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Abstract: Memcached has been widely accepted as a technology to improve the response speed of web servers by
caching data on DRAMs in distributed servers. Because of its importance, the acceleration of memcached has been
studied on various platforms. Among them, FPGA looks the most attractive platform to run memcached, and several
research groups have tried to obtain a much higher performance than that of CPU out of it. The difficulty encountered
there, however, is how to manage large-sized memory (gigabytes of DRAMs) from memcached hardware built in an
FPGA. Some groups are trying to solve this problem by using an embedded CPU for memory allocation and another
group is employing an SSD. Unlike other approaches that try to replace memcached itself on FPGAs, our approach
augments the software memcached running on the host CPU by caching its data and some operations at the FPGA-
equipped network interface card (NIC) mounted on the server. The locality of memcached data enables the FPGA NIC
to have a fairly high hit rate with a smaller memory. In this paper, we describe the architecture of the proposed NIC
cache, and evaluate the effectiveness with a standard key-value store (KVS) benchmarking tool. Our evaluation shows
that our system is effective if the workload has temporal locality but does not handle workloads well without such a
characteristic. We further propose methods to overcome this problem and evaluate them. As a result, we estimate that
the latency improved by up to 3.5 times over software memcached running on a high performance CPU.
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1. Introduction

Web service providers that have a large number of users and
other information are eager to facilitate new technologies that en-
able their servers to handle more data traffic. One such technol-
ogy employed by many web service providers is key-value stores
(KVSs). A KVS holds data (values) with keys uniquely assigned
(key-value pairs; KVPs), and sends them out as the data (value)
is requested with the corresponding key. For its speed of finding
the requested data in contrast to traditional relational database
management systems (RDBMSs), many web service providers
are now using KVS databases such as DynamoDB at Amazon [8],
Bigtable at Google [6], memcached at Facebook [17], and many
others. Memcached [1] is a technology that reduces the latency
of data retrieval by storing KVPs in distributed servers’ mem-
ories instead of fetching them from the hard drives of database
servers. Its simple data structure and computation have led to its
wide adoption by various web service providers.

Memcached is used not only by Facebook, but also by a
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number of major web service providers such as Wikipedia
and YouTube [1]. According to Facebook’s research on their
own memcached workloads, they use hundreds of memcached
servers [14], [17]. In view of such extensive use, improving the
memcached performance would have a large impact on web ser-
vices’ response. In fact, researchers have investigated the suit-
ability of various hardware platforms for running memcached,
from multiple low power CPUs [11], [12], [13] to many-core
processors [3] and FPGAs [5]. Meanwhile, FPGA-based mem-
cached systems are outperforming high performance CPUs such
as Intel® Xeon® by an order of magnitude [4].

Although these efforts have improved the performance of
memcached, major challenges remain. One such challenge is that
it is difficult for FPGAs to manage efficiently a large memory
size. Memcached servers usually have a few dozen gigabytes of
memory, and such a memory space is too large for an FPGA to
manage efficiently [16]. One group is trying to handle a large
memory size by utilizing a CPU core that is embedded in the
FPGA [4]. The FPGA invokes the CPU to allocate or reallocate
some blocks in the memory and stores data there. Another group
employed an SSD to enlarge the memory space using a DRAM
as a cache [15].

In this paper, we propose a method that makes possible a low
latency hardware memcached system with less memory than oth-
ers require. Our method caches the subset of data stored in soft-
ware memcached running on the host CPU at the network inter-
face card (NIC) equipped with an FPGA and a DRAM memory.
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When the server receives a request from a client, the NIC tries to
retrieve the data within the DRAM and sends it back if the data is
found. If not, the NIC passes the request to the host CPU and the
CPU executes the usual memcached operation. Since memcached
data has locality, the NIC requires only a fraction of the amount
of memory that the host server has. Furthermore, the commands
the NIC cache does not support can be delegated to the host CPU;
therefore only the frequently used memcached commands have to
be supported on the NIC.

This paper is an extensive work of our recent conference pa-
per [9] whose contributions were as follows:
• We proposed a method that reduces the delay of memcached

by caching the memcached data at the NIC mounted on the
server.

• We explained how the subset of memcached functionalities
should be implemented on the FPGA equipped NIC in order
to maintain data consistency between the NIC and the host
CPU.

