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Abstract: A novel representation for nonlinear utility spaces is provided, by adopting a modular decomposition of the
issues and the constraints. The idea is that constraint-based utility spaces are nonlinear with respect to issues, but linear
with respect to the constraints. The result is a mapping from a utility space into an issue-constraint hypergraph. Ex-
ploring the utility space is therefore reduced to a message passing mechanism along the hyperedges by means of utility
propagation. The optimal contracts are efficiently found using a variation of the Max-Sum algorithm. Particularly,
we use a power-law heuristic that lowers the search cost when exploring the utility hypergraph. We experimentally
evaluate the model using parameterized random nonlinear utility spaces, showing that it can handle a large family of
complex utility spaces using several exploration strategies. The complexity of the generated utility spaces is evaluated
using the information theoretic notion of entropy. The optimal search strategy allows a better scaling of the model for
complex utility spaces.
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1. Introduction

Automated negotiation is a mechanism for consensus building
among distributed decision makers. In this sense, it can efficiently
incorporate both human and artificial decision makers to solve a
wide range of complex problems. Its applications range from co-
ordination and cooperation [9], [13] to task allocation [10], [11]
and decentralized information services [12]. Most of the realistic
negotiation scenarios are characterized by multiple and interde-
pendent issues, which yields complex preferential structures, or
precisely, utility spaces [8]. As the search space and the com-
plexity of the problem grow, finding an optimal solution becomes
intractable for one single agent. Similarly, in the case where the
problem is distributed, reaching an agreement between a group of
agents becomes harder.

In this paper, we propose to tackle the complexity of utility
spaces used in multi-issue negotiation by rethinking the way they
are represented. We think that adopting the adequate represen-
tation gives a solid ground to tackle the scaling problem. We
address this problem by adopting a representation that allows a
modular decomposition of the issues-constraints given the intu-
ition that constraint-based utility spaces are nonlinear with re-
spect to issues, but linear with respect to the constraints. This
allows us to rigorously map the utility space into an issues-
constraints hypergraph with the underling interdependencies. Ex-
ploring the utility space reduces then to a message passing mech-
anism along the hyperedges by means of utility propagation.

Adopting a graphical representation while reasoning about util-
ities is not new in the multi-issue negotiation literature. In fact,
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the idea of utility graphs could potentially help decomposing
highly nonlinear utility functions into sub-utilities of clusters of
inter-related items, as in Refs. [2] or [1]. Similarly, [20] used util-
ity graphs for preferences elicitation and negotiation over binary-
valued issues. Reference [17] adopts a weighted undirected graph
representation of the constraint-based utility space. Particularly,
a message passing algorithm is used to find the highest utility
bids by finding the set of unconnected nodes which maximizes
the sum of the nodes’ weight. However, restricting the graph and
the message passing process to constraints’ nodes does not allow
the representation to be descriptive enough to exploit any poten-
tial hierarchical structure of the utility space through a quantita-
tive evaluation of the interdependencies between both issues and
constraints. In Ref. [4], issues’ interdependency are captured by
means of similar undirected weighted graphs where a node rep-
resents an issue. This representation is restricted to binary inter-
dependencies while real negotiation scenarios involve “bundles”
of interdependent issues under one or more specific constraints.
In our approach, we do not restrict the interdependency to lower-
order constraints but we allow p−ary interdependencies to be de-
fined as an hyperedge connecting p issues.

Adopting such graphical representation with its underlying
utility propagation mechanism comes from the intuition that ne-
gotiation, after all, is a cognitive process that involves con-
cepts and associations, performed by supposedly bounded ratio-
nal agents [15]. And while bearing in mind the fact that cog-
nitive processes perform some form of Bayesian inference [14],
we chose to adopt a graphical representation that serves more as
an adequate framework for any preference-based space. The ad-
vantage of using this representation is its scalability in the sense
that the problem becomes harder for a large number of issues
and constraints. But if we can decompose the utility space, we
can exploit it more efficiently. Another way to look at this “con-
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nectionist” representation is that it can be clustered in ways that
can isolate interdependent components, thus, allowing them to
be treated separately and even negotiated independently form the
rest of the problem.

