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Abstract: Reverse k-nearest neighbor (RkNN) queries on road network distances require long processing times be-
cause most conventional algorithms require a k-nearest neighbor (kNN) search on every visited node. This causes a
large number of node expansions; therefore, the processing time is drastically increased when data points are sparsely
distributed. In this paper, we propose a fast RkNN search algorithm that runs using a simple materialized path view
(SMPV). In addition, we adopt an incremental Euclidean restriction strategy for fast kNN queries, the main function in
RkNN queries. The SMPV used in our proposed algorithm only constructs an individual partitioned subgraph; there-
fore, the amount of data is drastically reduced compared to conventional materialized path views (MPVs). According
to our experimental results using real road network data, our proposed method achieved a processing time that was 100
times faster than conventional approaches when data points are sparsely distributed on a road network.
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1. Introduction

When a set of points P is given, a query to find the nearest
neighbor of a point q (∈ P) is called a nearest neighbor (NN)
query. In Fig. 1, the values along the dotted line indicate the dis-
tances between two points. In this figure, the NN of A is B, and
the NN of B is A. In this case, one NN is searched for; however,
when a number k (an arbitrary number) of NNs are sought, the
query is called a kNN query. Figure 1 (b) shows the 1NN and
2NN of each point.

Conversely, when q (∈ P) is the NN of p (∈ P), p is called
a reverse nearest neighbor (RNN) of q. The result of an RNN
query is given as a set. For example, if A is the NN of B, then A

is included in the RNN of B. To broaden the definition, when q is
included in the kNN of p, q is called an RkNN of p. Figure 1 (c)
shows the R1NN and R2NN of each point.

Generally, when a set of points P and a query point q (q ∈ P)
are given, an RkNN query finds the points for which q is included
in their kNN, i.e.,

RkNN(q) = {p ∈ P|d(p, q) ≤ d(p, pk(p))}

where pk(p) is the k-th NN of p, and d(a, b) is the distance be-
tween two points, a and b.

This type of query is required in a wide variety of applications,
including facility management, taxi allocation, location-based
services, advertising distribution, and games; however, most ex-
isting algorithms work with Euclidean distance. In contrast, in
location-based services (LBS) that use mobile phones or in-car
navigation systems, queries based on road network distances are
required. When a river or mountain lies between two points, the
road network distance is the relevant parameter and substantially
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Fig. 1 Example of an NN and RNN query.

differs from the Euclidean distance. However, very limited re-
search has focused on queries involving road network distances.
Yiu et al. [1] proposed two algorithms applicable to the road net-
work distance. However, these methods require long processing
times, especially when points are sparsely distributed on the road
network or when k is large.

In this paper, we propose a fast RkNN query algorithm for road
network distances using simple materialized path view (SMPV)
data [2]. This algorithm runs on SMPV and refers to the SMPV
tables to obtain the road network distances for pairs of terminal
points. The algorithm presented in this paper adapts the SMPV
in a manner suitable for RkNN queries. The proposed algorithm
searches RkNN approximately 100 times faster than the conven-
tional algorithms when points are sparsely distributed in the road
network. The processing time is stable and independent of the
point distribution density.

The rest of the paper is organized as follows. Related work is
described in Section 2. In Section 3, the SMPV data structure and
shortest path search algorithm on this structure are described. We
also describe the principles for an RkNN query on road network
distance and present the proposed method in Section 4. Exper-
imental results are presented in Section 5, and we conclude our
paper in Section 6.

2. Related Work

In this paper, we build upon the RkNN algorithm on a mate-
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rialized path view (MPV); therefore, in this section, we describe
the relevant related work on both RkNN queries and MPVs.

Query algorithms for RkNN based on Euclidean distance have
been actively studied. The RNN query and its corresponding al-
gorithm were first proposed by Korn et al. [3]. Their RNN al-
gorithm requires precomputed data, in which the distance from
each point to its NN has been calculated. Given this data, a set
of points and their distances to the NN are registered in an R-
tree, and the circle centered at a data point with a radius equal to
the distance to the NN is called its vicinity circle. The RNN of
the query point q is found in the R-tree by searching the set of
points for those whose vicinity circles overlap with q. However,
this method is not suitable for an RkNN query because the R-tree
is constructed using vicinity circles of predefined k-th NN dis-
tances, but the value of k in an RkNN query is usually determined
when a query is issued. Therefore, the distance to the k-th NN
cannot be determined when the structure is actually constructed.