• We verified the improvement of the performance with a stan-
dard evaluation tool which is capable of evaluating various
KVSs.

Our new contributions in this paper are as follows:
• We apply the least frequently used (LFU) cache replacement

algorithm that has a slightly higher hit rate rather than the
least recently used (LRU) algorithm for workloads with Zip-
fian distribution. However LRU is a better choice when tak-
ing the hardware implementation cost into account.

• We analyze the effect of our system in relation to the work-
loads’ characteristics in detail.

• We propose a method that enables a large size of cache on
the NIC with a small amount of block memory on the NIC’s
FPGA.

Although we focus on proving the effectiveness of our NIC
caching architecture with memcached, it is important to note that
this architecture can be applied to many other server applications
that require a lower latency as long as the data has temporal lo-
cality.

2. Background

2.1 Memcached
Memcached is a kind of KVS database that caches data on

memories of distributed servers in the form of key-value pairs. As
Fig. 1 shows, memcached servers store the subset of data stored
in the database servers, which usually use hard drives, in order to
allow faster data access from the web server. Memcached servers

Fig. 1 The operation of memcached.

often have a few dozen gigabytes of memory each and run in
a cluster of several hundred servers. Data are not stored in the
memcached server at the beginning, and the web server has to
get the data from the database servers. The web server sends the
data back to the user and also sends a SET request with a paired
key (250 bytes or smaller) and value (1 MB or smaller) to mem-
cached to store the data. When the web server needs the same
data later, it sends a GET request with the key to the memcached
server, and the memcached server returns the value to the web
server. Data that are not accessed frequently on the memcached
server are evicted when the capacity is full. If the web server
sends a GET request for data that has been already evicted, the
memcached server notifies the web server that a cache miss has
occurred. The web server will then check the database server and
SET the data to the memcached server again.

Table 1 is a list of memcached commands. GET, SET and
DELETE are the commands that are mainly used, and GET is the
most frequently used command among them. According to a pa-
per that reports the details of the memcached workloads of Face-
book [17], the ratio of GET, SET and DELETE is 30:1:14 (exact
ratio of DELETE not being provided in the paper, we estimated
it visually from the chart). Therefore, the investigations we look
through in Section 2.2 usually support only the GET, SET and
DELETE commands.

2.2 Related Work
Berezecki et al. evaluated the performance of memcached run-

ning on Tilera’s TILEPro64 processor, which can allocate com-
putations to its 64 cores [3]. Examining several configurations
of cores running operations such as Linux kernel, network opera-
tions and others, the throughput per watt attained a maximum 2.4-
fold increase over Xeon. However, the latency remained the same
or worsened slightly from Xeon’s 200–300 µs to TILEPro64’s
200–400 µs.

Chalamalasetti et al.’s work was the first to try to utilize FPGA
for accelerating memcached [5]. The system mainly consists of
two parts: a network processing part and a memcached applica-
tion part. The network processing part extracts memcached data
from incoming packets and gives them to the memcached appli-
cation part, and also does the reverse. Receiving the data from
the network processing part, the memcached application part cal-
culates hashes from the keys in order to determine the memory
address at which the KVPs are stored and writes to or reads from

Table 1 Memcached commands.

Command Operation
SET Store a KVP.
ADD Store a KVP if the key is not found.
REPLACE Replace a KVP if the key is found.
APPEND Append data to a stored value.
PREPEND Prepend data to a stored value.
CAS Overwrite a value if the KVP is unchanged since last

reference.
GET Retrieves a value with a key.
GETS Get a CAS identifier while retrieving a value with a

key.
DELETE Removes an KVP.
INCR/DECR Increment or decrement a value.
STATS Get an report of the memcached server statistics.

© 2015 Information Processing Society of Japan 144



Journal of Information Processing Vol.23 No.2 143–152 (Mar. 2015)

the memory. The performance of memcached improved dramat-
ically in this scheme: throughput per watt attained 4.3-fold over
Xeon and the latency became 2.4 to 12 µs.

