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Abstract: Many dynamic malware analysis systems based on hypervisors have been proposed. Although they support
malware analysis effectively, many of them have a shortcoming that permits the malware to easily recognize the virtu-
alized hardware and change its execution to prevent analysis. We contend that this drawback can be mitigated using a
hypervisor that virtualizes the minimum number of hardware accesses. This paper proposes a hypervisor-based mecha-
nism that can function as a building block for dynamic malware analysis systems. The mechanism provides the facility
for checkpointing and restoring a guest OS. It is designed for a parapass-through hypervisor, that is, a hypervisor that
runs directly on the hardware and does not execute a host OS or an administrative guest OS. The advantage of using a
parapass-through hypervisor is that it provides a virtual machine whose hardware configuration and behavior is similar
to the underlying physical machine, and hence, it can be stealthier than other hypervisors. We extend the parapass-
through hypervisor BitVisor with the proposed mechanism, and demonstrate that the resulting system can successfully
checkpoint and restore the states of Linux and Windows OSes. We confirm that hypervisor detectors running on the
system cannot identify the virtualized hardware, and determine that they are executing on a physical machine. We also

confirm that the system imposes minimal overhead on the execution times of the benchmark programs.
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1. Introduction

Considerable literature has been published on dynamic mal-
ware analysis systems based on emulators and hypervisors [5],
[11], [12], [19]. Although these systems effectively support mal-
ware analysis, many of them have a shortcoming that permits the
malware to detect that it is running on an emulator or hypervi-
sor. They can then behave differently or abort to prevent their
behavior from being exposed to analysis [1], [24]. Methods of de-
tecting emulators or hypervisors from inside a guest OS are well
studied [7], [8], [23] and frequently adopted in malware. There-
fore, malware analysis systems designed to execute malware must
be stealthy. Providing a practically real environment to malware
execution is an effective method to achieve stealthy analysis sys-
tems. This is also advantageous in the analysis of malware that
does not attempt to detect an emulator or hypervisor because such
malware could exhibit unintended behavior owing to the virtual-
ization. Unexpected changes of this nature prevent comprehen-
sive malware analysis. Chen et al. [4] reported that at least 4%
of their malware samples demonstrated less malicious behavior
under virtual machine executions. Lau et al. [16] reported that
2.13% of their malware samples were aware of virtual machines.

Parapass-through hypervisors are promising for stealthy mal-
ware analysis because they create a virtual machine whose speci-
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fication and behavior is almost the same as that of the underlying
physical machine and hence become stealthier than other popu-
lar hypervisors such as Xen and KVM. In the parapass-through
architecture, the majority of the I/O operations pass through the
hypervisor and only minimum operations are intercepted by the
hypervisor. Most devices are not virtualized and are controlled
by device drivers in the guest OS.

BitVisor [25] is the most popular parapass-through hypervisor.
It is designed for security enhancement. The structure of Bit-
Visor is illustrated in Fig.1. BitVisor executes directly on the
hardware and usually hosts only one guest OS at one time. It pro-
vides parapass-through device drivers that intercept 1/O requests
and responses to insert additional operations such as security en-
forcement. The BitVisor core and BitVisor extensions provide a
wide range of security facilities such as VPN, background stor-
age encryption [20], and malware signature detection [21]. The
major advantage of BitVisor is a small TCB (Trusted Computing
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Fig. 1 Structure of BitVisor.
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Base). The security facilities of BitVisor are not dependent on the
guest OS and the BitVisor code is significantly smaller than the
OS code. Shinagawa et al.[25] reported that BitVisor had only
21,582 lines of code.

Despite its potential in a stealthy infrastructure for malware
analysis, BitVisor does not provide a snapshot or checkpointing
facility. Consequently, BitVisor is not convenient for malware
analysis because users have difficulty in restoring the execution
environment to a normal state after malware execution. Unfor-
tunately, no existing study has determined a method to extend a
parapass-through hypervisor with a checkpointing facility.

In this paper, we propose a mechanism for parapass-through
hypervisors that checkpoints and restores guest OS states. We
implement BVCP, a BitVisor-based system into which the mech-
anism is incorporated, and demonstrate through experiments that
BVCP functions well with widely used OSes and commodity
computers. We also confirm that the mechanism imposes a small
runtime overhead. Although this study focuses on parapass-
through hypervisors, we expect that the insights and techniques of
this paper are useful in extending other hypervisors with a check-
pointing mechanism that depends minimally on a host OS or an
administrative guest OS.

Several challenges must be addressed to integrate a checkpoint
and restore mechanism in a parapass-through hypervisor. The
mechanism must find a location for storing the checkpointed data.
The method for a parapass-through hypervisor to save data to or
load data from storage is not a clearly defined function because
the hypervisor cannot get support of a host OS. The hypervisor
has no file system where it can store the checkpointed data. This
situation differs from most hypervisors that run a host or admin-
istrative guest OS. Moreover, the mechanism must interact with
the physical hardware devices because the hypervisor executes
directly on the hardware; it must include the low-level code to
manipulate raw devices to transfer the checkpointed data to stor-
age.

The contributions of this study are:

e [t is the first study to propose a method of incorporating a
checkpointing mechanism into a hypervisor without depend-
ing on a host or administrative guest OS.

o [t demonstrates that the proposed mechanism can work ef-
fectively with widely used OSes and computers and that the
mechanism can present actual hardware to programs running
in a virtual machine.