Stanoi et al. [4] proposed an approach without precomputation
called SAA. Tao et al. [5] proposed another efficient algorithm
called TPL that recursively prunes the search space using the bi-
sector between a query point q and its NN. These methods do
not require any precomputation. Therefore, they are applicable to
general RkNN queries, however, these efficient methods cannot
be applied to RkNN queries of road network distances.

Yiu et al. [1] proposed the first RkNN algorithms applicable
to road networks. The basic idea is that the area in which the
RkNN exist is searched by gradually enlarging the search area
using Dijkstra’s shortest path algorithm. They proposed two al-
gorithms (called the Eager and Lazy algorithms) that differ in
their respective pruning methods. In these methods, the Eager al-
gorithm searches RkNN significantly faster, especially when the
value of k is small and the set of points are densely distributed.
In other words, it is efficient when the search area is small. In
contrast, for large k or sparsely distributed points, it requires long
processing times because the Eager algorithm gradually enlarges
the search area, similar to Dijkstra’s algorithm, and the kNNs are
searched at every visited road network node. To cope with this
performance problem, Yiu et al. also proposed a path materializa-
tion method. In addition to the work of Yiu et al., Safer et al. [6]
proposed algorithms using network Voronoi diagrams. Cheema
et al. [7] proposed an RkNN algorithm for moving objects on a
road network.

To obtain the road network distance between two nodes, sev-
eral MPV approaches have been proposed. They retrieve the
shortest path using a lookup query in a precomputed distance ta-
ble. This method requires O(n2) space, with the number of nodes
in the given graph represented as n. Therefore, several attempts
have been dedicated to reducing the size of the data. Jing et al. [8]
proposed a semi-materialized method in which only a portion of
the shortest path routes are stored to reduce the amount of data.
In particular, this approach only records the next node along the
shortest path, and the entire shortest path route is restored by
tracking the next visiting node in sequence. Samet et al. [9] re-
duced the data amount to O(n1.5) by using a semi-materialized
approach.

The shortest path can be retrieved quickly using an MPV; how-

ever, this approach suffers from the problem of requiring a huge
memory space. Therefore, several hierarchical representation
methods have been proposed to reduce the data requirements.
For example, Jing et al. [8] proposed the hierarchical encoded
path view (HEPV) using a hierarchical representation and semi-
materialization approach. The principle behind this method is to
partition a given graph G into several subgraphs S Gi. Distances
between each pair of nodes are calculated to compose a locally
materialized distance table. Next, by merging the neighboring
subgraphs, the data structure constructs higher-level subgraphs in
a stepwise fashion. At each higher level, the distance table is built
only for the border nodes between subgraphs.

Hierarchical representations such as HEPV are suitable for the
fast calculation of the shortest path between two points; however,
the table size at the higher levels increases rapidly and the total
memory size of this memory structure still becomes very large.
Furthermore, when an edge weight is changed because of traffic
accidents or road maintenance, changed weights (e.g., distances)
impact a large portion of the distance table.

Jung et al. proposed another hierarchical MPV approach called
HiTi graph [10], [11]. This method also materializes distances
between pairs of nodes in the graph and constructs a hierarchy.
The key difference between HiTi and HEPV is that HiTi does
not materialize the leaf-level subgraphs. Therefore, the total data
requirement of the HiTi graph is smaller than that of HEPV.
HiTi prunes the hierarchical tree leaves using an A* algorithm.
Shekhar et al. [12] analyzed hierarchical MPV in terms of the
storage/computation-time tradeoffs.

3. Simple Materialized Path View

3.1 Data Structure
A road network is modeled as a directed graph G(V, E,W),

where V is the set of nodes (intersections), E is the set of edges
(road segments), and W is the set of edge weights. A fragment
S Gi(Vi, Ei,Wi) of graph G(V, E,W) is a partitioned subgraph,
with Vi ∈ V , Ei ∈ E, and Wi ∈ W. If the endpoints of an edge
e jk ∈ Ei are v j and vk, then v j ∈ Vi and vk ∈ Vi. This subgraph is
denoted as S Gi in the rest of the paper where there is no ambigu-
ity.