Another motivation behind the hypergraph representation is
that it allows a layered, hierarchical view of any given negotia-
tion scenario. Given such architecture, it is possible to recursively
negotiate over the different layers of the problem according to a
top-down approach. Even the idea of issue could be abstracted
to include an encapsulation of sub-issues, located in sub-utility
spaces and represented by cliques in the hypergraph. Conse-
quently, search processes can help identify optimal contracts for
improvement at each level. This combination of separating the
system into layers, then using utility propagation to focus atten-
tion and search within a constrained region can be very powerful
in the bidding process. A similar idea of recursion in the explo-
ration of utility space was introduced by Ref. [18] although it is
region-oriented and does not adopt a graphical representation of
the utility space. We experimentally evaluated our model using
parametrized and random nonlinear utility spaces, showing that
it can handle large and complex spaces and outperforms previous
sampling approaches. The adopted model was also evaluated in
terms of the complexity of a family of utility spaces.

Overall, the contribution of the paper could be summarized as
following.
• A better representation for nonlinear utility spaces to tackle

the complexity problem. It has the merit of being modular
and rich, which allows several search strategies to be tested
as well as any graph-theoretic analysis.

• An efficient algorithm for optimal contracts search based on
message passing. The algorithm outperforms all the other
sampling-based methods and provides a better scaling.

• Quantitative assessment of the complexity of nonlinear util-
ity spaces using entropy [5], and how it affects search.

• Identification of several search methods as well as the op-
timal strategy that minimizes the search cost. The optimal
search strategy is a novel and efficient heuristic for loopy

utility propagation inspired by the loopy belief propagation
for probabilistic graphical models [19].

The paper is organized as following. In the next section, we
propose the basics of our new nonlinear utility space representa-
tion. In Section 3, we describe the contracts search mechanisms.
In Section 4, we provide the complexity study and the optimal
strategy. In Section 5, we provide some experimental results. In
Section 6, we conclude and outline the future work.

2. Nonlinear Utility Space Representation

2.1 Problem Formulation
We start from the formulation of nonlinear multi-issue utility

spaces used in Ref. [7]. That is, an n−dimensional utility space is
defined over a finite set of issues I = {i1, . . . , ik, . . . , in}. The issue
k, namely ik, takes its values from a finite set Ik with Ik ⊂ Z. A
contract �c is a vector of issue-values with �c ∈ I and I = ×n

k=1Ik.
An agent’s utility function is defined in terms of m constraints,

making the utility space a constraint-based utility space. That is, a
constraint c j is a region of the total n−dimensional utility space.

Fig. 1 2−dimensional nonlinear utility space.

We say that the constraint c j has a weight, or value w(c j,�c) for
contract �c if c j is satisfied by �c. That is, when the contract point
�c falls within the hyper-volume defined by constraint c j, namely
hyp(c j). The utility of an agent for �c is thus defined as in (1).

u(�c) =
∑

c j∈[1,m] , �c ∈ hyp(c j)

w(c j,�c) (1)

In the following, we distinguish three types of constraints: Cu-
bic, Bell and Plane constraints. Constraint-based utility spaces
are a practical way to represent non-monotonic and nonlinear
utility functions [16], [17], [18]. The representation Eq. (1) pro-
duces a “bumpy” nonlinear utility space with high points when-
ever many constraints are satisfied and lower points where few
or no constraints are satisfied. For instance, Fig. 1 shows an ex-
ample of nonlinear utility space for issues i1 and i2 taking values
in I1 = I2 = [0, 100], with m = 600 constraints having types in
θ = {Cube, Bell, Plane}.