Blott’s group further improved the performance of memcached
running on an FPGA by improving the UDP offload engine and
adopting dataflow architecture [4]. They achieved over 15-fold
higher throughput per watt than a Xeon and a latency of 3.5 to
4.5 µs. This work also features a CPU for allocating the memory.
Their system stores the key in the block RAM and the value in the
external DRAM. The system we propose in this paper is different
from this: we store only the tag in the block RAM and store the
key and the value to the external DRAM. This enables us to store
more KVPs in the external DRAM, and as we propose in Sec-
tion 6, this will further be extended to the hash table compression
method.

Another approach was proposed by two groups almost coin-
cidently [12], [13]. Through dynamic analysis of memcached
codes, they found that instruction cache misses or low branch
prediction success rates caused by the frequent call of the net-
work protocol stack, kernel and some library codes was the bot-
tleneck. Their approach to get rid of this bottleneck was to re-
place the network process and some of the memcached process
(GET request handling) software codes with hardware and inte-
grate it into an SoC with a CPU core. This method was evaluated
on an FPGA that had an embedded CPU core and yielded 2.3 to
6.1-fold higher throughput per watt than a Xeon. Our method is
close to Refs. [12] and [13] in the sense that we execute part of
the memcached process on hardware. However, we do not share
the memory between the memcached hardware and the CPU, and
thus the memory control of our method is simpler.

To gain a larger storage size on hardware memcached, Tanaka
and Kozyrakis employed a solid state drive (SSD) in their FPGA
based system [15]. Their approach is to store KVPs in the SSD
on the FPGA board, using the DRAM on the same board as a
cache. They achieved 14-fold higher throughput, 5- to 60-fold
low latency and 12-fold higher throughput per watt than a Xeon.

Recently, a commercial memcached appliance that can be used
in practice has been developed [2]. This appliance achieved 9.7-
fold higher throughput than a Xeon by using a CPU and multiple
FPGAs while the latency was 500 µs to 1 ms, which is larger than
for a Xeon. Its throughput per watt has not been publicly an-
nounced.

3. Concept of NIC Cache

The basic idea of our method is to cache part of a memcached
server’s data and functionalities to the NIC mounted on the same
computer. According to Facebook’s investigation into their own
memcached workloads, there is some locality of access to their
data [17]. On top of that, Facebook’s investigation also indicates
that among all memcached commands, SET, GET and DELETE
account for most of the requests. This means that reducing the
processing latency of only frequently accessed data should have
a large impact on the web server’s performance. The nearest place
to the web server in the server computer on which memcached is
running is the network interface. Therefore we try to efficiently
reduce the latency by caching frequently used data and function-

Fig. 2 The image of the proposed method.

Fig. 3 Connection of software modules.

alities (SET, GET and DELETE) at the NIC and leaving the less
frequently used data and functionalities to be handled by the host
CPU. The NIC we assume is used has a fast connection to the
network (several tens of Gbps), an FPGA, gigabytes of memory,
and a fast connection to the host CPU (Fig. 2).

We assume our system behaves as follows. However, this is
an example of adopting the FPGA NIC for memcached, and the
behavior can be changed and adapted to various applications.

SET: The NIC stores the KVP to its DRAM and sends back
a reply notifying the web server whether the KVP was properly
stored. If a KVP already stored in the DRAM becomes evicted, a
SET request with the evicted KVP is sent to the host CPU (write-
back, write-no-allocate).

GET: If the key in the request is found in the NIC, the NIC
returns a reply message with the corresponding value to the web
server. Otherwise, the NIC sends the request to the host CPU,
and the CPU searches for the key and returns it to the NIC. After
the KVP is cached to its DRAM, it is sent back to the web server
(read-allocate). If the key was not found at the CPU, it returns a
reply notifying the web server that the key did not exist.

DELETE: If the key in the request is found in the NIC, it is
invalidated and the request is sent to the host CPU. The CPU in-
validates the data and returns a reply to the web server notifying
that the KVP was successfully deleted.

4. Cache Simulation

In this section, we evaluate the NIC cache concept over soft-
ware simulation in order to estimate its effectiveness. We im-
plemented a cache simulator that behaves as mentioned in Sec-
tion 3. Test workloads were generated with Yahoo! Cloud Serving

Benchmark (YCSB), a standard benchmarking tool for KVS [7].
YCSB, cache simulator and memcached was placed as shown in
Fig. 3. Requests generated by YCSB are sent to the cache simu-
lator and the cache simulator processes the requests as described
in Section 3, backed up by real memcached.

