
Electronic Preprint for Journal of Information Processing Vol.23 No.2

Regular Paper

A Fast Computation of 3 × 3 Matrix Exponentials and its
Application in CG

KoheiMatsushita1,a) Hiroyasu Hamada2,b)

Received: June 30, 2014, Accepted: December 3, 2014

Abstract: It is often useful to compute a lot of matrix exponentials in computer graphics (CG). The exponential of
a matrix is used for the smooth deformation of 2D or 3D meshed CG objects. Hence, we need to compute a large
number of the exponentials of 3 × 3 rotational matrices and 3 × 3 real symmetric matrices. For rotational matrices,
Rodrigues’ formula is known to compute their exponentials. We investigated the polynomial methods introduced by
Moler and Van Loan to compute an exponential of 3 × 3 real symmetric matrices, and we introduce an algorithm for
eigenvalues of 3 × 3 real symmetric matrices. We introduce a simple formula for the matrix exponential of a 3 × 3 real
symmetric matrix using a formula introduced by Kaji et al. in 2013 and Viète’s Formula. Since our matrix exponential
algorithm do not use eigenvectors, we are able to reduce the computational cost using a fast eigenvalue computation
algorithm. Then, we incorporated our implementation into a shape deforming tool developed by Kaji et al. As a result,
we achieved a notable performance improvement. In fact we show our algorithms for matrix exponentials is about
76% faster than a standard algorithm for given 3 × 3 real symmetric matrices. For the deformation of a CG model, our
algorithm was about 19% faster than a standard algorithm.

Keywords: numerical computation and analysis, linear algebra and matrix computations

1. Introduction

Matrix exponential computations have been used for many ap-
plications in computer graphics (CG). For example, mesh-based

inverse kinematics provides a tool that simplifies posing task [10].
In this algorithm, a matrix exponential is used to calculate a defor-
mation gradient of triangular meshes. Alexa investigated a new
interpolation between transformations using operations, addition
and scalar multiplication, which create weighted combination of
transformations and interpolation [1]. For 2D shape interpolation
and deformation, there are some algorithms that preserve rigid-
ity [2], [5]. Kaji et al. improved those algorithms by using matrix
exponentials [7]. Therefore, matrix exponentials are often used
for smooth deformations of 2D or 3D meshed CG objects.

Our goal is to provide a fast computation of matrix exponen-
tials. Our motivation is to improve the performance of many ap-
plications using exponentials of 3×3 rotational matrices and 3×3
real symmetric matrices introduced in Refs. [6], [7], [10]. For the
rotational matrices, Rodrigues’ formula [3] is known to compute
their exponentials. In this paper, we consider an improvement
of an exponential of a 3 × 3 real symmetric matrix rather than a
rotation matrix.

In general, there are many approaches for computing n×n ma-
trix exponentials. Moler and Van Loan provided several methods
to compute the matrix exponentials [9]. We are interested in the

1 Kyushu University, Fukuoka 819–0395, Japan
2 National Institute of Technology, Sasebo College, Sasebo, Nagasaki

857–1193, Japan
a) k-matsushita@math.kyushu-u.ac.jp
b) h-hamada@sasebo.ac.jp

fast computation of the matrix exponential of a special case such
as 3 × 3 real matrices used for the affine transformations [6], [8].
In this paper, We investigate the spectral decomposition method
in Ref. [9] focusing on 3 × 3 real symmetric matrices. Our algo-
rithm needs only eigenvalues of a given matrix. We note a method
using diagonalization have to compute eigenvectors in addition to
eigenvalues. Hence, our algorithm can compute matrix exponen-
tials efficiently. In addition, we consider a faster algorithm for
computing the eigenvalues of a 3 × 3 real symmetric matrix. For
a given matrix, we need to solve the characteristic equation of
the matrix to calculate its eigenvalues. We use Viète’s formula
to compute the eigenvalues of a 3 × 3 real symmetric matrix. As
a result, we introduce simple formulas of eigenvalues just using
the trace and determinant of a given matrix. To evaluate the per-
formance of our algorithm, we compare the average runtimes for
matrix exponentials and eigenvalues.