Figure 2 shows an example of a road network graph, in which
the small circles (black and white) are nodes and the lines are
edges. This graph is partitioned into four subgraphs by dotted
lines. In this partition, the nodes shown by the black dots belong-
ing to at least two neighboring subgraphs, such nodes are called
border nodes. On the other hand, the nodes shown by white cir-

Fig. 2 Flat graph and its partition.
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Fig. 3 S Ga in Fig. 2.
Fig. 4 BBDT for S Ga.

Fig. 5 IBDT for S Ga.

cles belonging to only one subgraph are called inner nodes. They
are defined as following.

Definition 1 (Border Node) The nodes belong to plural sub-
graphs.

Definition 2 (Inner Node) The nodes belong to only one
subgraph.

Two subgraphs are defined as being adjacent if they have at
least one common border node. The set of border nodes of S Gi is
denoted by BVi. In this partition, each edge belongs to only one
subgraph.

Figure 3 shows S Ga extracted from the graph of Fig. 2. The
numerical value attached to each edge shows the weight of the
edge, e.g., the length of the edge or the time required to travel
along that edge. In the rest of this paper, we assume the weight is
the length of the edge. The table shown in Fig. 4 shows the short-
est path length between every pair of border nodes of S Ga. The
lengths are calculated by traveling inside the subgraph, therefore,
these values are not always the globally shortest path lengths. If
there is no connected path between a pair of nodes inside the sub-
graph, infinity is assigned. Although the matrix is symmetric in
this example, it is not guaranteed to be symmetrical in a real road
network because of the existence of one-way roads and obstruc-
tions or delays affecting only one direction of a two-way road.
We refer to this table as a “border to border node distance table”
(BBDT).

Figure 5 shows the “inner node to border node distance table”
(IBDT) that lists the distance from an inner node to a border node.
This table is used to retrieve the distance from an inner node as
the starting point to a border node. Because the distance on the
road network is asymmetric, the transposed matrix of Fig. 5 is
also necessary to obtain the distance between a border node and
an inner node.

3.2 Shortest Path Finding Algorithm
In the RkNN query algorithm described in Section 4, an oper-

ation to find the road network distance between two points (s and
d) is necessary. This search can be achieved by referring to the
IBDT and BBDT. Figure 6 shows the process flow of the shortest
path finding (SPF) algorithm [2].

The SPF is controlled by a best-first search using a priority
queue PQ, which manages the records constructed as:

Fig. 6 Processing flow of SPF.

< p,Cost, d f s, f S G, phase >

where p is the current node (e.g., s, d, or a border node), Cost

is the lower-bound road network distance between s and d (and
is the key used for ordering PQ), d f s (distance-from-source) is
the shortest road network distance between s and p, f S G denotes
the subgraph to which p belongs, and phase is one of two values
that shows the progression of the algorithm: PHASE1 (searching
stage) or PHASE2 (final stage).

First, subgraph S Gs, which contains the road segment un-
der s, is determined. Next, Cost is calculated by the equation
Cost = dN(s, bi) + dE(bi, d) for all border nodes bi ∈ BVs of S Gs.
Here, dE(x, y) denotes the Euclidean distance between x and y
and dN(x, y) denotes the road network distance between x and y.
In the above equation, dN(s, bi) can be obtained by referring to
the IBDT of S Gs. In this initial stage, the following records are
composed and added to PQ with PHAS E1 as their phase value:

< bi, dN(s, bi) + dE(bi, d), 0, S Gs, PHAS E1 > ∀bi ∈ BVs

If s and d are very close and included in the same subgraph, the
distance cannot be obtained from the IBDT. In this case, a pair-
wise A* (PWA*) algorithm can search for the shortest path effi-
ciently, because the two terminal points are located close to one
another.

