache that stores results of predicate
evaluations. In an XML document, sibling nodes tend to have the
same label. Therefore, if a pattern matching such sibling nodes
accesses “outside” sites, a lot of similar communications between
sites may occur to evaluate the pattern. For example, consider
evaluating pattern “↓∗::branch[↓::currency]/↓∗::deal” for five sib-
ling nodes v8, · · · , v12 (Fig. 3). Without cache, due to the predicate
“↓∗::currency” an access from f ′4 to f ′2 is required for each of the
five siblings. By storing the results of such predicate evaluations
in a cache we can reduce accessing “outside” sites when evaluat-
ing predicates. We implemented our method in Ruby and made
evaluation experiments. The result suggests that our method is
more efficient than the centralized approach.

To show how XSLT is applied to distributed XML, consider
again the XML tree shown in Fig. 1. It is often preferable that
such trees are decomposed into a number of fragments and are

Fig. 3 Sibling nodes labeled as same.

distributed over the Internet for geographical or administrative
reasons. For example, a client may request that his data is stored
in a site located in his country since the site and its data must obey
the laws of the country where the site is located (e.g., USA Patriot
Act). In this example, we assume that f1 is stored in American
site S 1, f2 is stored in Japanese site S 2, and so on. Here, suppose
that the manager of this corporation requests a list consisting of,
for each currency, the sales amounts of “incomplete” deals. By
using the XSLT stylesheet shown in Fig. 4, we can easily obtain
the list of sales amounts associated with currency of incomplete
deals (Fig. 5). Note that such a result cannot be obtained if we
use XPath instead of XSLT.

Since XSLT is Turing complete [8], it is hard to plan a complete
strategy of XSLT transformation for distributed XML. In this pa-
per, we focus on the top down transformation with node selection
by using patterns, and thus use a top down tree transducer instead
of the full XSLT. This tree transducer is an extended version
of the unranked top-down tree transducer used in Ref. [12]. Our
tree transducer is extended so that, in addition to a single label, a
location path can be used as a match attribute of an XSLT tem-
plate. Thus, this paper adopts the “core” of XSLT transformation
to focus on the distributed evaluation of XSLT pattern. However,
our tree transducer can easily be extended so that it covers about
a half of XSLT instructions/functions. Table 1 classifies the in-
structions/functions of XSLT 1.0 into two types A and B. Here,

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

<xsl:template match="branches">
<data>
<xsl:apply-templates/>

</data>
</xsl:template>

<xsl:template match="branch">
<branch>
<xsl:apply-templates/>

</branch>
</xsl:template>

<xsl:template match="currency">
<currency>
<xsl:apply-templates/>

</currency>
</xsl:template>

<xsl:template match="deal[incomplete]/amount">
<amount>
<xsl:apply-templates/>

</amount>
</xsl:template>

Fig. 4 An example of XSLT stylesheet.

<data>
<branch>
<currency>JPY</currency>
<amount>100,000</amount>

</branch>
<branch>
<currency>USD</currency>
<amount>1,000,000</amount>

</branch>
</data>

Fig. 5 List of sales amounts with currency of incomplete deals.

Table 1 XSLT 1.0 instructions and functions.

instruction function
Type A 18 18
Type B 17 16
Total 35 34

the instructions/functions f of type A can locally be calculated
within the fragment in which f is evaluated, e.g., xsl:text. On
the other hand, the instructions/functions f of type B may ac-
cesses several fragments beyond the fragment in which the f is
evaluated, e.g., the select attribute of xsl:for-each may access
outside of the fragment having the current node. Since the in-
structions/functions of Type A are not affected by how fragments
are distributed, the instructions/functions can easily be incorpo-
rated into our tree transducer. Taking this into account, we be-
lieve that our tree transducer represents a practical class of XSLT
transformation.

Related Work
A distribution design of XML documents is firstly proposed

in Ref. [3]. However, the study makes few discussions on XML
query processing. There have been several studies on evalua-
tions of XPath and other languages for distributed XML. Refer-
ences [4], [5], [6], [9], [11] propose efficient XPath evaluation al-
gorithms for distributed XML. Given a tree t and an XPath query
q, the algorithm in Refs. [4], [5], [6] traverses t and computes,
for each node v in t, several vectors which records the evaluation
values of subexpressions of q at v. The algorithm in Ref. [11] par-
titions an XML tree into fragments, selects appropriate fragments
containing answers to the query, then performs a query process-

ing on the fragments in parallel. Reference [9] proposes, assum-
ing that an XML tree is stored in relational tables, a scheme for
parallel processing of XML tree using PC-clusters. These XPath
evaluation methods may be used for evaluating XSLT patterns,
but this is not necessarily a good strategy due to the difference
between XPath query and XSLT patterns of XSLT stylesheets
(details are discussed in Section 3.4). Reference [10] proposes
a method for evaluating XQ, a subset of XPath. The paper as-
sumes that a query is evaluated in a vertically partitioned XML
databases, while our method assumes that an XML document is
partitioned into subtrees. Reference [17] considers a regular path
query evaluation in an distributed environment. Reference [15]
proposes a data-parallel approach for the processing of stream-
ing XPath queries based on push down transducers. This ap-
proach permits XML data to be split into arbitrarily-sized chunks.
Reference [18] extensively studies the complexities of regular
path query and structural recursion over distributed semistruc-
tured data. Besides query languages, Refs. [1] and [2] study on
the complexities of schema design problems for distributed XML.
To the best of the authors’ knowledge, there is no study on XSLT
evaluation for distributed XML.

2. Definitions

Since our method is based on unranked top-down tree trans-
ducer, we first show related definitions. Let Σ be a set of labels.
By TΣ we mean the set of unranked Σ-trees. A tree whose root
is labeled with a ∈ Σ and has n subtrees t1, · · · , tn is denoted by
a(t1 · · · tn). In the following, we always mean Σ-tree whenever
we say tree. A hedge is a finite sequence of trees. The set of
hedges is denoted by HΣ. For a set Q, by HΣ(Q) we mean the
set of Σ-hedges such that leaf nodes can be labeled with elements
from Q. In the following, we use t, t1, t2, · · · to denote trees and
h, h1, h2, · · · to denote hedges. We denote by λ(u) the label of a
node u. An XSLT pattern is specified as the match attribute value
of an XSLT template. Formally, an XSLT pattern (pattern for
short) is a subset of XPath location path defined as follows, where
↓ and ↓∗ denote child and descendant-or-self axes, respectively.

LocationPath ::= LocationStep |LocationPath ‘/’ LocationStep

LocationStep ::= AxisName ‘::’ NodeTest Predicate*

AxisName ::= ↓ | ↓∗
NodeTest ::= Any label in Σ

Predicate ::= ‘[’ LocationPath ‘]’

From the above definition, a pattern pat can be expressed as
pat = ls1/ · · · /lsn, where lsi = axi :: li[pdi,1] · · · [pdi,mi], axi is an
axis, li is a label, and pdi, j is a predicate. The selection path of
pat, denoted sel(pat), is the pattern obtained by dropping every
predicate from pat, that is, sel(pat) = ax1 :: l1/ · · · /axn :: ln.

Let t be a tree, pat = ls1/ · · · /lsn be a pattern with lsi = axi ::
li[pdi,1] · · · [pdi,mi](1 ≤ i ≤ m), and v be a node of t. Suppose that
we have an XSLT template whose match attribute value is pat.
Then the XSLT template can be applied to v if there is an ances-
tor v′ of v such that v is reachable from v′ via pat. Mpat(t, v, pat)
denotes the set of such ancestors of v. Formally, Mpat(t, v, pat) is
defined as follows.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Fig. 6 Tree te.