2. Algorithm for Matrix Exponential

Let Mn(R) be the set of n × n matrices.
Definition 2.1. The set of 3×3 real symmetric matrices is defined

by Sym(3) := {S | S = tS ∈ M3(R)}, where tS is the transpose of

S .

Definition 2.2. For S ∈ Sym(3), the matrix exponential of S is

defined by

exp(S) =
∞∑

k=0

S k

k!
.

Although the sum of the infinite series converges, their rate of
convergence may not be so high. So we can not have an efficient
algorithm by direct computations.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

2.1 Algorithm1. Diagonalization
First, we introduce the method using diagonalization. This

method helps to compute their exponential easily.
Proposition 2.1. Let S be a real symmetric matrix. Then, S is

decomposed by an orthogonal matrix P and a diagonal matrix D,

and S is described as S = PDtP.

Proposition 2.2. Let S be an element of Sym(3). Then, the ma-

trix exponential of S is exp(S) = P exp(D)tP, where P is an or-

thogonal matrix and D is a diagonal matrix. P and D satisfy

S = PDtP.

Proof. Since S is a real symmetric matrix, S is also diagonal-
ized with an orthogonal matrix P and a diagonal matrix D such
that S = PDtP.

From Definition 2.2, exp(S) is

exp(S) = exp(PDtP) =
∞∑

k=0

(PDtP)k

k!

= P

⎛⎜⎜⎜⎜⎜⎝
∞∑

k=0

Dk

k!

⎞⎟⎟⎟⎟⎟⎠ tP = P exp(D)tP.

�

So we can make an algorithm of a matrix exponential using
the diagonalization. The algorithm needs to compute eigenvalues
(D) and eigenvectors (P) to compute the matrix exponential. The
computational cost of eigenvectors however is more expensive
than the cost of eigenvalues. Next, we review the faster algorithm
in Ref. [6] to improve this drawback. This method does not need
to compute eigenvectors and is faster than the method using diag-
onalization.

2.2 Algorithm2. Spectral Decomposition
We describe the algorithm using spectral decomposition [6],

[8]. Let λ1, λ2 and λ3 be the eigenvalues of S ∈ Sym(3). They are
the roots of the characteristic polynomial of S . The characteristic
polynomial of S is defined as follows.
Definition 2.3. Let φS (λ) be the characteristic polynomial of

S ∈ Sym(3). φS (λ) is defined as φS (λ) = det (λE − S), where

det is the determinant operation.

From the Cayley-Hamilton theorem, the following proposition
is satisfied.
Proposition 2.3. Let φS (λ) be the characteristic polynomial of

S ∈ Sym(3) and we substitute S for λ and the identity matrix for

1 in this polynomial. Then, φS (S) is equal to 0.

Since φS (λ) is a third degree polynomial in λ, φS (S) is also
a third degree polynomial in S . Therefore S k

k! can be described
as S k

k! = QkφS (S) + Rk, where Qk is a polynomial in S , and Rk

is an at most second degree polynomial in S . Hence, exp(S) =∑∞
k=0 (QkφS (S) + Rk). Then,

∑∞
k=0 QkφS (S) is equal to 0 from the

Cayley-Hamilton theorem, and
∑∞

k=0 Rk is an at most second de-
gree polynomial in S . As a result, exp(S) can be described as
exp(S) = xS 2 + yS + zE, where E is the 3×3 identity matrix, and
x, y and z are elements of R.

Hence, exp(S) can be represented by a second degree polyno-
mial in S . Next step is to decide x, y, z ∈ R to compute exp(S). In
Proposition 2.2, exp(S) can be described as exp(S) = P exp(D)tP.