When the phase value of the obtained record (e) from PQ is
PHAS E1 (see Fig. 6 (b)), the subgraph is shifted to the neighbor-
ing subgraph, S Gn. For each subgraph S Gn, Cost is calculated
as:

Cost = e.d f s + dN(p, bi) + dE(bi, d) (bi ∈ BVn),

where BVn is the border node set of S Gn. The following record
is composed and added to PQ:

< bi,Cost, e.d f s + dN(p, bi), S Gn, PHAS E1 > ∀bi ∈ BVs

Continuing the process, when a record obtained from PQ
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reaches a border node of the subgraph containing d (S Gd) (see
Fig. 6 (c)), the record shown below is constructed and added to
PQ.

< e.p, e.d f s + dN(e.p, d), e.d f s, e. f S G, PHAS E2 >,

where dN(e.p, d) is obtained from the IBDT of S Gd and PHAS E2
indicates that a route between s and d has been found.

The shortest path is searched for using a best-first search. First,
a record that has the minimum Cost value is dequeued from PQ.
When the phase value of the dequeued record is PHAS E2, the
shortest path distance between s and d has been determined. The
fact that the record has been dequeued from PQ indicates that
it has the minimum Cost value among all records contained in
PQ. Therefore, the (shortest) distance has been returned and the
search process is terminated.

Algorithm 1 shows the pseudo-code of the procedure described
above.

Algorithm 1 SPF
1: function SPF(s,d)

2: S Gs ← determineS G(s)

3: S Gd ← determineS G(d)

4: CS ← ∅
5: for all p ∈ BVs do

6: PQ.enqueue(p, dN (s, p) + dE(p, d), 0, S Gs, PHAS E1)

7: end for

8: while PQ is not empty do

9: e← PQ.dequeue()

10: if e.phase = PHAS E2 then

11: break

12: else if e. f S G = S Gd then

13: c← e.d f s + dN (e.p, d)

14: PQ.enqueue(e.p, c, c, S Gd , PHAS E2)

15: else

16: Nsg← f indNeighborS ubGraph(e.p)

17: for all sg ∈ Nsg do

18: for all b ∈ BVsg do

19: c← e.d f s + dN (e.p, b) + dE(b, d)

20: PQ.enqueue(e.p, c, e.d f s + dN (e.p, b), sg, PHAS E1)

21: end for

22: end for

23: end if

24: end while

25: return e.d f s

26: end function

3.3 Partitioning a Large Graph
The partitioning of the road network into subgraphs can be per-

formed by the following method: (1) we select the source nodes
on the given road network that represent the desired number of
subgraphs and (2) by applying Dijkstra’s multi-source shortest
path algorithm, we classify each road network node that has the
same source node as its NN to group into a subgraph. Then, the
BBDT and IBDT tables are prepared for each subgraph.

4. RkNN query on SMPV

4.1 Basic Method for RkNN Search
In this section, we describe a basic method for RkNN search

Fig. 7 Example of a road network.

in road networks, followed by an improved method based on the
incremental Euclidean restriction (IER) method.

Yiu et al. [1] presented the following lemma for an RkNN
search in a road network.

Lemma 1 Let q be a query point, n be a road network node,
and p be a data point that satisfies dN(q, n) > dN(p, n). For any
data point p′(� p) whose shortest path to q passes through n,
dN(q, p′) > dN(p, p′). This means that p′ is not an RNN of q.

This Lemma is proved in Ref. [1], where dN(a, b) denotes the
road network distance between a and b.

Figure 7 shows a simple road network. Here, the circles in-
dicate the nodes in the road network and the squares indicate
data points. In this example, data points are assumed to be lo-
cated on nodes; however, this restriction can be easily relaxed [7].
The numbers attached to edges show the cost (e.g., distance) of
the edge. When we observe D, the NN data point of D is E

and the NN data point of E is H; hence, A is not the NN data
point of E. If we substitute n with D, p with E, and p′ with H

in Lemma 1, we obtain the relations dN(A,D) > dN(E,D) and
dN(A,H) > dN(E,H). Therefore, even if we continue the search
beyond D, we cannot find the RNN of q.