One advantage of achieving the mechanism without depending
on a host or administrative guest OS is that the resulting system
can provide a more stealthy environment. If a host OS and/or an-
other guest OS is running on the hypervisor, the resource view
observed by malware is varied because of resource virtualization
or resource consumption changes. For example, the kernel or
system daemons in another guest OS consume CPU cycles and
physical memory pages, and consequently malware may recog-
nize that less resource is actually assigned to its execution envi-
ronment. In addition, the introduction of another guest OS of-
ten results in the provision of virtual hardware different from the
real one (e.g., virtual hard disk). Another advantage is that it
improves user experiences in the primary usage assumed by Bit-
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Visor. BitVisor was originally intended to be used in daily com-
puter uses as an almost transparent infrastructure for enforcing
security facilities. The introduction of the checkpointing mecha-
nism enables OS rollback without additional programs or kernel
modification. OS rollback is useful to those other than malware
analysts; usage examples include installing software that is not
completely trusted, and running programs whose execution trails
should be erased from the computer to keep privacy.

This paper is organized as follows. Section 2 presents a brief
explanation of the major techniques for hypervisor detection.
Section 3 describes the proposed system. Section 4 discusses our
design decisions and several points requiring user consideration.
Section 5 reports the experimental results. Section 6 describes re-
lated work and Section 7 provides a brief summary of this paper
and directions for future research.

2. Hypervisor Detection

Many studies have been proposed concerning techniques for
hypervisor detection [4], [6], [7], [8], [9], [10], [23], [28]. Mal-
ware can also utilize the techniques to hide from malware analyz-
ers and detectors. Major detection techniques are as follows:

(1) Detection of virtual hardware: This technique searches for
virtual hardware that indicates the existence of a hypervisor.
Virtual hardware can be identified by obtaining the prod-
uct information of the devices or executing I/O operations
to manipulate the hardware devices. OS users can obtain
the vendor names of the hardware devices by searching for a
keyword from the system logs or executing OS management
utilities. The MAC address assigned to a network card can
also reveal that a network card is virtual [7].

(2) Detection of I/O backdoor: This technique issues a special
I/O request and observes the result. Some hypervisors pro-
vide a set of I/O ports through which a program in a guest
OS communicates with the hypervisor [3], [9]. The behavior
of 1/O port operations differs between a virtual machine and
a real machine.

(3) Detection of changes in instruction execution: This tech-
nique examines the instruction execution of a virtual CPU
and identifies a behavior different from a real CPU. Some
hypervisors do not correctly emulate specific instructions for
performance purposes [3], [7]. Bugs in a real CPU or in an
emulator can also be used for detection [22], [23].

(4) Detection of changes in timing: This technique measures
the execution times of special operations and determines that
a hypervisor is operating underneath if the execution times
are slower than those expected on a real machine.

The proposed study focuses on preventing hypervisor detec-
tion using the first technique, detection of virtual hardware, be-
cause it is simple and easy to implement in malware. Although
the timing-based technique is more robust, we surmise that many
malware developers will not choose this because it requires an ad-
ditional development effort and can return an erroneous result ow-
ing to the variable load of other applications. We expect that the
proposed system and other stealthy analysis systems supplement
each other. We propose that malware analysts use the proposed
system if they cannot analyze malware on other analysis systems
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(e.g., VMware-based) because of virtual hardware detection by
the malware.

3. Proposed System

3.1 Overview

Users begin by booting BVCP (an extended BitVisor) and then
boot a guest OS over it. When they choose BVCP in a boot loader
such as GRUB, BVCP is started and it executes the boot loader a
second time in a newly created virtual machine. The users then
select a guest OS in the boot loader, and the guest OS boots. Upon
completion of the boot process, the users are generally unable to
notice that the guest OS is executing on a virtual machine. The
appearance and behavior of the guest OS is the same as when it
is running directly on the underlying physical machine. The OS
kernel running on BVCP recognizes the same set of hardware de-
vices and BIOS as the ones detected when running on the physical
machine.

Figure 2 describes the approach employed by BVCP for mal-
ware analysis. To begin, a malware analyst executes a guest OS
for malware execution on top of BVCP and then checkpoints the
OS in its normal state. The analyst then executes malware and ob-
serves the result. The malware may destroy critical files, install
malicious services, or inject malicious code into a running pro-
cess. After examination, the analyst restores the guest OS. The
guest OS state, which can be infected with malware or corrupted,
is discarded. The guest OS restarts from the execution point at
which the OS is checkpointed.

In a checkpointing operation, BVCP saves the guest OS state
and continues the execution of the guest OS. Currently, BVCP
can maintain only one checkpoint. One checkpoint can be re-
stored multiple times; an analyst can examine an interested period
of malware execution an arbitrary number of times. In the restora-
tion operation, BVCP restores the checkpoint data and conse-
quently, the guest OS rolls back to the checkpointed state. All
modifications to memory or disk performed after the checkpoint-
ing are discarded.