Mpat(t, v, pat) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V(t, v, lsn) if n = 1,
{v′′ | v′′ ∈ Mpat(t, v′, pat′),
v′ ∈ V(t, v, lsn)} otherwise,

where pat′ = ls1/ · · · /lsn−1 and V(t, v, lsi) is the set of ancestors
v′ of v such that v is reachable from v′ via lsi, defined as follows.
First, if i = 1 (i.e., the leftmost location step), then

V(t, v, ls1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{v} if λ(v) = l1 and

∧
k=1,···,m1

Mpd(t, v, pd1,k) � ∅,
∅ otherwise,

where Mpd(t, v, pdi,k) denotes the set of nodes reachable from v
via predicate pdi,k in t (defined later). Thus, v satisfies pdi,k iff
Mpd(t, v, pdi,k) � ∅. Second, if i > 1, then

V(t, v, lsi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{v′ | v′ is a parent of v in t, λ(v) = li,∧
k=1,···,mi

Mpd(t, v, pdi,k) � ∅} if axi = ↓,
{v′ | v′ is an ancestor of v, λ(v) = li,∧
k=1,···,mi

Mpd(t, v, pdi,k) � ∅} if axi = ↓∗,

where, axi is the axis of lsi.
Then let us show the definition of Mpd(t, v, pat).

Mpd(t, v, pat)

=

⎧⎪⎪⎨⎪⎪⎩
V ′(t, v, ls1) if n = 1,
{v′′ | v′′ ∈ Mpd(t, v′, pat′′), v′ ∈ V ′(t, v, ls1)} otherwise,

where pat′′ = ls2/ · · · /lsn and V ′(t, v, lsi) denotes the set of nodes
reachable from v via lsi, that is,

V ′(t, v, lsi)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{v′ | v′ is a child of v in t,

λ(v′) = li,
∧

k=1,···,mi

Mpd(t, v′, pdi,k) � ∅} if axi =↓,
{v′ | v′ is a descendant of v in t,

λ(v′) = li,
∧

k=1,···,mi

Mpd(t, v′, pdi,k) � ∅} if axi =↓∗.

For example, let te be the tree shown in Fig. 6, pat =

↓∗::branch/↓::currency and pd = ↓∗::clientele/↓∗::deals. Then
Mpat(te, v2, pat) = {v1} and Mpd(te, v1, pd) = {v7}.

In this paper, we use an extended version of the unranked tree
transducer used in Ref. [12]. Formally, a tree transducer is a
quadruple (Q,Σ, q0,R), where Q is a finite set of states, q0 ∈ Q

is the initial state, and R is a finite set of rules of the form
(q, pat)→ h, where pat is a pattern, q ∈ Q and h ∈ HΣ(Q) (in the
original transducer [12], pat is restricted to a single label). A state
corresponds to the mode attribute value of an XSLT template.

The translation defined by a tree transducer Tr = (Q,Σ, q0,R)
on a tree t in state q, denoted by Trq(t), is inductively defined as
follows.
R1: If t = ε, then Trq(t) := ε.
R2: If t = a(t1 · · · tn) and there is a rule (q, pat) → h in R with

Mpat(t, a, pat) � ∅ for some pattern pat, some q ∈ Q, and

<xsl:template match="branch" mode="p">
<x>
<xsl:apply-templates mode="p" />
<xsl:apply-templates mode="q" />

</x>
</xsl:template>

<xsl:template match="currency" mode="q">
<z>
<xsl:apply-templates mode="q" />

</z>
</xsl:template>

<xsl:template match="branch[location]/clientele"
mode="p">
<y>
<xsl:apply-templates mode="p" />

</y>
</xsl:template>

<xsl:template match="branch//client"
mode="p">
<x>
<y />

</x>
</xsl:template>

Fig. 7 An example XSLT script.

some h ∈ HΣ, then Trq(t) is obtained from h by replac-
ing every node u in h labeled with p ∈ Q by the hedge
Trp(t1) · · · Trp(tn).

R3: If Mpat(t, a, pat) = ∅ for every pattern pat, every q ∈ Q,

and every h ∈ HΣ, (q, pat)→ h in R, then Trp(t) := ε.
The transformation of t by Tr, denoted by Tr(t), is defined as
Trq0 (t).

Example 1 Let Tr = (Q,Σ, p,R) be a tree transducer, where

Q = {p, q},
Σ = {branch, currency, location, clientele, client, name, deals,

x, y, z},
R = {(p, ↓∗::branch)→ x(p q), (q, ↓∗::currency)→ z,

(p, ↓∗::branch[↓::location]/↓::clientele)→ y(p),

(p, ↓∗::branch/↓∗::client)→ x(y)}.

Tr corresponds to the XSLT script shown in Fig. 7. For example,
consider the rule (p, ↓∗::branch)→ x(p q) in R. This corresponds
to the first template in Fig. 7. The state p in the left-hand side
of the rule corresponds to the mode attribute value of the tem-
plate, and the pattern “↓∗::branch” in the left-hand side of the
rule corresponds to the match attribute value. Consider trans-
forming the tree te shown in Fig. 6 by Tr. Since the initial state
of Tr is p and the root v1 of te is labeled by “branch,” the first
rule (p, ↓∗::branch) → x(p q) is applied to te and we obtain the
tree shown in Fig. 8 (1), where t1 is the subtrees rooted at v4 of te.
Since there is no rule applicable to v2 in state p, Trp(v2) = ∅. Sim-
ilarly Trp(v3) = ∅, Trq(v3) = ∅ and Trq(t1) = ∅. Consider Trp(t1).
Since the third rule (p, ↓∗::branch[↓::location]/↓::clientele) →
y(p) can be applied to t1, we obtain the tree shown in Fig. 8 (2),
where t2 is the subtree of te rooted at v5. Proceeding this transfor-
mation, we obtain Tr(te) shown in Fig. 8 (3).

In this paper, we consider a setting in which an XML tree t

is partitioned into a set Ft of disjoint subtrees of t, where each
subtree is called fragment. For example, the XML tree t ∈ TΣ in
Fig. 1 is partitioned into four fragments, f1, f2, f3, f4. We allow

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Fig. 8 Tree transformation by Tr.

Fig. 9 Fragments fe,1, fe,2 of te.

arbitrary “nesting” of fragments. Thus, fragments can appear at
any level of the tree. For a tree t, the fragment containing the root
node of t is called root fragment. In Fig. 2, the root fragment is f1.
Each fragment is stored in a site. The site having the root frag-
ment is called root site and the other sites are called slave sites.
For example, in Fig. 2 S 1 is the root site and S 2, S 3, S 4 are slave
sites. We assume that no two fragments are stored in the same
site.

For two fragments fi and f j, we say that f j is a child fragment

of fi if the root node of f j corresponds to a leaf node v of fi. In
order to represent a connection between fi and f j, we use a con-

necting node at the position of v which refers the root node of
f j. Every connecting node is labeled by “CONNECT” and has
a url attribute that represents the URL of the site having f j. For
example, in Fig. 9 connecting node c1 is inserted into fe,1 at the
position of v5. If the fragment in site S has a child fragment stored
in S ′, then S ′ is a child site of S (S is the parent site of S ′). For
example, in Fig. 2 S 1 has two child sites S 2 and S 3.

3. Transformation Method

In our transformation method, all the sites S transform the frag-
ment f stored in S in parallel, in order to avoid transformation
processes being centralized on a specific site. If the pattern of
each transformation rule is a single element, it is rather easy to
achieve this strategy; transform each fragment f at the site stor-
ing f , send all the transformed fragments to the root site, and
merge all the transformed fragments on the root site. However, if
a location path can be used as a pattern instead of a single label,
a site has to access other sites to evaluate the pattern. Let S be a
site, f be the fragment in S , and pat = ls1/ · · · /lsn be a pattern,

and consider checking if a node v in f matches pat. We need to
do the following.
a) Find the ancestors v′ of v such that v is reachable from v′ via

sel(pat).

b) For each node v′′ on the path from v′ to v, check if v′′ satisfies
predicates of pat.