Yiu et al. [1] proposed the Eager algorithm based on Lemma 1
and a branch-and-bound approach. The Eager algorithm visits
road network nodes from q to surrounding nodes using a method
similar to that of Dijkstra’s algorithm. When query q is on A

in Fig. 7, node B is visited first. Next, at most k NNs of B are
searched for within the distance Dst = dN(B, A). This function is
called rangeNN(n, q,Dst). In the above example, n is B and q is
A. For simplicity, we assume k is one.

In the previous query, C is found as B’s NN. Next, we check
whether C is included as an RNN of A. This check can be done
to investigate whether A is the NN of C. This function is called
verify(p, k, q) and returns true when q is the NN of p, otherwise,
it returns false. In this example, the result of verify(C, 1, q) is
true; therefore, C is determined as an RNN of q. The next visited
node is D; thus, rangeNN(D, q, 5) is called and E is obtained as
the NN of D. To check whether E is a RNN of q, verify(E, 1, q)
is called; however, false is obtained in this case. Hence, the edges
beyond D are safely pruned. At this time, there is no search path
left, therefore, the search process is terminated.

In Yiu’s Eager algorithm, Dijkstra’s algorithm is used for
verify(p, k, q) and rangeNN(n, q,Dst). For simplicity, these func-
tions are hereafter denoted as verify and rangeNN. When the
density of data points is high and the search area is small, this
algorithm completes quickly. In contrast, when the density is low
or k is large, the processing time becomes very long because the
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search area is large.
Conditions for the inefficiency of the Eager algorithm are sum-

marized as follows:
• a large search area for the verify and rangeNN functions
• a drastic increase in processing time caused by performing
rangeNN on every visited node

To cope with these problems, we propose a method to adapt
an IER framework for the verify and rangeNN functions. Fur-
thermore, in the next section, we propose an efficient method of
RkNN search to perform these queries on the SMPV: (1) to adapt
an IER framework for both rangeNN and verify and (2) to use
the Eager algorithm only on the border nodes in the SMPV.

4.2 kNN query Using an IER Framework
Papadias et al. [13] proposed the IER framework to be adapt-

able for several types of queries on the road network. The basis of
this framework is that the Euclidean distance between two termi-
nal points is always a lower bound of the road network distance.
For example, when query point q and distance r are specified and
the task is to find all data points whose distances from q are less
than or equal to r, this query (called a range query) can be per-
formed by the following two steps:
(a) finding all data points residing in a circle whose center is q

and radius is r

(b) verifying the road network distance of each data point ob-
tained by the above step to eliminate the data points that have
road network distances larger than r

Queries on Euclidean distance can be performed quickly via a
spatial index (e.g., an R-tree). In addition, the distance verifica-
tion can be performed quickly using the algorithm described in
Section 3.2.

For the Eager algorithm, IER can be adapted to both rangeNN
and verify. First, rangeNN(n, k, dN(n, q)) is a range query cen-
tered at n with range distance dN(n, q). This query can be per-
formed by the method mentioned above. Since the verify(p, k, q)
function is essentially a kNN query, this query can also be effi-
ciently performed via IER [13]. The advantage of using the IER
framework increases when k is large and the distribution of data
points is sparse.

4.3 RkNN Query on an SMPV Structure
The most time-consuming step in the Eager algorithm is the

call to rangeNN at every expanded node. In Algorithm 3 pre-
sented in this subsection, rangeNN is invoked only on the border
nodes of the subgraphs to alleviate this problem in the Eager al-
gorithm.

When a query point q is given, the subgraph in the SMPV struc-
ture that q belongs to is determined and the data points belonging
to the subgraph are searched. Let this data point set be P. Next,
each element in P is checked to determine whether q is an RkNN
or not. This procedure is the same as verify(p, k, q) in the Eager
algorithm, as verify(p, k, q) searches for the kNNs of each p ∈ P.
If q is included in the kNN set, p is determined to be an RkNN of
q. This check requires a wide area search and is not exclusive to
only a subgraph; IER can efficiently perform it using SMPV.

Figure 8 shows the same subgraph as in Fig. 3. In this exam-

Fig. 8 Processing of a subgraph where q is included.

ple, a query point q is on node e. A square overlapped on node
b indicates a data point. For simplicity, the following explanation
considers the case for which k is one. By searching for the NN
of b, q is obtained as the result. Therefore, b is an RNN of q.
Consequently, b is added to the result set.