3.2 Checkpointing Memory Data

BVCP saves and restores the data resident in CPU registers,
memory, and on disks. Memory data and register values are saved
to a free memory area that is allocated by the hypervisor at boot
time. BVCP users specify the physical memory size of the guest
OS to be less than half of the physical memory size of the real
hardware. They also stipulate the start physical address of the
free memory area. This must be greater than the middle point of
the address range of the physical memory hardware.

BVCP checkpoints the data residing in the physical memory
of the virtual machine. It saves the entire portion of the physical
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Fig.2 Using BVCP for malware analysis.
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memory except for specific ranges. One of the bypassed ranges
is the code and data area of the hypervisor. We use a function in
the original BitVisor code that returns the start and end address of
this range. A second omitted range is reserved by BIOS and thus,
unavailable to a guest OS. BVCP determines the reserved and un-
reserved memory ranges from a physical memory map obtained
by issuing BIOS-e820 at boot time. Figure 3 lists an example of
boot-time messages for the physical memory map. The memory
ranges labelled “usable” are saved; the others are not.

Copying the content of a given physical memory range to free
memory is not straightforward because the hypervisor must ac-
cess memory with virtual addresses. Hence, the hypervisor ma-
nipulates the page table to create virtual pages that are mapped to
the saved physical pages. It then copies the content of the memory
range to free memory using the memcpy function with the newly
obtained virtual address as an argument. Details are described in
Section 3.4.

BVCP also saves the CPU states of the virtual machine. In par-
ticular, it saves (1) the values in the guest-state area of a VMCS
structure in Intel VT-x, and (2) a register value not included in
the structure (i.e., a value of the RBP register). BVCP saves all
the fields in the guest-state area, which contains tens of states in-
cluding the CPU register values, a physical address range, inter-
ruptibility states, and activity states. The saved CPU registers in-
clude most special-purpose registers such as RSP, RIP, RFLAGS,
CRx, segment selector registers, and table pointers. However, the
saved CPU registers do not include the base pointer register RBP.
Therefore, we added code for saving the RBP value.

BVCP restores the previous guest OS state by loading the
checkpointed data to the appropriate memory areas and registers.
The physical memory of the virtual machine is simply overwrit-
ten by the checkpointed data. Several of the entries of the VMCS
structure of the virtual machine are reloaded with the saved values
using the VMWRITE instruction.

3.3 Checkpointing Disk Data

To checkpoint the disk data, BVCP users create at least two
partitions on a disk in advance. One partition (main partition)
is the normal storage for a guest OS. The second partition
(diff partition) stores the differential data written by the guest
OS after checkpointing. BVCP switches the destination of the
disk accesses between the main partition and the diff partition
(Fig.4). The switching operations are executed by a software
module called access switch. Access switch intercepts disk /O
and switches the destination of the disk accesses according to the
accessed disk blocks. Before checkpointing, requests for both

00000000-0009d7£f, usable da69b000-dabddfff, ACPI NVS
0009d800-0009ffff, reserved da6de®00-dadcefff, usable

000e0000-000fffff, reserved dadcf@00-dafdcfff, reserved
00100000-1fffffff, usable dafdd000-daffffff, usable

20000000-201fffff, reserved db800000-dfIfffff, reserved
20200000-3fffffff, usable £8000000-fbffffff, reserved
40000000-401fffff, reserved £fec00000-fec®Offf, reserved
40200000-d9cf7fff, usable fed00000-fed®3fff, reserved
d9cf8000-dad415fff, reserved fedlc0®00-fedlffff, reserved
da416000-da695fff, ACPI NVS fee00000-fee®0fff, reserved
da696000-da69afff, ACPI data ff000000-ffffffff, reserved

Fig.3 Example of physical memory maps obtained by BIOS-e820.
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disk reads and disk writes pass through the access switch and are
sent to the main partition; the diff partition is not used. Once the
guest OS is checkpointed, the diff partition is activated and there-
after, the access switch forwards all disk-write requests to the diff
partition. The destination of the disk-read requests is switched
between the two partitions based on whether the disk block to be
read is clean (not modified after checkpointing) or dirty (modified
after checkpointing).

The mechanism assumes that the guest OS addresses disk
blocks with LBA (Logical Block Addressing) numbers. The ac-
cess switch modifies the LBA number contained in a disk I/O
request and thus changes the accessed disk block. Given an LBA
number in the main partition and an operation type (i.e., read
or write), the access switch determines the appropriate partition
and calculates the corresponding LBA number in the partition. It
maintains a dirty block table to manage the LBA numbers of dirty
blocks.

The guest OS may wish to read a sequence of disk blocks that
contain both clean and dirty blocks. Therefore, when the access
switch intercepts a request for reading disk blocks, it first creates
and issues a new request to read the clean blocks from the main
partition. The access switch also creates and issues a new request
to read the dirty blocks from the diff partition. After collection of
the blocks from both partitions, it returns a notification of disk-
read completion to the guest OS.

When a restoration of the guest OS is initiated, the access
switch resets the destination of all disk operations to the main
partition. The data in the diff partition is discarded.