On the other hand, xS 2+yS +zE is described as xS 2+yS +zE =

P(xD2 + yD + zE)tP. Therefore, exp(D) = xD2 + yD + zE.
Let λ1, λ2 and λ3 be the eigenvalues of S . The elements of D

are the eigenvalues of S . Then, we have

exp(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
eλ1 0 0
0 eλ2 0
0 0 eλ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

xD2 + yD + zE=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
xλ2

1 + yλ1 + z 0 0
0 xλ2

2 + yλ2 + z 0
0 0 xλ2

3 + yλ3 + z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Hence, we can decide x, y and z to solve the following equa-
tion.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
eλ1

eλ2

eλ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ2

1 λ1 1
λ2

2 λ2 1
λ2

3 λ3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The values of x, y and z depend on multiplicity of the eigen-
values of S . We consider two eigenvalues λ and λ′ are same if
|λ − λ′| < 10−6.
Case 1. When all the three eigenvalues are same, put

x = y = 0, z = exp(λ1).

Case 2. When two of them are same, that is λ1 = λ2, put

x = 0, y = s − t, z = tλ2 − sλ3,

where

s =
exp(λ2)
λ2 − λ3

, t =
exp(λ3)
λ2 − λ3

.

Case 3. When all of them are distinct, put

x = s + t + u,

y = −s(λ2 + λ3) + t(λ3 + λ1) + u(λ1 + λ2),

z = sλ2λ3 − tλ3λ1 − uλ1λ2,

where

s =
exp(λ1)

(λ1 − λ2)(λ1 − λ3)
,

t =
exp(λ2)

(λ2 − λ3)(λ1 − λ2)
,

u =
exp(λ3)

(λ2 − λ3)(λ3 − λ1)
.

Therefore, we have a simple formula for x, y and z. Our al-
gorithm needs to compute only eigenvalues of a 3 × 3 real sym-
metric matrix so that we can compute a matrix exponential more
efficiently than the algorithm using diagonalization.

Next, we will discuss an efficient algorithm for eigenvalues for
this matrix in the next section.

3. Eigenvalues Using Viète’s Formula

In this section, we investigate an algorithm using Viète’s for-
mula. This algorithm achieves a fast computation of eigenvalues
in comparison with the algorithm using diagonalization.

If S ∈ Sym(3) is given, we need to solve the characteristic

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

equation of S . Let λ1, λ2 and λ3 be the eigenvalues of S . Then,
the characteristic equation is (x − λ1)(x − λ2)(x − λ3) = 0. This
equation is expanded into

x3 − (λ1 + λ2 + λ3)x2 + (λ1λ2 + λ2λ3 + λ3λ1)x − λ1λ2λ3 = 0.

Therefore, the characteristic equation of S is described as

x3 − (trS)x2 +
(trS)2 − ‖S ‖2F

2
x − detS = 0,

where trS is the trace of S , ‖S ‖F is the Frobenius norm of S .
This equation can be solved by using Viète’s formula (see Ap-

pendix A.1) . As a result, we obtain the eigenvalues of S as fol-
lows.

λ1 =
r cos

(
arccos(k)

3

)
+ trS

3
,

λ2 =
r cos

(
arccos(k)+2π

3

)
+ trS

3
,

λ3 =
r cos

(
arccos(k)+4π

3

)
+ trS

3
,

where

k = −108q
r3
, r =

√−12p,

p =
(trS)2 − 3 ‖S ‖2F

6
, q =

5
54

(trS)3 − 1
6

trS ‖S ‖2F − detS .

We note that the eigenvalues of S can be represented by a sim-
ple formula using the trace, determinant and Frobenius norm of S .
The proposed method for computing eigenvalues involves com-
putation of cosine and arccosine. Cosine is implemented in the
Eigen library. The function comes from Julien Pommier’s SSE
math library which is known as an accurate math library, and arc-
cosine is implemented in the C++ Standard Library. We consider
the speed and accuracy of these functions are acceptable.

4. Applications

We incorporated our implementation of the algorithm dis-
cussed above into the shape deforming tools developed in
Ref. [6]. For example, Cage-based deformer gives a target shape
and a “cage” surrounding it. The cage can be any triangulated
polyhedron wrapping the target shape. We want to deform the tar-
get shape by manipulating not directly on it but through the proxy
cage. Essentially this deformation is based on polar decomposi-
tions and matrix exponentials of 3 × 3 real symmetric matrices.
We examined our improvements replacing the exponential part in
this deformation program.