Next, we enlarge the search area to include the neighboring
subgraph. For each border node bi of this subgraph, the distance
from q to bi is obtained by referring to the IBDT of the subgraph.
Thereafter, a record is composed and inserted into priority queue
PQ. The record is composed as

< d, n, p, cid >

where d is the road network distance between q and the border
node concerned (n), p is the previous node on the shortest path
from q to n, and cid denotes the subgraph ID to which n belongs.
The first record inserted into PQ is as follows.

< dN(q, bi), bi, q, S Ga >

Here, S Ga denotes the subgraph in which q is included. For ex-
ample, for border node c of Fig. 8, the record < 8, c, q, S Ga > is
inserted into PQ. The steps described above comprise the StartSG
procedure, detailed in Algorithm 2.

Algorithm 2 StartSG
1: procedure StartSG(q, PQ,R)

2: sg← determineS G(q)

3: P← f indPOIinS G(q)

4: for all p ∈ P do

5: if verify(p, k, q) then R← R ∪p � add p to result set

6: end if

7: end for

8: for all b ∈ BV do

9: PQ.enQueue(< dN (q, b), b, q, sg >)

10: end for

11: end procedure

Next, the RkNN search starts. When a record is dequeued from
PQ, the search propagates to the neighboring subgraphs. In Fig. 9,
SGa is the subgraph in which query point q is included and SGb
is a neighboring subgraph. When record v is dequeued from PQ
and v.n is the border node b, data points in SGb are searched. In
this subgraph, data point d is included. Next, the kNNs of d are
searched for, and if q is included in the kNN set, d is added to
the result set. Otherwise, d is ignored. This subgraph can be vis-
ited several times from different border nodes. Thereafter, SGb is
marked as visited to avoid duplicate searches.

Next, rangeNN is invoked from the border node bi to find can-
didate data points. If the result set is not empty, verify is invoked
to check whether each data point is truly an RkNN of q. If the

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.2

result of verify is true, the data point is added to the result set. If
the size of rangeNN is smaller than k, other RkNNs could exist
on the path through this node. Therefore, new records from bi to
the other border nodes in the subgraph are created and inserted
into PQ.

Algorithm 3 RkNN
1: function RkNN(q)

2: PQ← ∅, R← ∅
3: StartSG(q, PQ,R)

4: while PQ not empty do

5: v← PQ.deQueue()

6: CS .add(v)

7: KNN ← rangeNN(v.n, k, dN (v.n, q), PQ)

8: for all p in KNN do

9: if verify(p, k, q) then

10: R← R ∪ p

11: end if

12: end for

13: if |KNN | < k then

14: for all b ∈ BV do

15: if v.cid is visited first time then

16: CP← f indPOIinS G(v.cid)

17: for all p ∈ CP do

18: if verify(p, k, q) then

19: R← R ∪ p

20: end if

21: end for

22: end if

23: PQ.enQueue(< dN (q, b), b, p, v.cid >)

24: end for

25: end if

26: end while

27: return R � RkNN of q

28: end function

Algorithm 3 shows the pseudo-code of the proposed method
described above. Lines 4–12 are similar to the process described
by the Eager algorithm. When record v is obtained from PQ, at
most k NNs of the network node v.n are searched and added to
KNN. For each element p of KNN, p is checked to determine
whether q is included in its kNN. If it is included, p is inserted
into the result set R.

Line 13 of Algorithm 3 checks whether the number of elements
in KNN is less than k, i.e., the number of data points that exist in
the area whose distance from v.n is less than k. If the result is true,

Fig. 9 Border node expansion.

Table 1 Road network maps used in the experiments.

map name # of nodes # of edges area size adj. list BBDT IBDT

Map A 16,284 24,914 168 km2 1.5 MB 1.1 MB 4.1 MB

Map B 109,373 81,233 284 km2 6.8 MB 4.5 MB 17.4 MB

node v.n is expanded and the search is continued. Otherwise, no
more RkNNs exist on the path through v.n, and therefore, node
expansion at v.n is not executed.