In the following, we explain the translation of LBA numbers
with an example. We suppose that the main partition begins with
the LBA number 0x100000 and the diff partition begins with the
LBA number 0x6500000. The distance between the correspond-
ing blocks in these partitions is 0x6400000. Then, we assume
that a guest OS sends an I/O request for writing data in a se-
quence of disk blocks whose LBA numbers are from 0x130000
to O0x13ffff. The access switch translates the LBA numbers
0x13**** into Ox653**** and raises dirty flags in the corre-
sponding entries in the dirty block table. Now, we assume that
the guest OS sends an 1/O request for reading data from a se-
quence of disk blocks whose LBA numbers are from 0x120000
to Ox14f£fff. The access switch translates the LBA numbers and
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void map_and_memcpy(u64 src_p, u64 len)
{
/* virtual addresses of source and destination */
u8 *src_v, *dst_v;
/* pre-allocated area for storing checkpointed data */
u8 *save_area;

save_area = ...;
src_v = mapmem_hphys(src_p, len, 0);
dst_v = mapmem_hphys(save_area + src_p, len, 0);

memcpy(dst_v, src_v, len);

unmapmem(src_v, len);
unmapmem(dst_v, len);

}

void checkpoint_memory_data(u64 area, u64 len)
{
u64 limit = area + len;
u64 b = area;
while (b < limit) {
if (out_of_hypervisor_range(b)) {
u64 copied_len = ...; /* block size, basically */
map_and_memcpy (b, copied_len);
}
b += block_size;
}
}

Fig. 5 Extract of a portion of the modified code for checkpointing memory
data.

consequently, the guest OS actually reads the data from LBA
numbers 0x6520000 to 0x654ffff. When the read I/O com-
pletes, a notification of disk read is sent to the guest OS. The ac-
cess switch intercepts the notification, creates a new I/O request
for reading clean blocks based on the dirty block table, and sends
the request to the disk. In this case, it reads two sequences of disk
blocks whose LBA numbers range from 0x120000 to 0x12ffff,
and from 0x140000 to 0x14ffff. The appropriate portion of the
first read data are overwritten with the newly read data. Finally,
the access switch passes the intercepted notification to the guest
OS.

3.4 Implementation Detail

We first explain the detail of checkpointing memory data.
BVCP saves the content of memory areas which are indicated as
“usable” in a physical memory map and are within the address
range assigned to the guest OS. Figure 5 shows the code added
for checkpointing memory data.

BVCP copies the content to a pre-allocated memory area
(save_area in the figure) at the granularity of block. The block
size is 64 KB in the current implementation. BVCP checks
whether each copied block is in the hypervisor area, and copies
blocks that are out of the hypervisor area only. For each copied
block, BVCP modifies the hypervisor’s page table to create
(1) contiguous virtual pages that are mapped to the physical pages
in the copied block and (2) contiguous virtual pages that are
mapped to the physical pages in the pre-allocated memory area.
Then it copies the content from the former virtual pages to the
latter virtual pages with ordinary memory transfer instructions in
memcpy. After that, it modifies the page table again to delete the
mapping for the virtual pages. BVCP uses mapmem_hphys to cre-
ate virtual pages, and uses unmapmem to delete mapping. Both
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mapmem_hphys and unmapmem are functions originally provided
by BitVisor.

When restoring the guest OS, BVCP performs an symmetric
operation, which copies the content from the pre-allocated area
to the memory area for the guest OS. The method of page map-
ping and memory copying used in the restoration operation is the
same as the method used in the checkpointing operation.

We then explain the detail of checkpointing disk data. We
modified the BitVisor code that manages storage I/O, specifically,
I/O of ATA (Advanced Technology Attachment) and AHCI (Ad-
vanced Host Controller Interface). We modified the functions
that process the DMA read or DMA write commands of ATA.
The commands adapted were READ DMA, READ DMA EXT,
WRITE DMA, and WRITE DMA EXT. Moreover, we modi-
fied the storage accesses using NCQ (Native Command Queu-
ing). Figure 6 is an extract of a portion of the modified code.
The function ahci_handle_cmd_rw_dma is one of the aforemen-
tioned functions. Based on the provided arguments, it calcu-
lates the LBA number and number of sectors sent to storage.
We added the function call switch_access_dst(port, ...,
rw); to the function body. The function switch_access_dst

void ahci_handle_cmd_rw_dma(..., struct ahci_port *port,
., int rw, ...)
{
u64 lba; /* LBA number */
u32 nsec; /* number of sectors */
lba = ...;
nsec = ...;

switch_access_dst(port, ..., rw);

}

void switch_access_dst(struct ahci_port *port, ...,
int rw)

{

if (is_switching_mode()) {
/* we are between checkpoint and restart */
u64 org_lba = port->my[...].dmabuf_lba;
u64 count = port->my[...].dmabuf_nsec;
new_lba = !rw ? translate_lba_read(org_lba, count)
: translate_lba_write(org_lba, count);
port->my[...].dmabuf_lba = new_lba;

3
3

u64 translate_lba_read(u64 org_lba, u64 count)
{
if (out_of_main_partition(org_lba)) {
return org_lba;
}
if (!contain_dirty_page(org_lba, count)) {
return org_lba;
}
return org_lba + partition_distance;

}

u64 translate_lba_write(u64 org_lba, u64 count)
{
if (out_of_main_partition(org_lba)) {
return org_lba;
}
set_dirty_flags(org_lba, count);
return org_lba + partition_distance;

}

Fig. 6 Extract of a portion of the modified code for storage accesses.
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was included to implement the access switch.