2.2 New Representation
The utility function Eq. (1) is nonlinear in the sense that the

utility does not have a linear expression against the contract [7].
This is true to the extent that the linearity is evaluated with re-
gard to the contract �c. However, from the same expression Eq. (1)
we can say that the utility is in fact linear, but in terms of the
constraints {c1, . . . , c j, . . . , cm}. The utility space is therefore de-
composable according to these constraints. This yields a modular
representation of the interactions between the issues and how they
locally relate to each other. In fact, hyp(c j) reflects the idea that
the underlying contracts are governed by the bounds defined by
c j once the contracts are projected according to their issues’ com-
ponents. In this case, the interdependence is not between issues
but between constraints. For instance, two constraints c1 and c2

can have in common one issue ik taking values respectively from
an interval Ik,c1 if it is involved in c1, and values in Ik,c2 if it is
involved in c2, with Ik,c1 � Ik,c2 . Finding the value that maxi-
mizes the utility of ik while satisfying both constraints becomes
harder due to fact that changing the value of ik in c1 changes the
instance of ik in c2 in a cyclic manner. This nonlinearity gets
worse with an increasing number of issues, domains’ sizes, and
the non-monotonicity of the constraints.

Next, we propose to transform Eq. (1) into a modular, graphi-
cal representation. Since one constraint can involve one or more
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multiple issues, we will adopt a hypergraph representation.

2.3 Utility Hypergraph
We assign to each constraint c j∈[1,m], a factor Φ j, with Φ =

{Φ j}mj=1. We define the hypergraph G as in Eq. (2).

G = (I,Φ) (2)

Nodes in I define the issues and the hyperedges in Φ are the fac-
tors (constraints). To each factor Φ j we assign a neighbors’ set
N(Φ j) ⊂ I containing the issues connected to Φ j (involved in c j),
with |N(Φ j)| = ϕ j. In case ϕ j = 2 ∀ j ∈ [1,m], the whole problem
collapses to a constraints satisfaction problem in a standard graph.
To each factor Φ j corresponds a ϕ j−dimensional matrix, MΦ j ,
where the jth dimension is the discrete interval [ak, bk] = Ik, the
domain of issue ik. This matrix contains all the values that could
be taken by the issues in N(Φ j). Each factor Φ j has a function
φ j defined as a sub-utility function of the issues in N(Φ j), as in
Eq. (3).

φ j : N(Φ j)
ϕ j → R (3)

φ j(i1, . . . , ik, . . . , iϕ j ) �→ w(c j,�c)

As we are dealing with discrete issues,Φ j is defined by the matrix
MΦ j . That is, φ j(i1, . . . ik, . . . , iϕ j ) is simply the (1, . . . , k, . . . , ϕ j)th

entry in MΦ j corresponding as well to the value w(c j,�c) men-
tioned in Eq. (1). It is possible to extend the discrete case to the
continuous one by allowing continuous issue-values and defining
Φ j as a continuous function. Next, we give few examples about
the model usage.
2.3.1 Example 1.

Figure 2 illustrates a 2−dimensional utility space with its hy-
pergraph G2. The issues’ domains are I1 = I2 = [0, 9]. G2 con-
sists of m = 10 constraints (red squares) where each constraint
involves at most 2 issues (white circles). We note 3 cubic con-
straints {C j}2j=0 and 7 plane constraints {Pj}6j=0 with parameters
β j, α j ∈ [−100, 100] and j ∈ {P0, . . . , P6}.
2.3.2 Example 2.

Consider the 10−dimensional utility space mapped into the hy-
pergraph G10 defined as G10 = (I,Φ) with I = {ik}9k=1 and Φ =
{Φ j}7j=1 as shown in Fig. 3. Each issue ik has a set Ik =

⋃
ν∈N(k) Ik,ν

where Ik,ν is an edge connecting ik to its neighbor ν ⊂ N(k) ∈ Φ.
For example, I1 =

⋃
ν∈{Φ1 ,Φ3 ,Φ6} I1,ν = {[5, 9], [3, 4], [3, 6]}. Con-

straints are defined by 3 types of geometrical shapes: cubic, plane
or bell [16]. For instance, Φ1,2,3,4 could be cubic, Φ5,6 could be
planar and Φ7 could be a bell. Any combination is in fact possi-
ble, and depends only on the problem in hand and how it is being
specified. To each constraint we assign a functional representa-
tion used to compute the utility of a contract if it satisfies the con-
straint by being located in the corresponding hyper-volume. For
example, the utility function φ j, defined in Eq. (3), corresponds
to the functional definition of each constraint shown in Eq. (4).