4.1 Testing Tool
YCSB provides workloads that simulate various KVS use
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Table 2 Description of YCSB workloads. (Originally shown in Ref. [7].)

Workload Operations Record selection Application example
A–Update heavy Read: 50% Zipfian Session store recording recent actions in a user session

Update: 50%
B–Read heavy Read: 95% Zipfian Photo tagging; add a tag is an update, but most operations

Update: 5% are read tags
C–Read only Read: 100% Zipfian User profile cache, where profiles are constructed elsewhere

(e.g. Hadoop)
D–Read latest Read: 95% Latest User status updates; people want to read the latest statuses

Insert: 5%
E–Short ranges Scan: 95% Zipfian/Uniform Threaded conversations, where each scan is for the posts in a

Insert: 5% given thread (assumed to be clustered by thread id)

Fig. 4 Key access distribution for the first 5,000 requests.

cases. Table 2, quoted from Ref. [7], shows the characteristics
of the workloads. Each workload is characterized by the ratio of
commands and the record selection distribution. YCSB has a load
phase, which sends SET requests for all the keys for the warm up,
and transaction phase, which sends requests with the characteris-
tics given in Table 2. All the results provided in this paper are
measured during the transaction phase.

Read, update and insert operations in the table correspond
to memcached’s GET, REPLACE and ADD commands respec-
tively. In our experiment, however, we use SET for both update
and insert operations. The difference between SET and update
and insert is that update (REPLACE) and insert (ADD) check
whether or not the data is already stored, and decide to store the
data accordingly. Since we have to access the memory before we
know whether the same key is stored, we used SET in place of
REPLACE and ADD. The delay will be almost the same because
checking whether the data is stored or not can be done in parallel
with other operations. Regarding Workload E, we do not use it
because memcached does not support the scan operation. Thus
we use Workload A to D for our evaluation.

There are two record selection distributions: Zipfian and Lat-
est. Zipfian is a distribution in which certain records are pop-
ular independent of their insertion order. An intuitive example
is Wikipedia, where certain entries such as “Moore’s Law” or
“Transistor” are frequently viewed even though they were created
years ago. On the other hand, Latest is a distribution in which the
records added recently are the most popular ones. An example of
Latest selection is Facebook’s user updates where people mainly
view their friend’s recent posts.

Figure 4 shows the access to each key for the first 5,000 re-
quests. The x-axis is the number of requests, which approxi-
mately represents the time, while the y-axis shows the keys or-
dered according to their first appearance. You can see some
stripes which are the popular keys in the Zipfian distribution
(Workloads A to C), and the key that appeared the last (the top
in the chart) is intensively requested in Latest distribution (Work-
load D).

Fig. 5 Appearance interval of same keys for all workloads.

Fig. 6 Cumulative ratio of keys.

Figure 5 shows that Workload D is unique in terms of the key
appearance interval. The x-axis denotes the appearance interval
of the same keys while the y-axis denotes the total number of
each appearance interval. This figure signifies that Workload D
has relatively fewer intervals between the same keys compared to
Workloads A to C.

Figure 6 shows the appearance of keys in the form of cumu-
lative distribution function (CDF). The x-axis is the ratio of the
keys from the total keys, arranged in ascending order of their ap-
pearance ratio from total requests. The y-axis is the cumulative
ratio of keys from total requests. Figure 6 indicates that Work-
load D differs from Workloads A to C also in the characteristic
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Fig. 7 Miss rate for GET requests with various replacement policies.

of key appearance. In the figure, the right ends of Workloads A
to C’s graphs become almost vertical. This means that there is
a large gap between the appearance probabilities of the popular
keys, which make the dense areas in Fig. 4, and that of the rest of
the keys.

4.2 Simulation Results
Figure 7 (a), (b) and (c) show the miss rates for GET requests

at the NIC cache with various associativity and capacity for FIFO,
least recently used (LRU) and least frequently used (LFU) re-
placement algorithms respectively. The x-axis is the relative ratio
of the NIC cache capacity to the memcached capacity running on
the host CPU. We set the memcached capacity to 512 MB and
evaluated the cache size parameter from 1/32 to 1/2. The actual
cache size we implemented, which we will discuss in Section 5,
was 128 MB and this is 1/4 of the memcached capacity. (Rather
than the absolute cache size, the ratio of the cache size to the host
memcached size determines the miss rate.)