The function switch_access_dst rewrites the LBA number
in a given structure of type struct ahci_port. The func-
tion performs the rewrite if the current execution is between
checkpointing and restoration. It uses different rewrite algo-
rithms (translate_lba_read or translate_lba_write) based
on whether the access is a read access or a write access. The
function translate_lba_read determines if the accessed block
contains a dirty page. If it does, it returns the original LBA num-
ber; otherwise, it returns a translated LBA number from the diff
partition. The variable partition.distance, initialized when
booting BitVisor, stores the distance between the main partition
and the diff partition. The function translate_lba write al-
ways returns a translated LBA number from the diff partition. It
raises dirty flags for all the accessed blocks.

The users trigger checkpointing and restoration of the guest
OS by executing a special program on the guest OS or pressing
a special key. The hypervisor detects both the execution of the
program and the press of the key combination, and reacts accord-
ingly. The special program is a small function that merely invokes
a hypercall to the hypervisor. We implemented two hypercalls,
one for checkpointing and another for restoration. BVCP reg-
isters the handler function for the hypercalls at boot time. The
program executes a VMCALL instruction after setting the hypercall
ID to the RAX (or EAX) register. The key for checkpointing is
assigned to F2 and the key for restoration is assigned to F4, by
default. The original BitVisor implementation provides the code
for intercepting keyboard interrupts (i.e., I/O port 0x60). Hence,
we implemented the interception of F2 and F4 keys by extending
this code. Users can change the key binding by changing the key
code in the BVCP source code.

3.5 Difference from Other Hypervisors

The implementation of checkpointing in BVCP differs from
the implementation in other hypervisors that have a host OS or
administrative guest OS such as Xen and KVM.

First, a parapass-through hypervisor must allocate and man-
age memory and disk spaces to save checkpointed data because
it originally has no space to save. Furthermore, because no other
system software is running to manage the allocated spaces, the
hypervisor must manage the space by itself. If a host OS is run-
ning, a hypervisor can save checkpointed data as a file on the host
OS. However, in our setting, no file system is available and hence
BVCP writes checkpointed data by manipulating the low-level
requests issued to a hard disk. We decide to prepare a free disk
area as a diff partition and use a latter half of physical memory to
store checkpointed memory data. The design and implementation
of the part is an originality of this work.

Second, a parapass-through hypervisor must read and write the
state of real devices. Other hypervisors including Xen and KVM
provide virtual hardware to a guest OS, and the hypervisors can
completely control the state of the virtual hardware. On the other
hand, in the case of a parapass-through hypervisor, no device ab-
straction is provided between a guest OS and real hardware, and
the control of real hardware is not as simple as virtual hardware.
Handling real devices is a large challenge to achieve checkpoint-
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ing in a parapass-through hypervisor, and is discussed further in
Section 4.

Third, a parapass-through hypervisor does not provide users
with an execution environment for controlling a guest OS. Users
of KVM or Xen can control a guest OS from an administrative
software running in a host OS or an administrative guest OS on
the hypervisor. Devising a method of triggering checkpointing
and restoration is a challenge. BVCP expects users to trigger
them by issuing a hypercall or pressing a special key. Implement-
ing the triggering part and demonstrating that it works with no
problem is also an originality of this work.

4. Discussion

4.1 Device States

To capture complete guest OS states, the internal states of the
hardware devices must be extracted and saved. However, some
of these internal states are stored in write-only device registers
or obtained only by issuing I/O operations to the device. They
accompany an execution of an in and/or out instruction on Intel
x86 architectures. A network card, hard disk, and graphics card
have their own states that are not included in the main memory or
CPU registers.

The current version of BVCP does not save or load the in-
ternal state of the hardware devices. Physical memory ranges
for memory-mapped I/O (MMIO) are indicated as reserved and
memory accesses to these ranges are transformed to I/O accesses.
In actuality, data in these ranges are not memory data and can-
not necessarily be saved or loaded with ordinary memory access
instructions. Hence, BVCP does not save or load them. Conse-
quently, hardware states at the time of restoration can be incon-
sistent compared to the checkpointed data. Nevertheless, in many
of our experiments, a guest OS continued to function successfully
after restoration. Although a desktop screen can become distorted
after restoration owing to the inconsistency between the graphics
card and the guest OS, it recovers a normal appearance when the
guest OS next repaints the screen. Based on our experience, the
state of some devices such as graphics cards does not require sav-
ing and restoring.

Undoubtedly, there is a possibility that an inconsistency could
cause a problem or fault for the guest OS. In the worst case, the
guest OS could terminate abnormally. In some cases in our ex-
periments, the network did not function after restoration. BVCP
requires further development to achieve more reliability in terms
of the restoration of the device states. In the current implemen-
tation, the restoration of the disk data is more reliable than the
restoration of the memory data. Hence, BVCP provides a method
to allow users to deactivate memory data checkpointing and use
disk data checkpointing only.

4.2 Number of Checkpoints

The current version of BVCP can retain only one checkpoint
at any one time. We believe that the support of one checkpoint
satisfies the minimum requirement for the infrastructure of mal-
ware analysis. We avoid supporting multiple checkpoints because
the management of multiple checkpoints would require consid-
erable extension to the BVCP implementation and increase the
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runtime overhead. To support multiple checkpoints, the BVCP
implementation would need to manage multiple diff partitions or
create multiple “logical” diff partitions in one “physical” diff par-
tition. Choosing an appropriate diff partition from multiple diff
partitions and calculating the correct LBA number would be a
complicated operation. However, the support of multiple check-
points could be useful in some malware analysis and we identify
this support as a future work.