5. Experimental Results

We evaluated our proposed method by comparing it with the
Eager algorithm presented in Ref. [1]. Both algorithms were im-
plemented in Java and evaluated on a PC with an Intel Core i7-
4770 CPU (3.4 GHz) and 32 GB of memory. Table 1 shows the
road network maps used in this experiment. In this table, “adj.
list” refers to the size of the adjacency list, and BBDT and IBDT
are the size of the tables described in Section 3.

The adjacency list was prepared as follows: (1) the Peano-
Hilbert order [14] was assigned to all nodes and (2) neighboring
nodes in this order were clustered into 8 KB blocks. For adja-
cency list management, 0.5 MB (64-block) LRU buffer was as-
signed. For SMPV, road network graphs were partitioned by the
method described in Section 3.3. The average number of nodes in
a subgraph was approximately 240 for these two types of maps.

Table 2 compares the data size of the adjacency list (used pri-
marily by the Eager algorithm), SMPV (total of the adjacency list,
BBDT, and IBDT), and HEPV [11]. The data size of SMPV is
approximately 4–5 times larger than that of the Eager algorithm
which uses only an adjacency list. However, SMPV drastically
reduces the data size in comparison to HEPV.

We generated several data point sets on the road network links
using pseudorandom sequences, while changing the density D.
For example, D = 0.01 indicates that a data point exists once
every 100 links.

To evaluate the processing time of the SPF of SMPV, we com-
pared it with the PWA* algorithm. In this experiment, 10 near-
est neighbors (10NN) were searched based on the IER strategy,
i.e. candidates were searched using Euclidean distance, and then
the distance between the query point and each candidate was
searched using the A* algorithm and SMPV, respectively. Fig-
ure 10 shows the result. As shown in this figure, SMPV searched
kNN about 100 times faster than PWA*.

Figure 11 compares the processing time of the kNN query on
SMPV by varying the average number of nodes in the subgraphs.
In SMPV, the processing time is minimal and stable when the
average number of nodes is 240.

Figure 12 shows the processing times of RkNN queries when
the density of data points is 0.01. Figure 12 (a) and (b) show the
results for Map A and Map B, respectively. In the figures, the
horizontal axes show k and the vertical axes show the processing
times in seconds. As shown in Fig. 12 (a), the processing time of
the Eager algorithm sharply increases with k because the search
area also expands. In contrast, the proposed algorithm linearly
increases with k. For Fig. 12 (b), the tendency is almost the same,
however, the difference between the Eager algorithm and our pro-
posed method is larger for Map B (i.e., for Fig. 12 (b)).
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Table 2 Data size (MB).

map name Eager SMPV HEPV
& Lazy

Map A 1.5 6.7 30.1

Map B 6.8 28.7 376.1

Fig. 10 Processing time for kNN queries.

Fig. 11 Varying subgraph size.

Figure 13 shows the processing times when the density of data
points (D) varies. Here k was fixed to five. The processing time of
the Eager algorithm increases sharply when the density is low. On
the other hand, the proposed algorithm remains low even in that
case. When the density of data point is high, the Eager algorithm
performed well because the size of the search area decreases with
increasing density. The proposed algorithm showed stable char-
acteristics and was independent of the probability.

Fig. 12 Processing time for varying k value.

Fig. 13 Processing time for varying Prob value.
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6. Conclusion

In this paper, we proposed an RkNN query algorithm using a
simple distance materialization approach suitable for LBS. The
amount of data used in these methods decreases when com-
pared with conventional hierarchical network distance material-
ized methods.

The basis of the proposed method is to expand the search area
in concentric circles, similar to the Eager algorithm. At every
border node, the algorithm searches for data points in the range
centered at the query point with a radius of the distance between
the query point and the border node. If data points are found
by the query point, whether the results are truly included in the
RkNN of the query point is determined. In the proposed method,
the rangeNN procedure is performed only on border nodes. This
limitation drastically reduces the overall total time needed for in-
voking rangeNN. In addition, the IER adaptation of the rangeNN
and verify procedures helps reduces the overall processing time.
Consequently, the proposed method performs RkNN on a road
network quickly and efficiently, especially when the distribution
of the data points is sparse or k is large. The complexity analysis
of the proposed algorithm is for future work.
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