Apparently, the difference in miss rates among the three algo-
rithms is very small. For Workloads A to C, the miss rates are a
few percent less with LRU and LRU than with FIFO when the ca-
pacity of the NIC cache is small. You can also see that Workloads
A to C, which use the Zipfian distribution, have similar curves,
while Workload D with Latest distribution have linearly decreas-
ing miss rates as the NIC cache’s capacity increases. (For better
visibility of this, Fig. 8 features the miss rates for small cache
sizes for Workload A with the three different algorithms.) As we
mentioned earlier, workloads with Zipfian distribution have spe-
cific keys that are popular independently from when the key has
recently been called. This makes us think that LFU, which tries

Fig. 8 Miss rates for small cache sizes for Workload A with FIFO, LRU,
and LFU cache algorithms.

to leave the popular keys in the cache, is a good solution for re-
ducing the cache miss rate. However, LFU had a larger effect,
while the difference was still very small, than LRU only when the
cache size was small (1/32 or 1/16 of memcached) and the cache
associativity was relatively small (2-way or 4-way). This inef-
fectiveness comes from the very small number of popular keys in
Workloads A to C: The LFU has effect only when the ratio of the
popular keys is relatively large in the cache.

We also carried out an experiment with a read-no-allocate pol-
icy, which means that the NIC does not cache the KVP on receiv-
ing the GET reply from the host CPU. This policy has the advan-
tage of keeping the data consistency between the NIC cache and
the host CPU more easily. If a GET miss for a certain key occurs
at the NIC and the subsequent request is a SET for the same key,
the KVP set by the SET request at the NIC can be overwritten
by the GET reply for the GET miss from the host CPU. This
problem can be avoided in either of two ways: sending a request
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Fig. 9 Miss rates with read-allocate and read-no-allocate for Workload C.

from the NIC to the host CPU synchronously, or employing a
read-no-allocate policy. Since synchronous requests can lead to
an increase in the average latency, employing a read-no-allocate
policy can be beneficial if the miss rate at the NIC does not in-
crease.

We found that the miss rate increased by less than a few per-
cent for Workload A, B and D. For Workload C, however, the
miss rate increased by more than ten percent (Fig. 9). This degra-
dation comes from the command mix of Workload C. Unlike
Workloads A, B and D, Workload C does not send SET requests,
so once a popular key is evicted from the NIC during the load
phase, it cannot store it again in the transaction phase, and thus
the miss rate rises.

5. Hardware Design

To prove the proposed method works correctly, we designed
and implemented the system on an FPGA NIC. Note that the sys-
tem described below is meant for making sure that the method
we proposed above works under a simple one-to-one connection
between the server and the client.

Although the cache has a relatively low hit rate for Workload C,
as our initial implementation, we implemented the system with a
read-no-allocate policy for its simple implementation. Figure 10
shows the architecture of the NIC cache. The circuit implemented
in the FPGA consists of five parts as described below:

Incoming packet handler: Non-memcached packets received
from the network side are sent to the CPU without any operations
so that the CPU could run not only memcached but also other
server applications. On receipt of a memcached packet, the com-
mand, the key and the value are extracted from the packet and
sent to the memory controller, hash calculator and the hash ta-
ble. If the command is a GET and the memory controller returns
a miss, the packet is sent to the CPU. If the memory controller
returns a hit for a GET command, the packet is discarded. If the
command is a SET or a DELETE, the packet is sent to the host
CPU regardless of whether hit or miss is returned from the hash
table.

Outgoing packet handler: The outgoing packet handler does
three things. First, it creates a packet in reply to a GET request
using the key and the value given from the memory controller.
Second, it receives memcached or other packets from the host
CPU. Finally, it merges the packets from the two data sources
(memory controller and the host CPU) and sends them out to the
network. As mentioned in the beginning of this section, in our

Fig. 10 NIC cache architecture.

Fig. 11 Correspondence of the hash table and the value storage.

initial implementation, we do not cache data from the reply pack-
ets so as to simplify our implementation. Improving this behavior
is a part of our future work.