5. Experimentation

In this section, we compared the computation times of our
algorithms with standard techniques. We use a Intel Core i7
1.9 GHz CPU with 4 GB of RAM and Windows 8 (64 bit) OS.
In the experimentations, we implemented our algorithms in C++
programming language (Microsoft Visual Studio 2010 Ultimate),
and the optimization option (/O2) of this compiler was maximiza-
tion of the execution speed. Our implementation used the Eigen
library which provides many functions of matrix operations [4].

First we compared our algorithm for the computation of the

Fig. 1 Computation time of the eigenvalues of the 3× 3 real symmetric ma-
trix. Upper: using the QR algorithm. Lower: using our algorithm.

eigenvalues of a 3 × 3 real symmetric matrix with the QR al-
gorithm [11] which uses the QR decomposition. This algorithm
is implemented in the Eigen library as a class member function
which computes the eigenvalues. Before call the function, we
need to create an instance of this class by specifying the size of
matrix. Then, the QR algorithm is restricted to 3 × 3 matrix. For
given 107 three dimensional real symmetric matrices randomly,
we compared the running times for the computation of eigenval-
ues of all given matrices. In the applications of CG, the eigenval-
ues of the given matrices should be more than 0. Hence, we need
to obtain positive semi-definite matrices. The way of generat-
ing these matrices randomly is the following. First, we generate
a real matrix M and choose the elements of M from the range
[−1, 1]. Next, we compute S = tMM to obtain a real symmetric
matrix. Then, the eigenvalues of S are more than 0 because S is
a positive semi-definite matrix. Figure 1 shows a comparison of
the computation of the eigenvalues using the QR algorithm and
our algorithm using Viète’s formula. Our algorithm is about 69%
faster than the QR algorithm.

The Eigen library provides an algorithm computing the eigen-
values using Viète’s formula. However, we implemented our al-
gorithm independently using our formalized formula using the
trace, determinant and Frobenius norm.

Next, we compared our algorithm for the computation of the
matrix exponential of a 3× 3 real symmetric matrix with an algo-
rithm based on diagonalization. For given 107 three dimensional
real symmetric matrices chosen randomly by the same method
in the previous experimentation, we compared the average run-
ning times for computing the matrix exponentials using the al-
gorithm based on diagonalization (Diag), spectral decomposition
(SD) and improved spectral decomposition (improved SD) which
includes our algorithm for the computation of the eigenvalues.
Figure 2 shows a comparison of the computation of the matrix
exponentials using the three algorithms. As a result, improved
SD is the best algorithm among those algorithms and achieved
about 76% faster than Diag.

We consider eigenvalues between 0 and 3, because a trans-
formation matrix induced by an interactive motion do not have
large eigenvalues. By our experiments, the error rate is less than
10−6 and it is acceptable for making a deformation of computer

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 2 A comparison of average runtimes for the computation of the matrix
exponential of 3 × 3. Left: using diagonalization (Diag). Center: us-
ing spectral decomposition (SD). Right: using the improved spectral
decomposition (improved SD) which includes our algorithm for the
computation of the eigenvalues.

Fig. 3 A comparison of average runtimes for the deformation of a dragon
model. Left: using diagonalization (Diag). Right: using improved
spectral decomposition (improved SD) which includes our algorithm
for the computation of the eigenvalues.

graphics. Our method using Viète’s formula may produce small
numerical errors, but we have benefits of computing time using
our exponential matrix without computing eigenvectors. Since
we consider λ ≤ 3, the error rate of the difference of cases in
our algorithm are bounded. Experimentally, the computation of
deformations are acceptable.

Finally we incorporated the implementations of Diag and im-
proved SD into the Cage-based deformer algorithm in Ref. [6].
For a dragon model with 50,000 vertices, 100,000 triangles, we
compared the average running times of deforming this model us-
ing two algorithms. Figure 3 shows the comparison of the com-
putation times, and the average runtime of improved SD is about
19% faster than Diag. Compared with the result for the eigenval-
ues, this improvement in speed for the application may not look
like significant. This is because the application has other heavy
computations. In more detail, the application computes affine
transformations for all triangular meshes of a given model and
logarithms of matrices obtained from the affine transformations.