4.3 Network

BVCP does not intercept or virtualize network communica-
tion. If malware running on a guest OS rolls back, an exter-
nal server communicating with the malware does not roll back.
Hence BVCP users must be aware that malware can behave differ-
ently after the restoration of the guest OS. Users should consider
combining BVCP with other security systems such as sandboxes
or packet filters to prevent malware execution from damaging ex-
ternal machines.

4.4 Physical Memory View

Some sophisticated malware may attempt to detect a hypervi-
sor by checking the physical memory size or physical memory
map assigned to a virtual machine. If the size or map is different
from typical ones observed in real environments, the malware has
a reason to increase the probability of being running on a virtual
machine. BitVisor and BVCP provide a virtual machine with a
spurious physical memory map different from a real one because
a hypervisor resides in some parts of physical memory. The phys-
ical memory size available to a virtual machine also differs from
the size available to a real machine.

Currently, BVCP does not provide a countermeasure against
this type of hypervisor detection. However, we expect that an ex-
tension to BVCP will harden the detection significantly. The ex-
tension hides a hypervisor by moving its memory parts to the out-
side of the spurious physical memory range, and further changes
the physical memory size and physical memory map to plausible
ones.

5. Experiments

5.1 Test of Checkpointing

We implemented BVCP based on BitVisor 1.3 and tested its
behavior with experimentation. The hardware platform used in
all experiments was the desktop PC described in Table 1. We as-
signed one CPU core and 4 GB memory to a virtual machine. The
guest OSes used in the experiments were Ubuntu 12.04 (32 bit),
Fedora 20 (32 bit), and Windows 7 (32 bit).

We executed a terminal and web browser on a guest OS and
checkpointed the OS. We then terminated the terminal and
browser and restored the OS. The states of the guest OS and
applications, including the displayed contents, locations of win-

Table 1 Platform for experiments.

CPU Intel Core i3-2120 3.3 GHz

Memory 8GB

HDD Seagate STS00DMO002-1BD14 SATA 500 GB, 7,200 rpm
Chipset Intel 7 Series/C210 Series Chipset
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dows, and browsing history, were successfully rolled back to the
previous states on all three OSes. There were no problems en-
countered with the use of the restored OS. On Windows 7, the
desktop screen was not automatically repainted after restoration.
However, when the user moved the mouse cursor, the screen areas
around the mouse cursor were repainted.

In the second experiment, we checkpointed a guest OS and
then deleted all the files placed on the desktop. When we re-
stored the OS, all the files reappeared on the desktop, all with the
correct content and file name.

Finally, we checkpointed a guest OS and then installed the
Opera web browser. After the installation, we restored the guest
OS. We confirmed that after the restoration, Opera did not appear
in the list of installed applications. These experiments were suc-
cessful on all of the OSes and there were no problems after the
restoration.

We also confirmed that BVCP successfully checkpointed and
restored guest OS states on a notebook PC, a TOSHIBA dyna-
book R631.

5.2 Hypervisor Detection

We tested the stealthy characteristic of BVCP using two tools
and one algorithm for detecting hypervisors. These are publicly
available from the web. The first tool is slabbed-or-not [27]. It
combines several techniques for detecting hypervisors, such as
checking I/O backdoors, CPU information, device information,
and special files under /proc.

The second tool is virt-what [30], distributed through the Red
Hat website. The tool prints a list of facts regarding a virtual ma-
chine running outside the OS that it derives from heuristics. It
examines similar information sources to slabbed-or-not. For ex-
ample, it checks CPUID, files under /proc, and the results from
dmidecode and uname.

We also used the algorithm adopted in virtdetect [26]. This is a
command for detecting if the OS is running on a virtual machine.
The command is based on Sys: :Detect::Virtualization, a
widely distributed Perl package for hypervisor detection. The al-
gorithm adopted in the command and the package determines the
existence of a hypervisor by detecting virtual devices using three
methods. The first reads the content of the kernel buffer with the
dmesg command and searches for the keyword “virtual.” The
second reads the BIOS information with the dmidecode com-
mand and searches for character strings that represent product
names of virtual hardware or hypervisor manufacturers. The final
method reads the virtual files under /proc to obtain the name and
specification of the IDE and SCSI devices.

We attempted to detect BVCP using the tools and algorithm
from within a guest Ubuntu 12.04 OS. Slabbed-or-not could not
detect a hypervisor. It displayed the following messages:

Not running under any known container type

Not running under any known hypervisor type
Virt-what could not detect a hypervisor. It did not display a mes-
sage, indicating that it could not identify any evidence of a hyper-
visor. The virtdetect algorithm was unable to detect a hypervisor.
The result of dmesg and dmidecode contained the information of
the real hardware only, and did not contain a string indicating vir-

© 2015 Information Processing Society of Japan

Table 2 Time taken for checkpointing and restoration.

checkpoint  restore
Ubuntu 12.04 492 ms 492 ms
Windows 7 493 ms 493 ms

tual hardware. The file /proc/scsi/scsi contained the name
of the real HDD and DVD drives with no signs of virtualization.