Hash calculator: The hash calculator receives a key from the
incoming packet handler and calculates a hash with Jenkins’s
lookup3 function [10]. It produces a 32-bit hash from the key.

Hash table: The hash table manages where in the DRAM
memory to store the KVP. A more detailed structure is given
in Fig. 11. The top 15 bits of the hash given from the hash cal-
culator become the index of the hash table, and the lower 17 bits
are written to the empty entry in the row, pointed to by the in-
dex, as a tag. The table is 8-way associative with a pseudo LRU
replacement algorithm. Although LFU have a slightly better hit
rate for a small size and low associativity cache, we chose to im-
plement pseudo LRU due to its lower implementation cost. The
address of the memory is retrieved uniquely from the column and
the row where the tag is stored. The key and the value are stored
at the location on the memory where the address points. Mem-
cached originally supports variable sizes of keys and values, but
since YCSB supports fixed key and value sizes by default, we
use fixed sizes. According to Facebook’s investigation, key sizes
are mostly less than 50 bytes and value sizes are less than a few
hundred bytes. Therefore, we set the key size and the value size
to 64 bytes and 448 bytes respectively to keep our hardware im-
plementation of memory addressing simple by setting the size of
the KVP to 512 bytes, which is a power of two. If the command
given from the incoming packet handler is a SET, the hash ta-
ble stores the tag in a certain entry, setting its valid flag. If the
command is a GET, the hash value is looked up in the hash table
and hit/miss information is sent to the memory controller. Both
in the case of SET and GET, the calculated address is sent to the
memory controller. DELETE invalidates the valid flag if the hash
value stored in the entry matches the hash value given from the
hash calculator.

Memory controller: The memory controller receives the com-
mand, the key and the value from the incoming packet handler,
and also receives the address and the hit/miss information from
the hash table. If the command is a GET, it sends a read sig-
nal and the address to the memory. Then the two keys from the
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incoming packet handler and the memory are compared to see
whether they match. Since identical hash values can be generated
from different key strings, the judgment of hit/miss at the hash
table is uncertain. The keys should be checked here so as to make
sure they are really identical. Provided that the keys match, the
memory controller sends the key and the value to the outgoing
packet handler; otherwise it does nothing. If the command is a
SET, it writes the key and the value to the memory at the address
given from the hash table. If the command is a DELETE, it does
nothing. The memory controller also has a cache inside, which
reduces the latency of external DRAM access.

5.1 Experimental Conditions
We used UDP protocol for the communication between the

computer that runs YCSB and the computer that has the FPGA
NIC and runs memcached. The two servers were connected with
the 10 Gbps interconnect. Although memcached supports both
TCP and UDP protocols, to make the packet offloading simple,
we used UDP.

Our proprietary platform board consists of two 10 Gbps net-
work interfaces, a Virtex-5 LX330T FPGA, a 1 GB DDR2
SDRAM memory and a PCI Express (Gen1 x8) interface. The
host CPU is Intel Xeon E5-1620. Figure 12 depicts the FPGA
NIC mounted on a memcached server. How efficiently we can
use the memory on the NIC depends on how large a hash table
we can implement in the FPGA’s block RAMs. Table 3 shows
the resource usage.

5.2 Latency
First of all, we confirmed that our system works for all Work-

loads A to D. Then we evaluated the latency of our system in
three ways: First, to estimate the network latency, we imple-
mented a system on the FPGA of the NIC that returns the request
immediately after receiving it from the network. Next, we im-

Fig. 12 FPGA NIC mounted on a memcached server.

Fig. 13 Throughput of the system with various hit rates.

plemented the system described in Section 5, sent GET requests
for the same key for several times, and got the minimum average.
Finally, we sent SET requests with different keys several times
and got the average latency. All the requests were sent from the
server connected to the FPGA NIC with a 10 Gbps interconnect.
The results are shown in Table 4. According to this table, we can
estimate that the latency of the NIC cache was 20 µs (29 µs − 9
µs) and the latency of the host CPU was 78 µs (87 µs − 9 µs).

Based on the minimum latencies and the hit rates, we estimated
the maximum improvement of our system for GET requests com-
pared to using only the CPU (Fig. 14). The estimation was done
with the following formula.