φ j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Plane : β j +

∑ϕ j

k=1 α j,k × vk(ik), (β j, α j,k) ∈ Z2

Cube : v j

Bell : Vj

(4)

A plane constraint Φ j will be defined using its ϕ j−dimensional

Fig. 2 2−dimensional utility space and its hypergraph.

equation, while a cubic constraint will be assigned the value v j in
case the contract is in the cube. The computation of the utility Vj

of a bell shaped constraint is performed as in Eq. (5). Herein, δ
is the Euclidean distance from the center of the bell constraint to
the contract point. Distances are normalized in [−1, 1].

Vj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β j (1 − 2δ2) if δ < 0.5 β j ∈ Z
2 β j (1 − δ)2 if δ < 1 β j ∈ Z
0 else

(5)

It is important to note that in our usage of the constraints, the
agent is required to know the structure of the constraints through
their functional definition. However, this is not always the case as
the agent might face the situation where the only available assess-
ment tool is a utility function deprived from its internal structure.
In this case, we might think of a sampling method allowing us
to construct an approximation of the agent’s utility space. This
could be done in a similar way to what Markov Chain Monte

Carlo (MCMC) methods or a Gibbs sampler could perform in the
case of Bayesian problems; especially, with the graphical nature
of our representation. In the case were the agent knows her util-
ity model, the hypergraph will be built through the composition
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Fig. 3 Issues-Constraints Hypergraph.

of several sub-utilities specified by the constraints. This could be
done as to map different preferences’ profiles the agent is express-
ing, like indifference, risk aversion, decreasing preference, and so
on. Generally, and as it is the case in this paper, we are more in-
terested in studying random parametric preferences, represented
as Random Utility Hypergraph (RUH). Such representation al-
lows any utility space model to be mapped into a hypergraphical
representation that could make usage of the exploration strategies
we are proposing. This includes linear, nonlinear and constraint-
based utility models.

3. Optimal Contracts

The exploration of the utility hypergraph is inspired from
the sum-product message passing algorithm for belief propaga-
tion [19]. However, the multiplicative algebra is changed into an
additive algebra to support the utility accumulation. The mes-
sages circulating in the hypergraph are nothing other than the con-
tracts we are attempting to optimize through utility maximization.
Next, we develop the message passing (MP) mechanism operat-
ing on the issues and the constraints.

3.1 Message Passing
In the following, we consider the issues set I and a contract

point �x = (x1, . . . , xi, . . . , xn) ∈ I. We want to find a contract
�x∗ that maximizes the utility function defined in Eq. (1). Assum-
ing that φ j is the local utility of constraint Φ j, we distinguish
two types of messages: messages sent from issues towards con-
straints, and messages sent from constraints towards issues. The
whole message passing process is an alternation of these two
types of messages.

3.1.1 From Issue ik to Constraint Φ j.
As shown in Eq. (6), each message μik→Φ j coming from ik to

Φ j is the sum of the constraints’ messages to ik coming from con-
straints other than Φ j.

μik→Φ j (ik) =
∑

Φ j′ ∈N(ik)\Φ j

μΦ j′→ik (ik) (6)

3.1.2 From Constraint Φ j to Issue ik.
Each constraint message is the sum of the messages com-

ing from issues other than ik, plus the constraint value
φ j(i1, . . . , ik, . . . , in), summed over all the possible values of the
issues other than the issue ik.

μΦ j→ik (ik) =max
i1
. . .max

ik′�k

. . .max
in

[
φ j(i1, . . . , ik, . . . , in)

+
∑

ik′ ∈N(Φ j)\ik
μik′→Φ j (ik)

]
(7)

The mechanism starts from the leaves of the hypergraph, i.e., the
issues. At t = 0, the content of the initial messages is defined
according to Eq. (8), φ′j(ik) being the partial evaluation of ik in
Φ j.