Both (a) and (b) may require accesses to sites outside S . In order
to do (a) efficiently, S precomputes a path called root path, from
the root node of f to the root node of the input tree. By using this
root path, (a) can be done without accessing sites outside S . For
(b), each site maintains a cache that stores, for nodes v′ such that
v is reachable from v′ via lsi/ · · · /lsn and predicates pd of lsi−1, if
v′ satisfies pd. This can reduce accesses to sites outside S .

3.1 Master-XSLT and Slave-XSLT
We now present the details of our method. We first show

two “main” XSLT processors Master-XSLT and Slave-XSLT.
Master-XSLT is used in the root site and Slave-XSLT is used in
the slave sites, as follows.
1. In the root site, Master-XSLT transforms the root fragment.

2. In each slave site S Slave-XSLT transforms the fragment in
S and send the transformed result to the root site.

3. Master-XSLT merges (1) the transformed root fragment and
(2) the transformed fragments received from the slave sites.

For example, consider the fragments and the sites shown in Fig. 2.
First, Master-XSLT transforms the root fragment f1 to f ′1 in the
root site S 1. Second, in S 2 (resp., S 3 and S 4) Slave-XSLT trans-
forms the fragment f2 (resp., f3 and f4) and send the transformed
result f ′2 (resp., f ′3 and f ′4) to S 1. Among each transformation
process, some communications between sites may occur by eval-
uating patterns. Finally, Master-XSLT merges the transformed
fragment f ′1 and the received fragments f ′2 , f ′3 and f ′4 .

To describe the “precomputation” of a root path, we need some
definitions. Let t ∈ TΣ be a tree, Ft be the set of fragments ob-
tained from t, f ∈ Ft be a fragment, and v be a node of f . We use
the following notation.
• child(f , v) = {v′ | v′ is a child of v in f }
• parent(f , v) =

⎧⎪⎪⎨⎪⎪⎩
the parent of v in f if v is not the root of f ,

nil otherwise.
• anc(f , v) = {v′ | v′ is an ancestor of v in f }
• desc(f , v, l) = {v′ | λ(v′) = l, v′ is a descendant of v in f }
• attr(v, name) = the value of name attribute of v

Let c be a connecting node in f . A sequence of nodes from c

to the root node r of f , called connecting path of c, is defined as
cp(f , c) = [parent(f , c), parent(f , parent(f , c)), · · · , r]. For exam-
ple, consider fe,1 shown in Fig. 9. Then cp(fe,1, c1) = [v4, v1].

A connecting node c in f has a url attribute, whose value is the
URL of the child site connected by c. For example, consider node
c1 in Fig. 9. We have attr(c1, “url”) = “http://server2.com/fe2”
(see Fig. 10). By CP(f), we mean the set of pairs of such a URL
and connecting path of c in f , that is,

CP(f) = {〈attr(c, “url”), cp(f , c)〉 | c is a connecting node in f }
For example, for the fragment fe,1 in Fig. 9, CP(fe,1) =

{〈http://server2.com/fe2, [v4, v1]〉}. Let H = CP(f). A function
cpH and a set of URLs Url(H) are defined as follows.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Fig. 10 Sites S e,1 and S e,2.

cpH(url) =

⎧⎪⎪⎨⎪⎪⎩
cp if 〈url, cp〉 ∈ H,

nil otherwise.

Url(H) = {url | cpH(url) � nil}
Let t be a tree and f ∈ Ft be a fragment. A se-

quence of nodes from the root node r of f to the root
node r′ of t, called root path of f , is defined as rp(t, f) =
[parent(t, r), parent(t, parent(t, r)), · · · , r′] (if f is the root frag-
ment, rp(t, f) = nil). For example, rp(te, fe,2) = [v4, v1] (Fig. 9).
Let url be the URL of the site storing f , and f ′ be the parent frag-
ment of f . By the definition, rp(t, f) is obtained by appending the
root path of f ′ to cpCP(f ′)(url). The i-th node of root path rp is
denoted rpi and the next node of rpi is denoted next(rpi) = rpi+1.
For example, if rp = [v4, v1], then next(v4) = rp2 = v1.

Let us now present Master-XSLT. This procedure first sends a
tree transducer to each slave site (line 1), then sends the root path
to each site, which is used for path precomputation (lines 2 to
5). S (url) in line 4 denotes the site whose url is url. Then trans-
forms the root fragment by procedure Transform (line 8, shown
later). The last parameter M of Transform is the cache storing the
result of predicate evaluations (details are shown in the next sub-
section). Finally, all the transformed fragments are merged into
one tree, which is the final result (line 10).

Master-XSLT
Input : Tree transducer Tr = (Q,Σ, q0,R), the root fragment f of
tree t

Output : Tree t′ = Tr(t)

1. Send tree transducer Tr to each slave site.
2. H ← CP(f);
3. for each url ∈ Url(H) do
4. Send cpH(url) to S (url).
5. end
6. v← the root node of f ;
7. M ← ∅;
8. f ′ ← Transform(Tr, f , v, q0, nil,M);
9. Wait until a transformed fragment is received from each slave site.

Let f1, · · · , fk be the received fragments.
10. Merge f ′ and f1, · · · , fk into t′.

11. Return t′;

Next, we present procedure Transform used in line 8 of Master-
XSLT (and Slave-XSLT shown later). Let Tr = (Q,Σ, q0,R) be a
tree transducer, t be a tree, f ∈ Ft be a fragment, and rp be the
root path of f . To transform the subtree rooted at a node v of f or
rp in state q, we need to determine a rule applied to v and obtain
the hedge that is the right-hand side of the rule. Such a hedge
is denoted by h(f ,Tr, q, v, rp,M). More specifically, if there is a
pattern pat such that (q, pat) → h ∈ R and that there is an an-
cestor v′ of v such that v is reachable from v′ via pat in t, then

h(f ,Tr, q, v, rp,M) coincides with h, that is,

h(f ,Tr, q, v, rp,M)

=

⎧⎪⎪⎨⎪⎪⎩
h if ∃pat((q, pat)→h ∈ R ∧ Eval-Mpat(f , v, pat, rp,M)),
ε otherwise,

(1)

where Eval-Mpat(f , v, pat, rp,M) is the distributed version of
Mpat(T, v, pat) and takes the following value (defined in the next
subsection).

Eval-Mpat(f , v, pat, rp,M) =

⎧⎪⎪⎨⎪⎪⎩
true if Mpat(t, v, pat) � ∅,
f alse otherwise.

The correctness of the above equation is shown in Section 3.3.
rp and cache M do not appear in the right-hand side, since
they are required for only the evaluation of Eval-Mpat in a dis-
tributed context. As an example of (1), consider the fragment fe,1
shown in Fig. 9 and the tree transducer Tr of Example 1. Since
(p, ↓∗::branch)→ x(p q) ∈ R and v1 satisfies pattern “↓∗::branch,”
we have h(fe,1,Tr, p, v1, nil,M) = x(p q). Since fe,1 is the root
fragment, the fifth parameter is nil.

Let us show procedure Transform, which transforms a given
fragment recursively according to the definition of tree trans-
ducer. In line 2, S t(h) denotes the set of states in h. For example,
if h = x(p q), then S t(h) = {p, q}. Lines 3 to 7 apply rule R1 and
lines 8 to 14 apply rule R2 of the definition of tree transducer.