5.3 Time for Checkpointing and Restoration

We measured the time taken for checkpointing and restor-
ing a guest OS. The guest OS used in this experiment was
Ubuntu 12.04 and Windows 7. We inserted to BVCP a code
fragment for obtaining the current time before and after the func-
tion calls for checkpointing and restoration. To obtain the current
time, we used the function get_time(), which was originally
provided by BitVisor. Checkpointing and restoration perform an
extremely small operation in terms of disk data; they just modify
the variable that specifies the destination of disk accesses. There-
fore, the time reported here is close to the time for checkpointing
and restoring memory data.

Table 2 shows the result. The times taken for checkpointing
or restoration were less than one second. The amount of mem-
ory data copied from the guest OS was approximately 2.46 GB in
both of the Ubuntu and Windows cases. We believe that check-
pointing and restoration are completed sufficiently fast, and hence
BVCP users will rarely feel stress to their overhead.

Almost the same amounts of time were taken in the cases of
Linux and Windows. It is natural because the cost of checkpoint-
ing and restoration by BVCP is dependent on the physical mem-
ory size of a checkpointed guest OS and is little affected by guest
OS types or applications running in a guest OS. It is also natural
that almost the same amounts of time were taken for checkpoint-
ing and restoration because they are symmetric operations with
similar costs.

5.4 Benchmark Results
5.4.1 Setting

‘We measured the runtime overheads imposed by BVCP to eval-
uate its practicality. The guest OS used in this experiment was
Ubuntu 12.04. The following execution environments were com-
pared:

Native: An OS runs on a physical machine.

BitVisor: An OS runs as the guest OS over the original version
of BitVisor.

BVCP: An OS runs as the guest OS over BVCP.

The performance of BVCP was measured in the period be-
tween checkpointing and restoration. When we built the BitVisor
and BVCP systems, we included compilation options to enable
the default mechanisms of BitVisor. We disabled the storage en-
cryption and VPN.

We measured the performance of the general operations using
UnixBench 5.1.3, the I/O performance with the Bonnie++ 1.97.1,
and the performance of a real-world application with a system
build benchmark.

5.4.2 UnixBench
Figure 7 presents the result of UnixBench. The shown values
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Fig. 8 Result of Bonnie++.

are the average values obtained in three executions. We discov-
ered a significant difference in the indexes between Native and
BitVisor, and a smaller difference between BitVisor and BVCP.
A significant part of the runtime overhead of BVCP is proba-
bly caused by operations originally in BitVisor. In some sub-
benchmarks, the performance of BVCP was slightly better than
that of BitVisor. The performance of the benchmark fluctuated
in different executions; BitVisor was better in some executions
and BVCP was faster in other executions. Therefore, we surmise
that better performance of BVCP in the result might be caused by
the fluctuation. Another possible reason is changes of hard disk
scheduling caused by changes of accessed sectors and I/O request
timing.
5.4.3 Bonnie++
Figure 8 shows the result of Bonnie++. The shown values are
the average values obtained in three executions. Each group in
the figure indicates the amount of time taken for the following
operations:
Random Seeks: Random accesses to the disk with the 1seek,
read, and write system calls.
Sequential Input Block: Sequential read of data blocks with
the read system call.
Sequential Input Per Chr: Per-character sequential read with
the getc macro.
Sequential Output Rewrite: Rewriting each part of a file with
the read, 1seek, and write system call.
Sequential Output Block: Sequential write of data blocks
with the write system call.

© 2015 Information Processing Society of Japan

Native | BitVisor | BVCP
sequential compilation | 44.60s | 51.14s | 50.49s
concurrent compilation | 44.75s | 50.69s | 50.62s

Sequential Output Per Chr:
with the putc macro.

Per-character sequential write

The values in the figure represent relative throughputs (the
throughputs of Native are 100%). Larger values indicate better
performance.

In the execution of BitVisor and BVCP, per-character disk ac-
cesses imposed increased runtime overheads than per-block disk
accesses. We believe that the reason is that the smaller access
unit increases the number of disk I/O’s and interceptions by the
hypervisor. The throughputs of block operations of BitVisor were
slightly lower than those of Native, and the throughputs of BVCP
were still lower. The maximum performance degradation of block
operations caused by BitVisor and BVCP were approximately 3%
and 17%, respectively.

The throughput of BVCP was better than the throughput of
BitVisor in Sequential Input Per Chr, and the throughput of Bit-
Visor was better than the throughput of Native in Random Seeks.
As in the UnixBench case, the performance fluctuated signifi-
cantly in the executions of Bonnie++. In the two sub-benchmarks
above, the execution environment achieving the best throughput
varied in different executions.

Note that the benchmark performs I/O operations only and the
experimental result indicates the worst-case overhead. BVCP im-
posed a 59% overhead on the Sequential Output Per Chr and it
was the largest overhead among all sub-benchmarks. We empha-
size that BVCP maintains the overhead to only 59% in the worst
case.

5.4.4 System Build Benchmark

Table 3 indicates the time consumed for building BitVisor
1.3 with gcc 4.6.3. We attempted both a sequential and con-
We executed the build benchmark af-
ter dropping all page cache by writing 3 in a special file

current compilation.