In addition, the application needs a weighted sum calculation to
decide the shape deformation.

Therefore, our algorithm can be useful for a practical deforma-
tion tool.

6. Conclusion

We investigate fast algorithms for the matrix exponentials and
eigenvalues of 3 × 3 real symmetric matrices. We show that the
matrix exponential and eigenvalues of the 3 × 3 real symmetric
matrix can be represented by specific formulas using the trace, de-
terminant and Frobenius norm of the matrix. Our algorithms are
implemented in C++ programming language as functions which
compute the matrix exponential and eigenvalues of the 3 × 3 real
symmetric matrix. For the computation time of the matrix expo-
nential, we compare our algorithm with other algorithms. In ad-
dition, we incorporate the implementations into a practical defor-
mation tool. Using the deformation tool, we evaluate the compu-
tation time of our algorithm for the deformation of a given model.

In conclusion, we achieve a notable performance improvement
using our algorithm. In fact, we compare the computation of
the eigenvalues using the QR algorithm and our algorithm us-
ing Viète’s formula. Our algorithm is about 69% faster than the
QR algorithm. Next, we compare the computation of the matrix
exponentials using an algorithm based on diagonalization, our al-
gorithm based on spectral decomposition and our improved al-
gorithm which includes our algorithm computing the eigenvalues
using Viète’s formula. Then, our improved algorithm is the best
algorithm among those algorithms and achieved about 76% faster
than the algorithm using diagonalization. Finally we incorpo-
rate the implementations of the algorithm using diagonalization
and our improved algorithm into the Cage-based deformer. For a
dragon model, we compare average running times of deforming
this model using two algorithms. As a result, the average runtime
of our improved algorithm is about 19% faster than the algorithm
based on the diagonalizaion.

We have not estimated the accurate numerical error of our ma-
trix exponential algorithm. In this paper, we just show that the
benefits of computational costs and acceptable results of applica-
tions of deformations. Future work includes the investigation of
numerical errors and their effects for some specific deformations.

Acknowledgments We would like to express our gratitude
to K. Anjyo, H. Ochiai, S. Kaji and Y. Mizoguchi for their valu-
able suggestions and encouragements. We also would like to
thank S. Hirose, S. Yokoyama and G. Matsuda for useful discus-
sions and comments. This work is partially supported by Kyushu
University Global COE Program “Education-and-Research Hub
for Mathematics-for-Industry” and Core Research for Evolutional
Science and Technology (CREST) Program “Mathematics for
Computer Graphics” of Japan Science and Technology Agency
(JST).

References

[1] Alexa, M.: Linear Combination of Transformations, Proc. 29th An-
nual Conference on Computer Graphics and Interactive Techniques,
pp.380–387, ACM (2002).

[2] Alexa, M., Cohen-Or, D. and Levin, D.: As-rigid-as-possible Shape
Interpolation, Proc. 27th Annual Conference on Computer Graphics

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

and Interactive Techniques, pp.157–164, ACM Press/Addison-Wesley
Publishing Co. (2000).

[3] Brockett, R.: Robotic Manipulators and the Product of Exponentials
Formula, Proc. MTNS-83 International Symposium, Fuhrmann, P.,
(Ed.),pp.120–129, Springer Berlin Heidelberg (1983).

[4] Guennebaud, G., Jacob, B., et al.: Eigen v3 (online), available from
〈http://eigen.tuxfamily.org〉 (accessed 2014-6-25).

[5] Igarashi, T. and Igarashi, Y.: Implementing As-Rigid-As-Possible
Shape Manipulation and Surface Flattening, J. Graphics, GPU, &
Game Tools, Vol.14, No.1, pp.17–30 (2009).

[6] Kaji, S., Hirose, S., Ochiai, H. and Anjyo, K.: A Lie Theoretic Param-
eterization of Affine Transformations, Proc. Symposium MEIS2013:
Mathematical Progress in Expressive Image Synthesis, MI Lecture
Note, Vol.50, pp.134–140, Kyushu University (2013).