Procedure Transform
Input : Tree transducer Tr = (Q,Σ, q0,R), fragment f , context
node v, state q, the root path rp of f , cache M

Output : Hedge h obtained by transforming f with Tr

1. h← h(f ,Tr, q, v, rp,M);
2. Q′ ← S t(h);
3. if Q′ � ∅ and child(f , v) = ∅ then
4. for each q′ ∈ Q′ do
5. Replace node q′ in h with ε.
6. end
7. end
8. Let child(f , v) = {v′1, · · · , v′k}.
9. for each q′ ∈ Q′ do

10. for each v′i ∈ child(f , v) do
11. hv′i ← Transform(Tr, f , v′i , q

′, rp,M);
12. end
13. Replace node q′ in h with hedge hv′1 · · · hv′k .
14. end

15. Return h;

Finally, we present Slave-XSLT. This procedure runs in each
slave site S and transforms the fragment f stored in S . First, we
show a definition. Let f be a fragment and Tr = (Q,Σ, q,R) be
a tree transducer. To transform f , it needs to determine the set
of states applied to the root node of f . The set can be obtained
by applying rules of Tr to the root path rp = [rp1, · · · , rpn] of
f from rpn to rp1 (recall that rpn is the root of the input tree).
Formally, let Q′ be the initial states applied to rpn. Then the set
of states applied to the root node of f is recursively obtained as
follows. First, if n = 1, then

Qr(f ,Tr,Q′, rp,M)
= {q′′ | q′′ ∈ S t(h(f ,Tr, q′, rpn, rp,M)), q′ ∈ Q′}. (2)

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Second, if n > 1, then

Qr(f ,Tr,Q′, rp,M)
= {q′′ | q′′ ∈ Qr(f ,Tr,Q′′, rp′,M),

Q′′= {q | q ∈ S t(h(f ,Tr, q′, rpn, rp,M)), q′ ∈ Q′}},
(3)

where rp′ = [rp1, · · · , rpn−1] and h(f ,Tr, q′, rpn, rp,M) is the
hedge defined in Eq. (1).

Example 2 Let rp = [v4, v1] be the root path of fe,2 in Fig. 9,
Tr = (Q,Σ, q0,R) be the tree transducer in Example 1, and
Q′ = {p}. Consider computing Qr(fe,2, Tr,Q′, rp,M). By Eq. (3),
we have

Qr(fe,2,Tr,Q′, rp,M)
= {q′′ | q′′ ∈ Qr(fe,2, Tr,Q′′, [v4],M)}, (4)

where Q′′ = {q | q ∈ S t(h(fe,2,Tr, p, v1, rp,M))}. As shown in
Example 1, (p, ↓∗::branch)→ x(p q) is applicable to v1 in state p.
Thus we have h(fe,2, Tr, p, v1, rp,M) = x(p q) and Q′′ = {p, q}.
Consider the right-hand side of Eq. (4). By Eq. (2), we have

Qr(fe,2,Tr,Q′′, [v4],M)
= {q′′ | q′′ ∈ S t(h(fe,2,Tr, q′, v4, [v4],M)), q′ ∈ Q′′}, (5)

where Q′′ = {p, q}. Since (p, ↓∗::branch[↓::location]/↓::clientele)
→ y(p) is applicable to v4 in state p, h(fe,2, Tr, p, v4, [v4],M) =
y(p). On the other hand, there is no rule applicable to v4 in
state q, thus h(fe,2, Tr, q, v4, [v4],M) = nil. Thus, we have
Qr(fe,2,Tr,Q′′, [v4],M) = {p} by Eq. (5), which implies that
Qr(fe,2,Tr,Q′, rp,M) = {p} by Eq. (4). Hence only state p is
applicable to the root of fe,2.

We now present Slave-XSLT. This procedure first receives tree
transducer Tr from the root site and root path rp from the parent
site (lines 1 to 2). rp is send from line 4 of Master-XSLT (when
the parent site is the root site), or line 6 of Slave-XSLT (when the
parent site is a slave site). If f has a child fragment, say f ′, send
the root path of f ′ to the child site storing f ′ (lines 4 to 7). From
this, each child site can obtain the root path of its own fragment.
Then the set of states applied to the root of f is calculated and f

is transformed (lines 10 to 13). Finally, the transformed fragment
of f is send to the root site (line 14).

Slave-XSLT
Input : Fragment f .
Output : none (transformed fragments are sent to the root site).

1. Wait until tree transducer Tr = (Q,Σ, q0,R) is received from the
root site.

2. Wait until the root path rp is received from the parent site.
3. H ← CP(f);
4. for each url ∈ Url(H) do
5. Let rp′ be the root path of the fragment in S (url), obtained by

appending rp to cpH(url);
6. Send rp′ to S (url).
7. end
8. v← the root node of f ;
9. M ← ∅;

10. Q′ ← Qr(f ,Tr, {q0}, rp,M);
11. for each q′ ∈ Q′ do
12. f ′q′ ← Transform(Tr, f , v, q′, rp,M);
13. end

14. Send all f ′q′ (q
′ ∈ Q′) to the root site.

3.2 Evaluation of Pattern
To check if a node matches a pattern, we have to evaluate Mpat

and Mpd in a distributed environment, as used in Eq. (1). Thus we
define procedures Eval-Mpat and Eval-Mpd, which are distributed
versions of Mpat and Mpd, respectively. First, we show several
definitions. Let f be a fragment, rp = [rp1, · · · , rpn] be the root
path of f , and v be a node of f or rp. The set of parent nodes of
v, denoted parent′(f , v, rp), is defined as follows.

parent′(f , v, rp)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{rp1} if v is the root node in f and rp � nil,

{next(v)} if v is a node in rp,

{parent(f , v)} otherwise.

By Anc(f , v, ax, rp) we mean the set of ancestors v′ of v such that
v is reachable from v′ via axis ax, that is,

Anc(f , v, ax, rp) =

⎧⎪⎪⎨⎪⎪⎩
parent′(f , v, rp) if ax =↓,
anc(f , v) ∪ {rp1, · · · , rpn} if ax =↓∗ .

For example, let fe,2 be the fragment shown in Fig. 9, v7 be the
node in fe,2, and rp = [v4, v1] be the root path of fe,2. Then
Anc(fe,1, v7, ↓∗, rp) = {v5, v4, v1}, where v5 is the ancestor of v7
in fe,2, v4 and v1 are the nodes in rp.

Next, we define cache used for evaluating predicates. A cache
is created in each site (line 9 of Master-XSLT, line 9 of Slave-
XSLT). A cache is passed by reference, and thus all the proce-
dures running in the same site share the same cache. Let v be a
node and pd be a predicate. A string “v + pd” is called predicate

inquiry. This is sent to the site having v to ask if v satisfies pd.
Let query be a predicate inquiry and res ∈ {true, f alse} be the re-
sult of the predicate inquiry. Then a cache M holds a set of pairs
〈query, res〉, and fM(query) denotes the result of query to M, that
is,

fM(query) =

⎧⎪⎪⎨⎪⎪⎩
res if 〈query, res〉 ∈ M,

nil otherwise.

We present procedure Eval-Mpat. Let pat = ls1/ · · · /lsn be a
pattern, where lsi = axi :: li[pdi,1] · · · [pdi,mi]. This procedure
decides if a context node v matches pat by examining pat from
lsn to ls1 recursively. Lines 1 to 17 check if v satisfies the condi-
tions described in lsn. If v is a node in rp (i.e., v is in an outside
site), for each j = 1, · · · ,mn predicate inquiry “v + pdn, j” is sent
to the site having v in case of a cache miss (lines 6 to 9, pat inq
is shown later). If v is a node in f , then this procedure checks
if v satisfies pdn,1, · · · , pdn,mn by Eval-Mpd (line 12, Eval-Mpd is
shown later). When the checks for lsn are completed, then the
procedure checks if there is an ancestor v′ ∈ Anc(f , v, axn, rp) of
v such that v′ matches ls1/ · · · /lsn−1 (lines 21 to 23).