87µs/(hit rate × 20µs + miss rate × 87µs) (1)

For Workloads A and B (Zipfian distribution), the latency im-
proved at a maximum by about two times, and for Workload D
(Latest distribution), the latency improved at a maximum by 3.5
times. Since the system was implemented with a read-no-allocate
policy, the improvement of the latency of Workload C (Zipfian
distribution) was a little less than for Workloads A and B.

5.3 Throughput
Next, we evaluated the throughput of our system. We used RTL

simulation to estimate the throughput. We gave a SET-only work-
load, a GET-only (100% hit) workload, and a GET-only (100%
miss) workload as input. Table 5 shows the results. The num-
bers have certain ranges whose lower bound corresponds to 0%
hit at the memory controller cache and upper bound to 100% hit.
Since our DRAM access module in the memory controller is not
optimised, the throughput is relatively slow compared to other
works [4].

Based on these numbers, Fig. 13 estimates the throughput with
different miss rates at the NIC cache. The vertical lines indi-

Table 3 Design specification of FPGA.

Number of used block RAM and FIFO 238 / 324 (86%)
Number of used slice LUTs 60314 / 207360 (29%)

Number of used lice Registers 64505 / 207360 (31%)

Table 4 Latencies of the system.

Network 9 µs
Reply from NIC (NIC cache hit) 29 µs

Reply from host CPU (SET) 87 µs

Table 5 Throughputs of the system based on RTL simulation.

Command Throughput (ops/sec)
SET 191,424

GET (100% hit) 399,680-958,772
GET (100% miss) 138,465-165,480
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Fig. 14 Latency improvement with various associativity and cache capacity.

Fig. 15 Miss rates with constant block memory size.

cate the command mixes of the workloads; therefore the crossing
points show the actual throughputs. In each graph, the through-
put increases as the ratio of GET requests to the whole (SET and
GET) requests increases. The graphs that are labeled “maximum”
are the results for when the cache in the memory controller had
100% hit, and the “minimum” are for 0% hit. The actual through-
put will be between the maximum and the minimum depending
on the hit rate at the memory controller cache. For example,
Fig. 13 (d) shows that the throughput for workload A with cache
size of 1/16 of the host DRAM (the miss rate is around 60% ac-
cording to Fig. 7 (b)) is between 210,000 to 350,000 ops/sec.

6. Cache Size Maximization

The cache size of our system is determined by the number of
the entries in the hash table implemented on the block memo-
ries in the FPGA. In other words, the size of the available block
memories can become a bottleneck if a larger cache size is re-
quired. In fact, as shown in Table 3, we have already used 86% of
the block memories for having 128 MB cache, so it is difficult to
have a larger cache size. In this section, we consider and evaluate
a method that enlarges the cache size with a limited amount of
block memories by narrowing the tag width.

In our system, we store tags, which are the lower 17 bits of the
hash value calculated from the key, instead of storing the key it-
self in the hash table. (Along with the 17-bit tag, the cache uses
1-bit valid bit and 1-bit MRU bit. MRU bit is used for imple-
menting pseudo-LRU. Throughout this paper, we do not include
the valid bit and the MRU bit in the term “tag.”) Therefore, on
a SET, a certain KVP in the cache can be overwritten by another
KVP which has a different key but has the same index and tag.
On a GET however, the system ensures that it will not return
a KVP that was not requested by checking whether the key in
the retrieved KVP from the DRAM matches the requested key.
Conversely, it is possible to reduce the block memory usage by
making the width of the tag smaller as long as the retrieved key
is checked. For such a purpose, we investigated the relations be-

tween the tag width and the miss rate.
First, we investigated the relation between the tag width and

the miss rate. Figure 15 (a) shows the miss rate with tag widths
of 0, 2, 7 and 17. (As we mentioned above, these numbers do
not include the valid bit and the MRU bit.) We used Workload
A and an 8-way associative hash table for this evaluation. The
figure shows that there is little difference in miss rates between
the cases of 17-bit and 7-bit tags. As the tag width gets narrower
towards the left, the miss rate becomes larger due to the increase
of the chances of overwriting the keys with different keys.