μik→Φ j (ik) = 0 (8)

μΦ j→ik (ik) = φ′j(ik)

The partial evaluation φ′j(ik) of issue ik in the factor Φ j is the
utility of ik using Φ j regardless of any other issue involved in
Φ j. For instance, for cubic and bell constraints, the evaluation
is simply v j and Vj ∀k as in Eq. (4). If Φ j is a plane constraint,
the partial evaluation of ik will be α j,k × vk(ik). In this manner, the
factorΦ j will get all the evaluations α j,k×vk(ik) from its surround-
ing issues (setN(Φ j)) in order to yield the total utility Eq. (4) as a
sum of the partial evaluations plus the plane constant β j. Finally,
the optimal contract �c∗ is found by collecting the optimal issues
as in Eq. (9).

�c∗ =
(

arg max
i1

∑
Φ j∈N(i1)

μΦ j→i1 (i1), (9)

. . . , arg max
ik

∑
Φ j∈N(ik)

μΦ j→ik (ik), . . . , arg max
in

∑
Φ j∈N(in)

μΦ j→in (in)
)

In a negotiation setting, it is more common that the agent re-
quires a collection, or bundle, of the optimal contracts rather than
one single optimum. In order to find such collection, we should
endow Eq. (9) with a caching mechanism allowing each node in
the hypergraph to store the messages that have been sent to it from
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the other nodes. That is, the cached messages will contain the
summed-up utility values of the underlying node’s instance. This
is performed every time the operation max is called in Eq. (7) so
that we can store the settings of the adjacent utility (and contract)
that led to the maximum. Once ordered, such data structure al-
lows us to generate an ordered bundle for the bidding process. In
the next section, we algorithmically provide the MP mechanism.

3.2 Utility Propagation Algorithm
The main algorithm, Algorithm 1, operates on the hypergraph

nodes by triggering the message passing process. Despite the
fact that we have two types of nodes (issues and constraints), it is
possible to treat them abstractly using MsgPass, in line 6. The
resulting bundle is a collection of optimal contracts with utility
greater or equal to the agent’s reservation value rv. The message
passing routine, MsgPass, is instantiated depending on the types
of the source and destination nodes:

Algorithm: Utility Propagation

Input: G = (I,Φ), rv,mode, ρ

Output: Optimal contracts (bundle)

1 begin
2 for i = 1→ (ρ × |I ∪ Φ|) do
3 if mode is S ynchronous then
4 foreach νsrc ∈ I ∪ Φ do
5 foreach νdest ∈ νsrc.Neighbors() do
6 νsrc.MsgPass(νdest)

7 else if mode is Asynchronous then
8 νsrc, νdest ← rand2([1, |V |]), νdest � νsrc

9 νsrc.MsgPass(νdest)

10 bundle← ∅
11 foreach i ∈ I do
12 bundle[i]← ∅
13 ι← ∪ j∈i.instances()[ j.min, j.max]

14 μ∗ ← k∗ ← −∞
15 μ← i.getmax()

16 foreach k = 1→ |μ| do
17 if μ∗ < μ[k] then
18 μ∗ ← μ[k]

19 k∗ ← k

20 if μ∗ ≥ rv then
21 bundle[i]← bundle[i] ∪ ι[k∗]

22 return bundle

Algorithm 1: Main Algorithm.

From issue to constraint. The issue’s message to a factor (or
constraint) is the element-wise sum of all the incoming messages
from other factors.

From constraint to issue. The factor’s message to a targeted
issue is done by recursively enumerating over all variables that
the factor references Eq. (7), except the targeted issue. This needs
to be performed for each value of the target variable in order to
compute the message. If all issues are assigned, the values of the
factor and of all other incoming messages are determined, so that
their sum term is compared to the prior maximum. The resulting
messages, stored in bundle, contain the values that maximize the
factors’ local utility functions. It is possible to avoid the system-
atic enumeration by adding a local randomization to the issue that

the factor is referencing. Additionally, we can exploit the struc-
ture of the constraint though its function’s monotonicity. That
is, by optimizing the constraint locally and providing the opti-
mal sub-contracts as messages. However, optimizing locally does
not produce a global optimization due to the interdependence be-
tween constraints (example in Section 2.2).