Procedure Eval-Mpat

Input : Fragment f , context node v, pattern pat = ls1/ · · · /lsn

with lsi = axi :: li[pdi,1] · · · [pdi,mi], the root path rp of f , cache
M

Output : true if v matches pat, f alse otherwise

1. if λ(v) � ln then
2. Return f alse;
3. end
4. for each j = 1, · · · ,mn do

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

5. if v is a node in rp then
6. if fM(“v + pdn, j”) = nil then
7. Ask the site S having v if v satisfies pdn, j, by calling

pat inq(f ′, v, pdn, j,M) in S , where f ′ is th fragment stored in S .
Let res be the result.

8. M ← M ∪ 〈“v + pdn, j”, res〉;
9. end

10. pred result ← fM(“v + pdn, j”);
11. else
12. pred result ←Eval-Mpd(f , v, pdn, j,M);
13. end
14. if pred result = f alse then
15. Return f alse;
16. end
17. end
18. if n = 1 then
19. Return true;
20. end
21. V ← Anc(f , v, axn, rp);
22. pat′ ← ls1/ · · · /lsn−1;
23. if Eval-Mpat(f , v′, pat′, rp,M) = true for some v′ ∈ V then
24. Return true;
25. else
26. Return f alse;

27. end

Procedure pat inq in line 7 is defined as follows. This proce-
dure runs in parallel using native threads.

Procedure pat inq
Input : Fragment f , context node v, predicate pred = ls1/ · · · /lsn

with lsi = axi :: li[pdi,1] · · · [pdi,mi], cache M

Output : none

1. res←Eval-Mpd(f , v, pred,M)

2. Send res to the calling procedure.

Function h defined by Eq. (1) uses Eval-Mpat to determine the
rule (and the hedge) matched by the current node. Although the
formal definition of Eval-Mpat is a bit complicated due to the dis-
tribution of fragments and predicates (lines 4 to 17), we can im-
plement the procedure and the function so that the rule matched
by the current node can be identified efficiently, especially if pat-
terns consist of only labels and child axes. For example, suppose
that we have the following three rules.
• r1: (q, ↓:: branch/↓:: currency)→ h1

• r2: (q, ↓:: clientele/↓:: client/↓:: name)→ h2

• r3: (q, ↓:: clientele/↓:: client/↓:: deals)→ h3

From the three patterns above, we construct nested hash func-
tions as shown in Fig. 11. Here, suppose that the current node v
is labeled by “name,” its parent v′ is labeled by “client,” and that
the parent v′′ of v′ is labeled by “clientele.” These labels can be
obtained immediately by using a root path, even if v′ or v′′ is not
in the fragment having v. Then we can easily identify r2 as the
rule matched by v, by applying the labels of v, v′, v′′ to the hash
functions in Fig. 11. In general, if patterns consist of only labels
and child axes, the rule matched by the current node can be iden-
tified in O(|pmax|), where |pmax| is the maximum length (i.e., the
number of location steps) of patterns.

Next, we present procedure Eval-Mpd used in line 12 of Eval-
Mpat and line 1 of pat inq. This procedure evaluates predicates of
a pattern. By Desc(f , v, ax, l), we mean the set of descendants v′

{
currency : { branch : r1},
name : {

client : {
clientele : r2,

}
},
deals : {

client : {
clientele : r3,

}
}

}

Fig. 11 Nested hash structure constructed from three patterns.

such that v′ is either reachable from v via location step ax::l or a
connecting node, that is,

Desc(f , v, ax, l)

=

⎧⎪⎪⎨⎪⎪⎩
{v′ | v′ ∈ child(f , v), λ(v′) ∈ {l, “CONNECT”}} if ax =↓,
desc(f , v, l) ∪ desc(f , v, “CONNECT”) if ax =↓∗ .

For example, consider the fragment fe,1 shown in Fig. 9. Then
Desc(fe,1, v1, ↓∗, “currency”) = {v2, c1}.

Let pred = ls1/ · · · /lsn, where lsi = axi :: li[pdi,1] · · · [pdi,mi].
This procedure decides if a context node v satisfies pred by ex-
amining pred from ls1 to lsn recursively. First, the procedure
calculates the set V of nodes reachable from v via ax1::l1 (line 1).
Then this procedure checks for each v′ ∈ V ,
(a) whether v′ satisfies pd1,1, · · · , pd1,m1 , and

(b) whether v′ satisfies ls2/ · · · /lsn.
Suppose that v′ is a connecting node. Since the checks of (a) and
(b) require accessing to outside sites, we use another kind of pred-
icate inquiry of the form “url + pred” to ask if v′ satisfies (a) and
(b), where url is the value of the url attribute of v′ (the result is
stored in the same cache M as used in Eval-Mpat). Predicate in-
quiry “url + pred” is send to S (url) in case of a cache miss (lines
6 to 9, pd inq is shown later).

By this predicate inquiry, fM(“url+ pred”) = true if (a) and (b)
hold (line 10). If v′ is not a connecting node, (a) is obtained in
line 12 and (b) is obtained in line 15.

Procedure Eval-Mpd

Input : Fragment f , context node v, predicate pred = ls1/ · · · /lsn

with lsi = axi :: li[pdi,1] · · · [pdi,mi], cache M

Output : true if v satisfies pred, f alse otherwise

1. V ← Desc(f , v, ax1, l1);
2. result ← f alse;
3. for each v′ ∈ V do
4. if λ(v′) = “CONNECT” then
5. url← attr(v, “url”);
6. if fM(“url + pred”) = nil then
7. Ask S (url) if v′ satisfies above (a) and (b), by calling

pd inq(f ′, pred,M), where f ′ is the fragment stored in S (url).
Let res be the result.

8. M ← M ∪ 〈“url + pred”, res〉;
9. end

10. result ← result ∨ fM(“url + pred”);
11. else
12. p res← true ∧ ∧

j=1,···,m1

Eval-Mpd(f , v′, pd1, j,M);

13. if n > 1 and p res then
14. pred′ ← ls2/ · · · /lsn;
15. result ← result ∨ Eval-Mpd(f , v′, pred′,M);

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

16. else if p res then
17. Return true;
18. end
19. end
20. end

21. Return result;

Finally, we present procedure pd inq used in procedure Eval-
Mpd. This procedure runs in parallel using native threads.

Procedure pd inq
Input : Fragment f , predicate pred = ls1/ · · · /lsn with lsi = axi ::
li[pdi,1] · · · [pdi,mi], cache M

Output : none

1. v← the root node of f ;
2. if ax1 =↓ then
3. if l1 = λ(v) then
4. p res← ∧

j=1,···,m1

Eval-Mpd(f , v, pd1, j,M);

5. if n > 1 and p res then
6. pred′ ← ls2/ · · · /lsn;
7. res←Eval-Mpd(f , v, pred′,M);
8. else if p res then
9. res← true;

10. end
11. end
12. else
13. res←Eval-Mpd(f , v, pred,M)
14. end

15. Send res to the calling site.

Example 3 Let fe,1 be the fragment shown in Fig. 9,
pat=↓∗::branch[↓∗::name]/↓::currency be a pattern, and v2 be the
node of fe,1. Then Eval-Mpat(fe,1, v2, pat, nil,M) is evaluated by
the following steps.
1. Check if v2 matches ↓::currency.

a. We have λ(v2) = “currency” in line 1 of Eval-Mpat.
b. We have Anc(fe,1, v2, “child”, nil) = {v1}

in line 21 of Eval-Mpat. Then Eval-
Mpat(fe,1, v1, ↓∗::branch[↓∗::name], nil,M) is called
in line 23.