Next, we evaluated the the effect of narrowing the tag and
enlarging the cache size with constant block memory size
(Fig. 15 (b)). We used Workload A and an 8-way associative
hash table also in this evaluation. As the tag width gets nar-
rower, there is more room in the block memories for increasing
the hash table’s index size, and therefore the cache size can be
increased. When the tag is narrowed from 17 bits to 7 bits, the
miss rate decreases because the cache size increases while the
chance of KVPs being overwritten does not increase. For smaller
tag widths, however, the negative effect of overwriting the key
becomes larger than the positive effect of larger cache sizes, and
result in an increase of the miss rate.

The block memories can further be exploited. Figure 15 (c)
shows the hit rates of when the block memories are fully ex-
ploited for each tag width. Although if the hash table is 8-way
associative, only four different tags can be stored in a single row
when the tag width is two (4 = 22). Instead, we reduced the as-
sociativity to four and doubled the number of the index when the
tag width is two. In the case of 0-bit-width tags, in other words,
in the case of no tags, not only the tags but also the MRU bits
are no longer necessary since the associativity is virtually 1-way.
The hash table can then consist only of valid bits. Therefore the
cache size can be twice as large as that of when the MRU bit
still exists. Although the chances of keys overwritten by different
keys increase, the effect of increase in cache size outraces such
effect and therefore the miss rate decreases when the tag width
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becomes smaller. Throughout these experiments, it can be said
that the cache size can be increased without worsening the miss
rate even though the tag width is narrowed.

7. Discussion and Future Work

In order to keep the implementation simple and avoid data in-
consistency between the NIC cache and memcached, we decided
to employ a read-no-allocate policy. As a consequence, this leads
to a decrease in the hit rate for Workload C, which has only GET
requests. However, employing read-allocate instead will lead to a
drop of NIC cache’s average latency. Finding a solution to keep
data consistency and high performance at the same time is one of
the largest tasks remaining.

Another limitation in this paper is that YCSB, the benchmark-
ing tool we used, uses fixed sized keys and values for evaluation.
If the web server sends a SET request to our system with variable
key and value sizes, while we have fixed sized space to store the
KVP as described in this paper, we have to ignore the request at
the NIC and leave it to the CPU to handle. This will lead to a
decrease in the hit rate of GET requests and thus the performance
of the system will degrade. To overcome this problem, we should
employ a method to accept any key and value sizes with an effi-
cient memory allocation technique.

Although there is only 128 MB cache on our NIC, it can be ex-
panded in two ways. First, as we discussed in Section 6, the cache
size can be doubled without increasing the miss rate by narrow-
ing the tag width. (The cache size is proportional to the size of
the hash table.) Second, some of the recent FPGAs like Vertex
UltraScale have more than ten times of block RAMs than the one
we used has. Altogether, there can be a 20 times larger cache
(2.5 GB) than the current size (128 MB) on the NIC. In this case,
our evaluation considers 5 to 80 GB cache.

Compared to CPU caches, our NIC cache has higher miss rates.
We found out in our previous work [9] that the NIC cache does
not show high hit rate for workloads with Zipfian key distribu-
tion. Therefore in this paper, we tried LFU, a cache replacement
algorithm that leaves the popular keys in the cache, expecting the
hit rate to improve. However, LFU had almost no effect. This is
because the popular keys in the YCSB’s workloads with Zipfian
distribution is so few that they could remain in the cache even
with other cache replacement algorithms. Our next goal is to im-
prove the hit rates for workloads with Zipfian distribution.

8. Conclusion

In this paper, we proposed a method to improve the latency
of memcached by caching its data at the NIC and replying to
the client immediately from the NIC when the requested data is
found. The evaluation was done with a common KVS evaluation
tool, YCSB. With the cache parameters determined through soft-
ware simulation, the hardware evaluation showed that our method
improves the latency by up to 3.5-fold for GET requests for keys
with the Latest distribution compared to a Xeon. Our further in-
vestigation showed that the size of the block RAM on the FPGA
is less likely to become the bottleneck of the cache size if the tag
width of the cache is narrowed. We simplified our method by fix-
ing the sizes of the key and the value, and the hit rate might drop

if we adopt variable key and value sizes. We will try improving
the hit rate by employing a better cache algorithm and by utilizing
the DRAM with an efficient memory allocation method. Further-
more, we believe that our approach to improve the performance
of the application by caching the data at the NIC is applicable to
other applications as well. We will try generalizing our method
as a new computation architecture.
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