3.3 Propagation Strategies
The propagation, or circulation of the messages in G could be

defined according to a particular strategy with respect to the hy-
pergraph topology. For example, lines 3 in Algorithm 1 refers to
a systematic, deterministic or synchronous way of choosing the
nodes. Line 7 corresponds to a randomized, non-deterministic, or
asynchronous way of selecting the sources and the destinations.
In the rest of the paper, we will adopt the asynchronous mode of
messages transmission.

4. Exploration Complexity

4.1 Evaluation Criteria
Before the evaluation of the hypergraphical representation and

the utility propagation algorithm, it is important to identify the
criteria that could affect the complexity of the utility space and
thus the probability of finding optimal contract(s). To this end,
we start by defining the parameters that could have an impact on
the complexity of the preference spaces. These parameters are
also used for the generation of the scenarios.
• n: number of issues.
• m: number of constraints, hyperedges, or factors.
• π: for a constraint c j and its factor Φ j, π(Φ j) refers to the

number of issues involved in Φ j, making it unary (π(Φ j) =
1), binary (π(Φ j) = 2), ternary (π(Φ j) = 3), or π(Φ j)-ary in
the general case. π is defined as in Eq. (10),

π : Φ→ [1, n] (10)

Φ j �→ N(Φ j)︸�︷︷�︸
π j

, j ∈ [1,m]

with the resulting sequence Eq. (11).

π = (π1, . . . , π j, . . . , πm) (11)

• Domain sizes of the issues
∏n

k=1 |Ik | as well as the domains’
types (discrete and/or continue).

The most important criteria is the distribution π. In fact, it cor-
relates with the computation time necessary for an algorithm to
perform, as we will show in the next subsections. A practical
way to evaluate different distributions is to define a utility space
profile as a tuple (n,m, π). This parametrization will be used in
the study of the complexity. It is important to note that a profile
(n,m, π) must meet the consistency condition Eq. (12).

π j ≤ n ≤ m × π j, ∀ j ∈ [1,m] (12)

Such condition prevents cases like attempting to have 12−ary
constraints in a 7−dimensional utility space. Next, we show how
to quantitatively assess complexity using the entropy measure.
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(a) General cognitive graph (b) Distributions’ entropies

Fig. 4 Cognitive graph and degree distributions’ entropies.

4.2 Complexity Evaluation Using Entropy
In the probabilistic sense, the sequence Eq. (11) could follow

any distribution law. Furthermore, each distribution will have a
complexity mirrored by the underlying utility hypergraph, which
will certainly affect the performance of any search algorithms.
In the general case, this is known as the degree distribution of a
graph. The complexity of a particular profile (n,m, π) is assessed
using the information theoretical notion of entropy Eq. (13).

H(π) = −
m∑

j=1

π j log(π j) (13)

Entropy could in fact be used to measure the complexity of cog-
nitive graphical models [5], [6], including any representation that
uses the idea of degree distribution Eq. (11). Herein, entropy is
meant to reflect complexity from a temporal standpoint. As an
example, suppose that π is taking different forms πi∈[1,5], shown
in Eq. (14).

π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 = Uni f orm(m − 1)
π2 = Normal(μ ∈ [2, 4], σ ∈ [0, 2])
π3 = Poisson(λ ∈ [2, 6])
π4 = Power − law(α = 2.3)
π5 = S tar

(14)

The idea behind the distributions is that it is possible to traverse
a graph according to different distributions πi∈[1,5]. Exploring the
graph corresponds to a specific way of moving from one node to
another as to perform any type of optimization. For example let
us take a graph with m = 100 nodes, represented in Fig. 4 (a),
with different distributions (π1: green, π2: purple, π3: blue, π4:
red and π5: orange). For instance, traversing the graph based on
a star distribution (π5, in orange) corresponds to moving from
the central node to a peripheral node, then back to the central
node, etc. The exploration based on a uniform distribution gives
a complete graph (π1, in green) where we explore based on all the
nodes, uniformly. The same logic applies for other distributions.