2. By step (1-b) above, check if v1 matches
↓∗::branch[↓∗::name].
a. We have λ(v1) = “branch” in line 1 of Eval-Mpat. Since

rp = nil, Eval-Mpd(fe,1, v1, ↓∗ ::name, nil,M) is called in
line 12.

b. There is no descendant of v1 labeled by “name” but there
is a connecting node c1 in fe,1. Thus we use a predicate
inquiry “url + pred” in lines 4 to 9 of Eval-Mpd, where
url = “http://server2.com/fe2” and pred= “↓∗:: name.”

c. If fM(“url + pred”) = nil in line 6, S e,2 is asked to call
pd inq(fe,2, ↓∗ ::name,M).

d. In S e,2, pd inq(fe,2, ↓∗::name,M) returns true since the
label of v6 is “name.”

3. Since the result of (1-b) is true by step (2) above, Eval-
Mpat(fe,1, v2, pat, nil,M) returns true.

3.3 Correctness of the Method
We show the correctness of our method. We first show the

correctness of Eval-Mpd. Let t be a tree, f be a fragment of t,

v be a node of f , and pred = ls1/ · · · /lsn be a predicate with
lsi = axi :: li[pdi,1] · · · [pdi,mi]. To show the correctness, we
have to handle two parameters: the nesting level of f and the size

of pred. First, the nesting level of f , denoted ns(f), is defined as
follows.

ns(f) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if f has no child fragment,
max

f ′
ns(f ′) + 1 otherwise,

where f ′ ranges over the child fragments of f . Second, the size

of pred, denoted size(pred), is defined as follows.

size(pred)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 +
∑

1≤ j≤m1

size(pd1, j) if pred = ax1 :: l1[pd1,1] · · · [pd1,m1],
∑

1≤i≤n

size(lsi) otherwise.

In Lemma 2, we show that Eval-Mpd(f , v, pred,M) returns
true iff Mpd(t, v, pred) � ∅ by double induction on ns(f) and
size(pred). The following Lemma 1 is required to show the basis
cases of Lemma 2.

Lemma 1 Let ls = ax :: l be a location step. Then Eval-
Mpd(f , v, ls,M) returns true iff Mpd(t, v, ls) � ∅.

Proof(sketch): We show that Eval-Mpd(f , v, ls,M) returns true
iff Mpd(t, v, ls) � ∅ by induction on ns(f).

Basis : ns(f) = 0. Since f has no child fragment, the descen-
dants of v in f coincide with those of v in t. Therefore, Eval-
Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) � ∅.

Induction : Assume as the induction hypothesis that if ns(f) ≤
k, then Eval-Mpd(f , v, ls,M) returns true iff Mpd(t, v, ls) � ∅.
Consider the case where ns(f) = k+1. Let S be the site storing f ,
c be a connecting node of f , S ′ be the child site of S connected by
c, and f ′ be the fragment stored in S ′. Consider the set V of nodes
obtained in line 1 of Eval-Mpd. If V contains connecting node c,
ls is sent to S ′ by calling pd inq (line 7 of Eval-Mpd). In S ′, ls

is evaluated to the root node r of f ′ by pd inq. Since ns(f ′) ≤ k

and thus Eval-Mpd is correct by the induction hypothesis, pd inq
sends true to S iff Mpd(t, r, ls) � ∅. Hence Eval-Mpd(f , v, ls,M)
returns true iff Mpd(t, v, ls) � ∅. �

We next have the following lemma, which shows the correct-
ness of Eval-Mpd.

Lemma 2 Let pred = ls1/ · · · /lsn, where lsi = axi ::
li[pdi,1] · · · [pdi,mi] (1 ≤ i ≤ n). Then Eval-Mpd(f , v, pred,M)
returns true iff Mpd(t, v, pred) � ∅.

Proof(sketch): We show that Eval-Mpd(f , v, pred,M) returns
true iff Mpd(t, v, pred) � ∅ by double induction on size(pred) and
ns(f).

Basis : First, consider the case where ns(f) = 0 and
size(pred) = j. Since f has no child fragment, the descen-
dants of v in f coincide with those of v in t. Therefore, Eval-
Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) � ∅. Con-
sider next the case where ns(f) = k and size(pred) = 1. Since
size(pred) = 1, by Lemma 1 Eval-Mpd(f , v, pred,M) returns true

iff Mpd(t, v, pred) � ∅.
Induction : Assume the following as the induction hypotheses.

2.1. If ns(f) = x + 1 and size(pred) ≤ y, then Eval-
Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) � ∅.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Table 2 Summary of XSLT patterns.

W3C Recommendation
(XSLT 1.0)

W3C Recommendation
(XSLT 2.0)

XSLT 2nd Ed.

Single label 35 41 127
Pattern using no predicate Pattern using labels and child axis 7 6 5

Pattern using “//” 2 2 0
Pattern using predicates 0 1 0
Other (@text, etc.) 7 7 12
Total 51 57 144

2.2. If ns(f) ≤ x and size(pred) = y + 1, then Eval-
Mpd(f , v, pred,M) returns true iff Mpd(t, v, pred) � ∅.

Consider the case where ns(f) = x + 1 and size(pred) = y + 1.
Let pred = ls1/ · · · /lsn, where lsi = axi :: li[pdi,1] · · · [pdi,mi].
Moreover, let S be the site storing f , c be a connecting node of f ,
S ′ be the child site of S connected by c, and f ′ be the fragment
stored in S ′. Consider the set V of nodes obtained in line 1 of
Eval-Mpd.
• If V contains connecting node c, pred is sent to S ′ by calling

pd inq (line 7 of Eval-Mpd).
• The other (non-connecting) nodes in V are (a) evaluated with

each predicate pd1,1, · · · , pd1,m1 (line 12 of Eval-Mpd) and (b)
evaluated with pred′ = ls2/ · · · /lsn (line 15 of Eval-Mpd).

In S ′, pred is evaluated to the root node r of f ′ by pd inq.
Since ns(f ′) ≤ x and thus Eval-Mpd is correct by the induction
hypothesis 2.2, pd inq sends true to S iff Mpd(t, r, pred) � ∅.
As for non-connecting nodes, since size(pd1, j) ≤ y for each
j = 1, · · · ,m1, (a) is correct by induction hypothesis 2.1. Since
size(pred′) ≤ y, (b) is correct similarly. Thus, the evaluation is
correct for each v′ ∈ V . Hence Eval-Mpd(f , v, pred,M) returns
true iff Mpd(t, v, pred) � ∅. �

Let pat = ls1/ · · · /lsn be a pattern with lsi = axi ::
li[pdi,1] · · · [pdi,mi] and rp be the root path of f . We now have
the following theorem.

Theorem 1 Eval-Mpat(f , v, pat, rp,M) returns true iff
Mpt(t, v, pat) � ∅.

Proof(sketch): Since the ancestors of v in t coincide with the
union of (a) the ancestors of v in f and (b) the nodes of rp, Eval-
Mpat(f , v, sel(pat), rp,M) returns true iff Mpat(t, v, sel(pat)) � ∅.
By Lemma 2, for each j = 1, · · · ,mn, Eval-Mpd(f , v, pdn, j,M)
(line 12 of Eval-Mpat) returns true iff Mpd(t, v, pdn, j) � ∅. Sim-
ilarly, pat inq(f ′, v, pdn, j,M) (line 7 of Eval-Mpat) returns true

iff Mpd(t, v, pdn, j) � ∅. Hence Eval-Mpat(f , v, pat, rp,M) returns
true iff Mpt(t, v, pat) � ∅. �

3.4 Comparison with Distributed XPath Evaluation Algo-
rithms

Let us consider the difference between distributed XPath eval-
uation algorithms and our method, from the perspective of XSLT
pattern evaluation. First of all, we have the following observa-
tions about XPath and XSLT evaluations.
(a) Distributed XPath evaluation algorithms are designed for

processing a single XPath query efficiently, while an XSLT
stylesheet usually contains more than one pattern.