[7] Kaji, S., Hirose, S., Sakata, S., Mizoguchi, Y. and Anjyo, K.: Math-
ematical Analysis on Affine Maps for 2D Shape Interpolation, Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, pp.71–76 (2012).

[8] Matsushita, K., Hamada, H. and Matsuda, G.: A Fast Computation of
Matrix Exponential and its Application in CG, Proc. Forum “Math-
for-Industry” 2013, MI Lecture Note, Vol.51, p.92, Kyushu University
(2013).

[9] Moler, C. and Loan, C.V.: Nineteen Dubious Ways to Compute the Ex-
ponential of a Matrix, Twenty-Five Years Later, SIAM Review, Vol.45,
No.1, pp.3–49 (2003).

[10] Sumner, R.W., Zwicker, M., Gotsman, C. and Popović, J.: Mesh-based
Inverse Kinematics, ACM Trans. Graph., Vol.24, No.3, pp.488–495
(2005).

[11] Wilkinson, J.H. (Ed.): The Algebraic Eigenvalue Problem, Oxford
University Press, Inc. (1988).

Appendix

A.1 Computing the Eigenvalues Using Viète’s
Formula

For a given S ∈ Sym(3), let λ1, λ2 and λ3 be the eigenvalues of
S . Those are the roots of the characteristic equation of S :

x3 − (trS)x2 +
(trS)2 − ‖S ‖2F

2
x − detS = 0.

Let a, b, c, and y be a = −trS , b = (trS)2−‖S ‖2F
2 , c = −detS and

y = x + a
3 .

Then,

y3 +

(
b − 1

3
a2

)
y +

(
2
27

a3 − 1
3

ab + c

)
= 0.

Let p and q be p = b − 1
3 a2 and q = 2

27 a3 − 1
3 ab + c. Since

all eigenvalues of real symmetric matrices are real numbers, the
solutions are also real numbers. Hence, the discriminant satisfies
−(4p3+27q2) ≥ 0, especially p ≤ 0. If p = 0, then we find q = 0.
Then, λ1, λ2 and λ3 are equal to trS

3 . So we consider the case of

p < 0. Let t =
√
− 4p

3 , u = yt and k = − 4q
t3 . Then, the equation is

described as

4u3 − 3u − k = 0.

Since 4p3 + 27q2 ≤ 0, we have |q| ≤ √−4p3/27, |4q| ≤ t3 and
|k| ≤ 1. To solve the equation, we use the cosine’s Triple-angle
formula cos 3θ = 4 cos3 θ − 3 cos θ. Let u1, u2 and u3 be the roots
of the equation, and set θ = 1

3 arccos(k). From this formula, the
roots are

u1 = cos

(
1
3

arccos k

)
,

u2 = cos

(
1
3

arccos k +
2
3
π

)
,

u3 = cos

(
1
3

arccos k +
4
3
π

)
.

From y = x+ a
3 , u =

y
t , the eigenvalues of S are λi = tui− a

3 (i =
1, 2, 3). Therefore, we find a simple formula for the eigenvalues
of a 3 × 3 symmetric matrix.

λ1 =
r cos

(
arccos(k)

3

)
+ trS

3
,

λ2 =
r cos

(
arccos(k)+2π

3

)
+ trS

3
,

λ3 =
r cos

(
arccos(k)+4π

3

)
+ trS

3
,

where

r = 3t =
√−12p, k = −108q

r3
,

p =
(trS)2 − 3 ‖S ‖2F

6
, q =

5
54

(trS)3 − 1
6

trS ‖S ‖2F − detS .

Kohei Matsushita received his B.S. and
M.M. degrees from Kyushu University in
2010 and 2012. He is a doctoral student
in the Graduate School of Mathematics,
Kyushu University. His research interests
are numerical linear algebra for computer
graphics and optimization techniques. He
is a member of the IPSJ.

Hiroyasu Hamada received his M.M.
and Ph.D degrees from Kyushu Univer-
sity in 2008 and 2012. He is a lec-
turer at National Institute of Technology,
Sasebo College. His research interests are
functional analysis, especially operator al-
gebras, and numerical linear algebra for
computer graphics. He is a member of the

MSJ.

c© 2015 Information Processing Society of Japan