/proc/sys/vm/drop_caches. The overheads of both BitVisor
and BVCP were small. The time for BVCP was only 13.2% and
13.1% greater than the time of Native in sequential and paral-
lel compilation, respectively. Based on these results, we expect
that BVCP users will rarely recognize runtime overhead, and that
malware will not detect hypervisors from the application perfor-
mance information.

6. Related Work

Many general-purpose hypervisors support snapshots, includ-
ing VMware Workstation, VirtualBox, KVM, Xen, and Hyper-V.
These hypervisors virtualize more hardware devices than Bit-
Visor, and hence they provide execution environments that can
be more easily recognized by malware as virtual machines.

BareBox [15] is a Xen-based malware analysis system that can
restore the saved states of a guest OS. Because Xen always ex-
ecutes a special virtual machine for resource management, Bare-
Box takes advantage of the virtual machine to save checkpointed
data. Ether[5] is also a Xen-based hypervisor for malware anal-
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ysis. It cooperates with an administrative guest OS and moni-
tors events occurring in a target guest OS. Because BareBox and
Ether are based on Xen, more virtual devices are exposed to mal-
ware than in the case of BVCP. Further, Ether does not have
a checkpointing mechanism. MAVMM [19] is a lightweight hy-
pervisor that virtualizes a minimum set of hardware devices. It
provides an execution environment that is similar to a physical
machine. MAVMM provides several mechanisms for monitoring
and recording the execution of a guest OS. MAVMM does not
have a checkpointing mechanism.

Kang et al.[13] proposed a QEMU-based malware analysis
system that dynamically modifies the execution of an emula-
tor and deceives anti-emulation checks by malware. It adopts
a sophisticated technique for diagnosing anti-emulation behavior
based on a comparison of malware execution between an emu-
lated platform and a reference platform. Although their system
provides effective resistance against timing and CPU semantics
attacks, they admit that their system would not be useful against
attacks that use hardware characteristics. Conversely, BVCP tar-
gets malware that attempts hardware characteristic attacks. Mal-
ware analysts can improve their quality of analysis by combining
their system and BVCP.

REFORM [28] is a malware analysis tool implemented as a C++
plugin to a widely used debugger IDA Pro. It scans the mem-
ory of a malware program to find code signatures for determin-
ing if VMware is running (they call these anti-VMware signa-
tures). The tool automatically patches the execution results of
the code to disguise that the malware is running in a VMware
virtual machine. The tool adds a stealth characteristic to the de-
bugger against malware that attempts to detect I/O backdoors and
the anomalous behavior of instructions for accessing descriptor
tables. However, unlike BVCP, it does not provide any counter-
measure against malware that examines the name or behavior of
hardware devices.

API Chaser[14] is a malware analysis system that provides
anti-analysis resistant API monitoring. This system incorporates
numerous techniques to prevent malware from evading analysis.
It is based on QEMU and has artifacts for hiding the fact that
the malware is running on a QEMU virtual machine. The arti-
facts change the product names of the virtual hardware and dy-
namically patch specific instruction patterns in the malware code
for detecting QEMU. Although the artifacts change the product
names of the virtual hardware, they do not change the behavior
of the virtual hardware. Hence, virtualization by API Chaser is
likely to be detected by malware that examines the behavior of
hardware devices.

Running a hypervisor directly on hardware and permitting
some I/O operations to pass through the hypervisor is a powerful
architecture that provides the advantage of a low overhead and/or
small TCB. A work by Liu et al.[18] applied the architecture
to fast I/O operations of InfiniBand interconnects. The proposed
study applies the architecture to stealthy malware analysis.

Alcatraz [17] creates an isolated execution environment for un-
trusted software. It isolates a file system by intercepting file oper-
ations issued by applications and changing given file paths. Mod-
ification to files is accumulated to a file tree different from the
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base file tree, and is simply discarded when a user restores the file
system. Although Alcatraz runs inside an OS and modifies file
operations, BVCP changes the accessed disk blocks from outside
the OS, thus enabling checkpointing of all the OS states.

The ZFS [29] and Btrfs [2] file systems have a snapshot mech-
anism based on the copy-on-write method. Because they are file
systems, they must replace the currently used file system. Con-
versely, BVCP is a hypervisor and can coexist with any file sys-
tem and OS.

7. Summary and Future Work

This paper proposed a mechanism for a parapass-through hy-
pervisor that enables checkpointing and restoring guest OS states.
We incorporated the mechanism into BitVisor and conducted ex-
periments using the resulting BVCP system. This introduced a
13.2% runtime overhead (maximum) to the system build bench-
mark.

Future research follows several paths. The reliability of BVCP
could be further improved by addressing a problem concerning
the internal state of the hardware devices. We are investigating
a method of resetting the hardware devices to a regular state im-
mediately prior to checkpointing. Furthermore, it would be ad-
vantageous to collect malware analysis information using BVCP.
Examining the behavior of hypervisor-aware malware is particu-
larly important. We can even create and examine artificial mal-
ware that attempts to recognize BVCP. In the long run, a scheme
for quantitatively evaluating the stealthiness of hypervisor-based
systems will be needed. Finally, an implementation scheme that
extends BVCP to support multiple checkpoints should be consid-
ered.
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