(b) In general, a pattern used in an XSLT stylesheet is much
simpler than an XPath query. Table 2 shows a summary of
the patterns appearing in XSLT 1.0/2.0 W3C recommenda-

tions*1 and the examples used in Ref. [19]. This table indi-
cates that (i) most patterns use only labels and child axes and
that (ii) few patterns use “//” or predicates.

Assuming (a) and (b), the main difference between distributed
XPath evaluation algorithms and our method is that, w.r.t. XSLT
pattern evaluation, the computation cost of the former algo-
rithms grow proportional to the number of patterns in an XSLT
stylesheet while the latter is not. In the following, we compare the
algorithm in Refs. [4], [5], [6] with our method, since no formal
computation cost is presented in Refs. [9], [11].

Given a tree t and an XPath query q, the XPath evaluation al-
gorithm [4], [5], [6] traverses t and computes, for each node v in
t, several vectors of size O(|q|) which hold the evaluation values
of subexpressions of q at v. Thus, to evaluate an XSLT stylesheet
xs on t by using the XPath evaluation algorithm, we have to do
the following.
1. For each XSLT pattern pat in xs, calculate vectors of each

node for pat by using the algorithm.
2. Perform a top-down XSLT transformation along with xs.

During the transformation, the template matched by current
node v can be identified by the vectors associated with v.

Now let us consider the parallel computation costs of evaluating
XSLT patterns by the above approach and our method in detail.
Let k be the number of distinct patterns in xs, pat be the longest
pattern of the patterns in xs, and fmax be the maximum fragment
of t. First, consider the parallel computation cost of the above
approach. Since the parallel computation cost per pattern is in
O(|pat| · | fmax|) [6], the parallel computation cost of evaluating k

patterns is in O(k · |pat| · | fmax|)*2. Second, consider the parallel
computation cost of evaluating XSLT patterns by our method. To
evaluate XSLT patterns by our method, we need a root path for
each fragment. Assuming that the height of t is in O(log |t|), the
computation cost of obtaining the root path of a fragment is in
O(log |t|). Then, given the root path of a fragment, consider the
parallel computation cost of evaluating XSLT patterns. This cost
depends on the size of transformed fragment, but for simplicity
we assume that the size of the transformed result of fmax is in
O(| fmax|) (this is not too restrictive since the resulting tree trans-
formed by XSLT is usually smaller then the input tree). More-
over, since an XSLT pattern is simple as mentioned in (b), we
can assume that the template matched by the current node can be
identified in O(|pat|) as shown in Section 3.2. Hence the parallel
computation cost of evaluating the patterns in xs by our method

*1 http://www.w3.org/TR/xslt/ (XSLT 1.0) and
http://www.w3.org/TR/xslt20/ (XSLT 2.0)

*2 This complexity remains the same if pat uses no predicate and consists
of only labels and child axes.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

is in O(log |t| + |pat| · | fmax|).
Thus, the parallel computation cost of evaluating XSLT pat-

terns by the above approach grows proportionally to the number
of distinct patterns in an XSLT stylesheet, which is undesirable
since an XSLT stylesheet may contain arbitrary number of tem-
plates and patterns. On the other hand, our method have to pay
the cost of preparing a root path, but this is usually small in prac-
tice, e.g., the height of the DBLP XML data*3 (1.52 GB) is only
7 and that of XMark*4 is 13 regardless the size of data. There-
fore, we believe that our method is more suitable for performing
XSLT transformations unless an XML tree has an extremely deep
structure.

4. Evaluation Experiment

In this section, we present experimental results on our method.
We implemented our method in Ruby 1.9.3. We used 4 Linux
machines (S 1 to S 4), distributed over a local LAN (100base-TX).
Each machine has a 2.4 GHz Intel Xeon CPU and 4 GB of mem-
ory. First, we generated five XML documents of different sizes
by XMark [16]. Since all the sites transform their fragments in
parallel, the efficiency of our method may depend on whether the
sizes of fragments are even or not. Thus, we create two datasets
(A) and (B) from the XMark documents. In dataset (A), the sizes
of the fragments are relatively even (Table 3), while in dataset
(B) the root fragment is remarkably heavy (Table 4). Tables 5
and 6 show the root nodes of the fragments, where fA,1 (fB,1) is
the root fragment and has three child fragments fA,2, fA,3 and fA,4

(resp., fB,2, fB,3 and fB,4). The four sites S 1 to S 4 are configured
as shown in Fig. 12, where S 1 is the root site storing fA,1 (fB,1)
and S i (i = 2, 3, 4) is a slave site storing fA,i (fB.i).

We used eleven synthetic XSLT stylesheets denoted
s0, s10, · · · , s100, generated by our Ruby program. Each si

has the following properties (0 ≤ i ≤ 100).
1. For every element m of an XML document, si has at least

one template applicable to m.

2. si consists of 218 templates and i% of the templates have a
pattern having one predicate (the rest of the templates have
a pattern having no predicate).

3. The average length of each selection path is 6 and the aver-
age length of each predicate is 5.

4. The predicates of each template are distinct.
We measure the response times of a centralized method and our

transformation method. In the centralized method, three child
fragments are first sent to the root site S 1, then root and child
fragments are merged into one document t and an XSLT trans-
formation is performed on t in S 1. We have the following two
settings of evaluation experiments.
(a) Fix the stylesheet and measure the response time under var-

ious sizes of XML documents.

(b) Fix the XML document and measure the response time of
different stylesheets.

We used the stylesheet s10 under setting (a). The results are
shown in Figs. 13 and 14. For dataset (A), our method is about

*3 http://dblp.uni-trier.de/xml/dblp.xml.gz
*4 http://www.xml-benchmark.org/

Table 3 Sizes of distributed XML documents (dataset A).

Fragment size
f option fA,1 (root) fA,2 fA,3 fA,4 Total size

0.5 6.0 MB 27.3 MB 13.9 MB 7.9 MB 55.3 MB
1.0 12.2 MB 54.8 MB 27.8 MB 16.1 MB 111.0 MB
1.5 18.6 MB 82.2 MB 42.2 MB 23.9 MB 167.0 MB
2.0 24.8 MB 109.7 MB 56.1 MB 32.0 MB 222.8 MB
2.5 31.0 MB 137.4 MB 70.1 MB 40.6 MB 279.1 MB

Table 4 Sizes of distributed XML documents (dataset B).

Fragment size
f option fB,1 (root) fB,2 fB,3 fB,4 Total size

0.5 44.5 MB 2.5 MB 2.7 MB 5.4 MB 55.3 MB
1.0 89.6 MB 5.0 MB 5.6 MB 10.8 MB 111.0 MB
1.5 134.7 MB 7.5 MB 8.4 MB 16.3 MB 167.0 MB
2.0 179.8 MB 10.1 MB 10.9 MB 21.8 MB 222.8 MB
2.5 225.4 MB 12.6 MB 13.8 MB 27.3 MB 279.1 MB

Table 5 The root nodes of
the fragments (dataset A).

Fragments Label of nodes
fA,1 site
fA,2 regions
fA,3 open auctions
fA,4 closed auctions

Table 6 The root nodes of
the fragments (dataset B).

Fragments Label of nodes
fB,1 site
fB,2 asia
fB,3 australia
fB,4 people

Fig. 12 Four sites storing the fragments in evaluation experiment.