These distributions differ in their topologies, but most impor-
tantly in terms of complexity, or as we refer to it here, entropy.
As shown in Fig. 4 (b), uniform strategy has the highest entropy
and generates a complete graph (Km−1). On the contrary, the star
(S m−1) strategy has the lowest entropy, with nodes connected to
one single node acting like a hub. If we increase the number of
hubs to few hubs, we get the power law strategy which is ranked
right above the star strategy. Normal and poisson distributions

Fig. 5 H(π j) and Δ(π j) for π j∈[0,9] ∈ {U,D,PL}.

fluctuate between π1 and π4 in terms of complexity, relatively to
the values of μ, σ and λ. The uniform π1 and the star π5 act as
complexity bounds. We will see in the next subsection how en-
tropy, complexity and performance (time) relate to each other.

4.3 Complexity and Performance
Now, let us take a concrete example of exploration strategies

and their underlying distributions, and let us evaluate the inter-
play between the entropy and the computation time needed by the
search algorithm to find the optimal contract(s). We assume that
we have 10 strategies πk∈[0,9] where each πk is either a uniform
distributionU, a deterministic distributionD or a power-law dis-
tribution PL. If the search algorithm is taken to be AsynchMP,
then the computation time and the complexity of the underlying
strategies are illustrated in Fig. 5. The first observation is that
both entropy and computation time fluctuate similarly, describing
the same topology of the underlying strategy. Secondly,U is the
most complex structure, since it possess the highest entropy and
computation time as opposed toD and PL. It is possible to think
about the complexity of strategyU from two standpoints. An an-
alytical or cartesian view of the problem reduces the complexity
to high-dimensionally [3]. From a graphical viewpoint, the dis-
tribution is perceived as representing a complete graph with one
strong component having the highest number of possible connec-
tions. Both views reflect the difficulty of the search problem.

4.4 Optimal Strategy
Instead of the asynchronous mode of AsynchMP (randomly

picking νsrc and νdest), we propose to use the distribution π as a
prior, allowing us to optimize the message passing algorithm by
taking into consideration certain topologies. For example, adopt-
ing a strategy π ∼ PL allows us to focus on the hubs of the hyper-
grpah, i.e., the factors with large numbers of issues. Let us call
the new strategy AsynchMPi, which consists in performing the
message passing within a set σ1 ⊂ (Φ

⋃I) of high degree nodes.
For a specific profile (n,m, π), and for two strategies AsynchMP
and AsynchMPi, the idea is to see which one converges to the
optimium faster, while being certain that both will find this op-
timum. That is, the same profile will be traversed and explored
with different distributions throughout time.

In the following, we show how the set σ1 is constructed.
( 1 ) Start by generating the sequence c j, defined as in Eq. (15).
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The sequence c j has the property of having the majority of
its points clustered in the upper portion of the domain. It will
be used to map the set of high degree nodes.

c j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 if j = 0

1
2 +

1
2 × c2

j−1 if j ∈ [1, (n + m) × 10]
(15)

( 2 ) Uniformly sample r points from c j. The result isU(c j)
( 3 ) Generate the sequence sπ containing {π(νi)}i by decreasing

order Eq. (16). sπ approximates a power-law distribution.

sπ = {i, . . . , n′ | π(νi) ≤ · · · ≤ π(νn′ )} (16)

( 4 ) Generate the set sσ according to Algorithm 2.

Input: SequencesU(c j) and sπ
Output: Set sσ of high connectivity nodes

1 begin
2 sσ ← ∅
3 for c ∈ U(c j) do
4 if c < �c� − 1

2 then
5 sσ ← sσ ∪ �c� − 1

6 else
7 sσ ← sσ ∪ �c�
8 return sσ

Algorithm 2: Generation of high degree nodes sσ.

5. Discussion

The generation of the hypergraph is performed using Algo-
rithm 3. Depending on the nature of π, a particular topology will
be generated. A uniform π generates a complete hypergraph, a
power-law π generates a scale-free hypergraph and so on. In the
following we evaluate AsynchMP and AsynchMPi for 6 profiles
(100, 100, πi), i ∈ {5, 6, 7, 8, 9, 10}. The profiles have decreasing
complexity defined as πi(Φ j) ≤ i ∀ j.