Fig. 13 Experimental result of (a) (dataset A).

Fig. 14 Experimental result of (a) (dataset B).

6 times faster than the centralized method. Even for dataset (B),
our method is about 1.8 times faster than the centralized method.
Under setting (b), we used the distributed XML whose total size

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

Table 7 Details of response time for dataset A (sec).

Centralized method Our method
f option (datasize) Transfer Merge Transform Total

0.5 (55.3 MB) 1.88 0.73 27.04 29.65 7.99
1.0 (111.0 MB) 4.71 1.45 73.04 79.2 17.94
1.5 (167.0 MB) 8.63 2.51 142.87 154.01 28.98
2.0 (222.8 MB) 13.85 2.89 230.06 246.8 41.53
2.5 (279.1 MB) 20.05 3.62 343.42 367.09 56.02

Table 8 Details of response time for dataset B (sec).

Centralized method Our method
f option (datasize) Transfer Merge Transform Total

0.5 (55.3 MB) 0.67 0.79 24.85 26.31 17.69
1.0 (111.0 MB) 1.69 1.85 68.55 72.09 37.13
1.5 (167.0 MB) 3.02 2.44 141.26 146.72 77.05
2.0 (222.8 MB) 4.91 3.13 215.88 223.92 91.4
2.5 (279.1 MB) 6.8 4.05 321.74 332.59 189.01

Fig. 15 Experimental result of (b) (dataset A).

Fig. 16 Experimental result of (b) (dataset B).

is 55.3 MB. Figures 15 and 16 show the results. Our method is
faster than centralized method regardless the stylesheets. These
suggest that our method works well for distributed XML docu-
ments.

Tables 7 and 8 show the details of the response time of the cen-
tralized method under setting (a). The tables show the following.
• The details of the response time of the centralized method
– Time for transferring fragments to the root site
– Time for merging the fragments into one XML document
– Time for transforming the merged document
• The response time of our method

These tables show that the response time of our method is smaller
than the transformation time of the centralized method for any
cases. This suggests that our method is applicable to non-
distributed XML documents, by partitioning such documents into
fragments and transform them in parallel.

5. Conclusion

In this paper, we proposed a method for performing XSLT

transformation for distributed XML documents. The experimen-
tal results suggest that our method work well for distributed XML
documents.

However, we have a lot of future work to do. First, in this
paper the expressive power of XSLT is restricted to extended un-
ranked top-down tree transducer. In particular, we have to han-
dle XSLT instructions/functions of Type B in Table 1 carefully in
order to extend the expressive power of our method. Another fu-
ture work relates to experimentation. In our experimentation we
use only three synthetic XSLT stylesheets. Thus we need to make
more experiments using real-world XSLT stylesheets. Finally, we
have to investigate the applicability of (non-distributed) XPath
processing algorithms to XSLT pattern evaluation. In particu-
lar, Ref. [7] proposes a streaming processing algorithm for XPath
queries, which constructs a DFA from given XPath filters. Thus
the algorithm may be applicable to evaluating XSLT patterns in
an XSLT stylesheet, especially if the stylesheet contains a large
number of patterns.

Acknowledgments The authors would like to thank the edi-
tor and anonymous reviewers for their insightful comments to im-
prove this paper. This research is partially supported by Research
Center for Knowledge Communities, University of Tsukuba.

References

[1] Abiteboul, S., Gottlob, G. and Manna, M.: Distributed XML design,
JCSS, Vol.77, No.6, pp.936–964 (2011).

[2] Abiteboul, S., Gottlob, G. and Manna, M.: Distributed XML design,
Proc. PODS, pp.247–258 (2009).

[3] Bremer, J.-M. and Gertz, M.: On distributing XML repositories, Proc.
WebDB, pp.73–78 (2003).

[4] Buneman, P., Cong, G., Fan, W. and Kementsietsidis, A.: Using Par-
tial Evaluation in Distributed Query Evaluation, Proc. VLDB, VLDB
Endowment, pp.211–222 (2006).

[5] Cong, G., Fan, W. and Anastasios, K.: Distributed Query Evaluation
with Performance Guarantees, Proc. SIGMOD, pp.509–520 (2007).

[6] Cong, G., Fan, W., Kementsietsidis, A., Li, J. and Liu, X.: Partial Eval-
uation for Distributed XPath Query Processing and Beyond, TODS,
Vol.37, No.4, pp.32:1–32:43 (2012).

[7] Gupta, A.K. and Suciu, D.: Stream Processing of XPath Queries with
Predicates, Proc. SIGMOD, pp.419–430 (2003).

[8] Kepser, S.: A simple proof for the Turing-completeness of XSLT and
XQuery, Extreme Markup Languages (2004).

[9] Kido, K., Amagasa, T. and Kitagawa, H.: Processing XPath Queries in
PC-Clusters Using XML Data Partitioning, Proc. 22nd International
Conference on Data Engineering Workshops, pp.11–16 (2006).

[10] Kling, P., Özsu, M.T. and Daudjee, K.: Generating efficient execution
plans for vertically partitioned XML databases, PVLDB, Vol.4, No.1,
pp.1–11 (2010).

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.3

[11] Kurita, H., Hatano, K., Miyazaki, J. and Uemura, S.: Efficient
Query Processing for Large XML Data in Distributed Environments,
AINA’07, pp.317–322 (2007).

[12] Martens, W. and Neven, F.: Typechecking Top-Down Uniform Un-
ranked Tree Transducers, Proc. ICDT, Lecture Notes in Computer Sci-
ence, Vol.2572, pp.64–78, Springer Berlin Heidelberg (2003).

[13] Mizumoto, H. and Suzuki, N.: A simple XSLT processor for Dis-
tributed XML, Proc. APWEB, pp.7–18 (2013).

[14] Mizumoto, H. and Suzuki, N.: An XSLT Transformation Method for
Distributed XML, Proc. INTECH, pp.71–80 (2014).

[15] Ogden, P., Thomas, D. and Pietzuch, P.: Scalable XML Query Pro-
cessing Using Parallel Pushdown Transducers, PVLDB, Vol.6, No.14,
pp.1738–1749 (2013).

[16] Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I. and
Busse, R.: XMark: A benchmark for XML data management, Proc.
VLDB, pp.974–985 (2002).

[17] Stefanescu, D.C., Thomo, A. and Thomo, L.: Distributed evaluation
of generalized path queries, Proc. SAC, pp.610–616 (2005).

[18] Suciu, D.: Distributed query evaluation on semistructured data, TODS,
Vol.27, No.1, pp.1–62 (2002).

[19] Tidwell, D.: XSLT, 2nd Edition, O’Reilly Media (2008).
[20] Zavoral, F. and Dvorakovam, J.: Perfomance of XSLT processors on

large data sets, Proc. ICADIWT, pp.110–115 (2009).

Hiroki Mizumoto received his bache-
lor’s degree in library and information sci-
ence from University of Tsukuba in 2013.
He has been an M.E. student of Graduate
School of Library, Information and Me-
dia Studies, University of Tsukuba. His
current research interests are distributed
XML and tree transducer.

Nobutaka Suzuki received his bache-
lor’s degree in information and computer
sciences from Osaka University in 1993,
and his M.E. and Ph.D. degrees in infor-
mation science from Nara Institute of Sci-
ence and Technology in 1995 and 1998,
respectively. He was with Okayama Pre-
fectural University as a Research Asso-

ciate in 1998–2004. In 2004, he joined University of Tsukuba
as an Assistant Professor. Since 2009, he has been an Associate
Professor of Graduate School of Library, Information and Me-
dia Studies, University of Tsukuba. His current research interests
include database theory and structured documents.

(Editor in Charge: Takeharu Eda)

c© 2015 Information Processing Society of Japan