It is important to make sure that both strategies give the same
expected optimal utilities, as shown in Fig. 7 (a). That is, for the
different profiles specified by i ∈ {5, 6, 7, 8, 9, 10} on the x axis,
both strategies give the same optimal utility values, shown on the
y axis. However, Fig. 7 (b) shows that restricting the message
passing process to the high degree nodes (hubs) results in a dras-
tic decrease in the computation time (in seconds) for the same
profiles specified by i ∈ {5, 6, 7, 8, 9, 10}. The way we restrict the
search to hubs is shown in Fig. 6. We sort the nodes νi∈[0,59] by de-
creasing degree (π(νi) is the degree of node νi) and we randomly
sample from this sequence according to the process described
in Section 4.4. The resulting sequence of high degree nodes is
shown as blue triangles in Fig. 6. We additionally observe that
for small connectivity values (π1 = π2), the search process takes
approximately the same amount of time despite the large num-
ber of issues and constraints n = m = 100. In fact, assessing
the complexity of a utility space (respectively utility hypergrpah)
must take into consideration the connectivity function π. In this
sense, neither the dimension n nor the number of constraints m

could objectively reflect this complexity. For instance, a profile
(100, 100, 1) is less complex than a profile (10, 10, 2). In fact,

Algorithm: ParamRandHGen

Input: n,m, π

Output: G(I,Φ)

1 begin
2 [βmin, βmax]← [1, 100] // constants

3 [αmin, αmax]← [0, 1] // slopes

4 [bmin, bmax]← [0, 9] // bounds

5 Φ← [∅] × m // init constraints set

6 for k = 1→ m do
7 Φ[k].θ ← rand({cube, plane, bell})
8 if Φ[k].θ = plane then
9 α← [0] × n

10 for j = 1→ n do
11 α[ j]← rand([αmin, αmax])

12 Φ[k].α← α
13 if Φ[k].θ ∈ {bell, cube} then
14 // similar calculations; refer to (4) or (5)

15 // . . .

16 Φ[k].β← rand([βmin, βmax])

17 μ← rand([1, n])

18 I← ∅
19 while |I| � μ do
20 ι← π(k)

21 if ι � I then
22 I← I ∪ ι
23 for j = 1→ μ do
24 I[ j].a← rand([bmin, bmax])

I[ j].b← rand([I[ j].a + ε, bmax])

25 Φ[k].I← I
26 return Φ

Algorithm 3: Utility Hypergraph Generation.

Fig. 6 Generation of sσ for n,m, p, r = (10, 50, 5, 17).

(100, 100, 1) is not a nonlinear utility space because π(Φ j) = 1 ∀ j.
That is, each constraint contains one unique issue, i.e., the whole
utility is reduced to a sum of the partial utilities of the individual
issues with, n = m. Thus, the whole problem becomes linear with
the utility function Eq. (17),

u(i1, . . . , i j, . . . , in) =
n∑

j=1

φ j(i j) (17)
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Fig. 7 AsynchMP vs. AsynchMPi.

with φ j being the utility of constraint c j. We note that the pre-
vious case is a degenerate case, and that generally, we ought to
generate constraints with cardinalities greater or equal to 2.

6. Conclusion

We introduced a new modular representation of utility spaces
based on hypergraphs. The exploration and search for optimal
contracts is performed based on a message passing mechanism
outperforming the sampling-based optimizers. Additionally, the
model was evaluated in terms of complexity assessment showing
that power-law topologies have lower complexity. Consequently,
we provided an exploration strategy that searches the hypergrpah
based on a power-law topology. Results show that such strategy
outperforms drastically the synchronous message passing strat-
egy. As a future work, we intend to exploit the structure of the
hypergraphs by proposing an hierarchical exploration scheme and
evaluate it in a hierarchical negotiation scenario. Additionally,
we intend to study the interdependence between the issues as to
assess their importance and influence on the contracts optimality.
Being able to assess the issues importance could in fact be used to
simplify complex negotiation scenarios by focusing on the most
important sub-contracts.
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